From e306e86e925e4211c1c2d2f68de45d5e55f3e215 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期日, 13 八月 2017 01:22:31 +0800 Subject: [PATCH] Some cleanup and AFLW working --- code/datasets.py | 124 +++++++++++++++++++++++++---------------- 1 files changed, 75 insertions(+), 49 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index 3750e71..4cd8449 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -7,8 +7,12 @@ import utils -class Pose_300W_LP(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): +def stack_grayscale_tensor(tensor): + tensor = torch.cat([tensor, tensor, tensor], 0) + return tensor + +class 300W_LP(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -18,26 +22,55 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - label = torch.FloatTensor(pose) + # Crop the face + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.15 + x_min -= k * abs(x_max - x_min) + y_min -= 4 * k * abs(y_max - y_min) + x_max += k * abs(x_max - x_min) + y_max += 0.4 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + # Get shape + shape = np.load(shape_path) + + labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) if self.transform is not None: img = self.transform(img) - return img, label, self.X_train[index] + return img, labels, self.X_train[index] def __len__(self): # 122,450 return self.length class AFLW2000(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -47,43 +80,30 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - label = torch.FloatTensor(pose) + # Crop the face + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) - if self.transform is not None: - img = self.transform(img) - - return img, label, self.X_train[index] - - def __len__(self): - # 2,000 - return self.length - -class Pose_300W_LP_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): - self.data_dir = data_dir - self.transform = transform - self.img_ext = img_ext - self.annot_ext = annot_ext - - filename_list = get_list_from_filenames(filename_path) - - self.X_train = filename_list - self.y_train = filename_list - self.length = len(filename_list) - - def __getitem__(self, index): - img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + k = 0.15 + x_min -= k * abs(x_max - x_min) + y_min -= 4 * k * abs(y_max - y_min) + x_max += k * abs(x_max - x_min) + y_max += 0.4 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) + pose = utils.get_ypr_from_mat(mat_path) # And convert to degrees. pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi @@ -98,11 +118,11 @@ return img, labels, self.X_train[index] def __len__(self): - # 122,450 + # 2,000 return self.length -class AFLW2000_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): +class AFLW(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -112,31 +132,37 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # We get the pose in radians - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) + annot = open(txt_path, 'r') + line = annot.readline().split(' ') + pose = [float(line[1]), float(line[2]), float(line[3])] # And convert to degrees. - pitch, yaw, roll = pose * 180 / np.pi + yaw = pose[0] * 180 / np.pi + pitch = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Something weird with the roll in AFLW + if yaw < 0: + roll *= -1 # Bin values bins = np.array(range(-99, 102, 3)) - binned_pitch = torch.DoubleTensor(np.digitize(pitch, bins) - 1) - binned_yaw = torch.DoubleTensor(np.digitize(yaw, bins) - 1) - binned_roll = torch.DoubleTensor(np.digitize(roll, bins) - 1) - - label = binned_yaw, binned_pitch, binned_roll + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) if self.transform is not None: img = self.transform(img) - return img, label, self.X_train[index] + return img, labels, self.X_train[index] def __len__(self): - # 2,000 + # train: 18,863 + # test: 1,966 return self.length def get_list_from_filenames(file_path): -- Gitblit v1.8.0