From ec44ac453f794a5368e702315addfedcea3a4299 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期二, 19 九月 2017 06:01:47 +0800
Subject: [PATCH] Added continuous labels

---
 code/test.py |   44 ++++++++++++++++++++++++--------------------
 1 files changed, 24 insertions(+), 20 deletions(-)

diff --git a/code/test.py b/code/test.py
index 9ff35e6..b69c3a9 100644
--- a/code/test.py
+++ b/code/test.py
@@ -88,42 +88,46 @@
     # Test the Model
     model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
     total = 0
-    n_margins = 20
-    yaw_correct = np.zeros(n_margins)
-    pitch_correct = np.zeros(n_margins)
-    roll_correct = np.zeros(n_margins)
-
-    idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
-
     yaw_error = .0
     pitch_error = .0
     roll_error = .0
 
     l1loss = torch.nn.L1Loss(size_average=False)
 
-    for i, (images, labels, name) in enumerate(test_loader):
+    for i, (images, labels, cont_labels, name) in enumerate(test_loader):
         images = Variable(images).cuda(gpu)
-        total += labels.size(0)
-        label_yaw = labels[:,0].float()
-        label_pitch = labels[:,1].float()
-        label_roll = labels[:,2].float()
+        total += cont_labels.size(0)
+        label_yaw = cont_labels[:,0].float()
+        label_pitch = cont_labels[:,1].float()
+        label_roll = cont_labels[:,2].float()
 
         pre_yaw, pre_pitch, pre_roll, angles = model(images)
-        yaw = angles[-1][:,0].cpu().data
-        pitch = angles[-1][:,1].cpu().data
-        roll = angles[-1][:,2].cpu().data
+        yaw = angles[0][:,0].cpu().data * 3 - 99
+        pitch = angles[0][:,1].cpu().data * 3 - 99
+        roll = angles[0][:,2].cpu().data * 3 - 99
+
+        for idx in xrange(1,args.iter_ref+1):
+            yaw += angles[idx][:,0].cpu().data
+            pitch += angles[idx][:,1].cpu().data
+            roll += angles[idx][:,2].cpu().data
 
         # Mean absolute error
-        yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)
-        pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3)
-        roll_error += torch.sum(torch.abs(roll - label_roll) * 3)
+        yaw_error += torch.sum(torch.abs(yaw - label_yaw))
+        pitch_error += torch.sum(torch.abs(pitch - label_pitch))
+        roll_error += torch.sum(torch.abs(roll - label_roll))
 
         # Save images with pose cube.
         # TODO: fix for larger batch size
         if args.save_viz:
             name = name[0]
-            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+            if args.dataset == 'BIWI':
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png'))
+            else:
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+
+            if args.batch_size == 1:
+                error_string = 'y %.4f, p %.4f, r %.4f' % (torch.sum(torch.abs(yaw - label_yaw) * 3), torch.sum(torch.abs(pitch - label_pitch) * 3), torch.sum(torch.abs(roll - label_roll) * 3))
+                cv2_img = cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=2, color=(0,255,0), thickness=2)
             utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99)
             cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
 

--
Gitblit v1.8.0