From dd62d6fa4a85f18a29de009a972f5599b19ec946 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 00:51:53 +0800 Subject: [PATCH] Fixing hopenet --- code/utils.py | 61 ++++++++++++++++++------------ 1 files changed, 36 insertions(+), 25 deletions(-) diff --git a/code/utils.py b/code/utils.py index 645ae19..5a18d7c 100644 --- a/code/utils.py +++ b/code/utils.py @@ -7,6 +7,40 @@ import math from math import cos, sin +def softmax_temperature(tensor, temperature): + result = torch.exp(tensor / temperature) + result = torch.div(result, torch.sum(result, 1).unsqueeze(1).expand_as(result)) + return result + +def get_pose_params_from_mat(mat_path): + # This functions gets the pose parameters from the .mat + # Annotations that come with the Pose_300W_LP dataset. + mat = sio.loadmat(mat_path) + # [pitch yaw roll tdx tdy tdz scale_factor] + pre_pose_params = mat['Pose_Para'][0] + # Get [pitch, yaw, roll, tdx, tdy] + pose_params = pre_pose_params[:5] + return pose_params + +def get_ypr_from_mat(mat_path): + # Get yaw, pitch, roll from .mat annotation. + # They are in radians + mat = sio.loadmat(mat_path) + # [pitch yaw roll tdx tdy tdz scale_factor] + pre_pose_params = mat['Pose_Para'][0] + # Get [pitch, yaw, roll] + pose_params = pre_pose_params[:3] + return pose_params + +def get_pt2d_from_mat(mat_path): + # Get 2D landmarks + mat = sio.loadmat(mat_path) + pt2d = mat['pt2d'] + return pt2d + +def mse_loss(input, target): + return torch.sum(torch.abs(input.data - target.data) ** 2) + def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.): # Input is a cv2 image # pose_params: (pitch, yaw, roll, tdx, tdy) @@ -22,8 +56,8 @@ face_y = tdy - 0.50 * size else: height, width = img.shape[:2] - face_x = width / 2 - 0.15 - size - face_y = height / 2 - 0.15 - size + face_x = width / 2 - 0.5 * size + face_y = height / 2 - 0.5 * size x1 = size * (cos(y) * cos(r)) + face_x y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y @@ -49,26 +83,3 @@ cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2) return img - -def get_pose_params_from_mat(mat_path): - # This functions gets the pose parameters from the .mat - # Annotations that come with the 300W_LP dataset. - mat = sio.loadmat(mat_path) - # [pitch yaw roll tdx tdy tdz scale_factor] - pre_pose_params = mat['Pose_Para'][0] - # Get [pitch, yaw, roll, tdx, tdy] - pose_params = pre_pose_params[:5] - return pose_params - -def get_ypr_from_mat(mat_path): - # Get yaw, pitch, roll from .mat annotation. - # They are in radians - mat = sio.loadmat(mat_path) - # [pitch yaw roll tdx tdy tdz scale_factor] - pre_pose_params = mat['Pose_Para'][0] - # Get [pitch, yaw, roll] - pose_params = pre_pose_params[:3] - return pose_params - -def mse_loss(input, target): - return torch.sum(torch.abs(input.data - target.data) ** 2) -- Gitblit v1.8.0