From ec44ac453f794a5368e702315addfedcea3a4299 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 19 九月 2017 06:01:47 +0800 Subject: [PATCH] Added continuous labels --- code/test_preangles.py | 19 +++++++++++-------- 1 files changed, 11 insertions(+), 8 deletions(-) diff --git a/code/test_preangles.py b/code/test_preangles.py index 1203578..9899572 100644 --- a/code/test_preangles.py +++ b/code/test_preangles.py @@ -97,12 +97,12 @@ l1loss = torch.nn.L1Loss(size_average=False) - for i, (images, labels, name) in enumerate(test_loader): + for i, (images, labels, cont_labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() - label_pitch = labels[:,1].float() - label_roll = labels[:,2].float() + total += cont_labels.size(0) + label_yaw = cont_labels[:,0].float() + label_pitch = cont_labels[:,1].float() + label_roll = cont_labels[:,2].float() yaw, pitch, roll, angles = model(images) @@ -121,15 +121,18 @@ roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) + yaw_error += torch.sum(torch.abs(yaw_predicted * 3 - 99 - label_yaw)) + pitch_error += torch.sum(torch.abs(pitch_predicted * 3 - 99 - label_pitch)) + roll_error += torch.sum(torch.abs(roll_predicted * 3 - 99 - label_roll)) # Save images with pose cube. # TODO: fix for larger batch size if args.save_viz: name = name[0] cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + if args.batch_size == 1: + error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw) * 3), torch.sum(torch.abs(pitch_predicted - label_pitch) * 3), torch.sum(torch.abs(roll_predicted - label_roll) * 3)) + cv2_img = cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) -- Gitblit v1.8.0