From ec44ac453f794a5368e702315addfedcea3a4299 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 19 九月 2017 06:01:47 +0800 Subject: [PATCH] Added continuous labels --- code/test.py | 44 ++++++++++++++++++++++++-------------------- 1 files changed, 24 insertions(+), 20 deletions(-) diff --git a/code/test.py b/code/test.py index 9ff35e6..b69c3a9 100644 --- a/code/test.py +++ b/code/test.py @@ -88,42 +88,46 @@ # Test the Model model.eval() # Change model to 'eval' mode (BN uses moving mean/var). total = 0 - n_margins = 20 - yaw_correct = np.zeros(n_margins) - pitch_correct = np.zeros(n_margins) - roll_correct = np.zeros(n_margins) - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - yaw_error = .0 pitch_error = .0 roll_error = .0 l1loss = torch.nn.L1Loss(size_average=False) - for i, (images, labels, name) in enumerate(test_loader): + for i, (images, labels, cont_labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() - label_pitch = labels[:,1].float() - label_roll = labels[:,2].float() + total += cont_labels.size(0) + label_yaw = cont_labels[:,0].float() + label_pitch = cont_labels[:,1].float() + label_roll = cont_labels[:,2].float() pre_yaw, pre_pitch, pre_roll, angles = model(images) - yaw = angles[-1][:,0].cpu().data - pitch = angles[-1][:,1].cpu().data - roll = angles[-1][:,2].cpu().data + yaw = angles[0][:,0].cpu().data * 3 - 99 + pitch = angles[0][:,1].cpu().data * 3 - 99 + roll = angles[0][:,2].cpu().data * 3 - 99 + + for idx in xrange(1,args.iter_ref+1): + yaw += angles[idx][:,0].cpu().data + pitch += angles[idx][:,1].cpu().data + roll += angles[idx][:,2].cpu().data # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll - label_roll) * 3) + yaw_error += torch.sum(torch.abs(yaw - label_yaw)) + pitch_error += torch.sum(torch.abs(pitch - label_pitch)) + roll_error += torch.sum(torch.abs(roll - label_roll)) # Save images with pose cube. # TODO: fix for larger batch size if args.save_viz: name = name[0] - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + if args.dataset == 'BIWI': + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) + else: + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + + if args.batch_size == 1: + error_string = 'y %.4f, p %.4f, r %.4f' % (torch.sum(torch.abs(yaw - label_yaw) * 3), torch.sum(torch.abs(pitch - label_pitch) * 3), torch.sum(torch.abs(roll - label_roll) * 3)) + cv2_img = cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=2, color=(0,255,0), thickness=2) utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99) cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) -- Gitblit v1.8.0