From e65c915e5bdbcca56b37aa13bcff4911beffbe37 Mon Sep 17 00:00:00 2001 From: hyhmrright <hyhmrright@163.com> Date: 星期五, 31 五月 2019 13:13:35 +0800 Subject: [PATCH] change py2 to py3 --- code/train_resnet50_regression.py | 10 +++++----- 1 files changed, 5 insertions(+), 5 deletions(-) diff --git a/code/train_resnet50_regression.py b/code/train_resnet50_regression.py index 04d27c7..da4a047 100644 --- a/code/train_resnet50_regression.py +++ b/code/train_resnet50_regression.py @@ -87,7 +87,7 @@ model = hopenet.ResNet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 3) load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) - print 'Loading data.' + print('Loading data.') transformations = transforms.Compose([transforms.Scale(240), transforms.RandomCrop(224), transforms.ToTensor(), @@ -108,7 +108,7 @@ elif args.dataset == 'AFW': pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) else: - print 'Error: not a valid dataset name' + print('Error: not a valid dataset name') sys.exit() train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, @@ -123,8 +123,8 @@ {'params': get_fc_params(model), 'lr': args.lr * 5}], lr = args.lr) - print 'Ready to train network.' - print 'First phase of training.' + print('Ready to train network.') + print('First phase of training.') for epoch in range(num_epochs): for i, (images, labels, cont_labels, name) in enumerate(train_loader): images = Variable(images).cuda(gpu) @@ -143,6 +143,6 @@ # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: - print 'Taking snapshot...' + print('Taking snapshot...') torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') -- Gitblit v1.8.0