From e65c915e5bdbcca56b37aa13bcff4911beffbe37 Mon Sep 17 00:00:00 2001
From: hyhmrright <hyhmrright@163.com>
Date: 星期五, 31 五月 2019 13:13:35 +0800
Subject: [PATCH] change py2 to  py3

---
 code/train_hopenet.py |    8 ++++----
 1 files changed, 4 insertions(+), 4 deletions(-)

diff --git a/code/train_hopenet.py b/code/train_hopenet.py
index 00e65ea..56b9ca3 100644
--- a/code/train_hopenet.py
+++ b/code/train_hopenet.py
@@ -96,7 +96,7 @@
         saved_state_dict = torch.load(args.snapshot)
         model.load_state_dict(saved_state_dict)
 
-    print 'Loading data.'
+    print('Loading data.')
 
     transformations = transforms.Compose([transforms.Scale(240),
     transforms.RandomCrop(224), transforms.ToTensor(),
@@ -119,7 +119,7 @@
     elif args.dataset == 'AFW':
         pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
     else:
-        print 'Error: not a valid dataset name'
+        print('Error: not a valid dataset name')
         sys.exit()
 
     train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
@@ -142,7 +142,7 @@
                                   {'params': get_fc_params(model), 'lr': args.lr * 5}],
                                    lr = args.lr)
 
-    print 'Ready to train network.'
+    print('Ready to train network.')
     for epoch in range(num_epochs):
         for i, (images, labels, cont_labels, name) in enumerate(train_loader):
             images = Variable(images).cuda(gpu)
@@ -195,6 +195,6 @@
 
         # Save models at numbered epochs.
         if epoch % 1 == 0 and epoch < num_epochs:
-            print 'Taking snapshot...'
+            print('Taking snapshot...')
             torch.save(model.state_dict(),
             'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')

--
Gitblit v1.8.0