From ec44ac453f794a5368e702315addfedcea3a4299 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 19 九月 2017 06:01:47 +0800 Subject: [PATCH] Added continuous labels --- code/train_preangles.py | 86 +++++++----------------------------------- 1 files changed, 15 insertions(+), 71 deletions(-) diff --git a/code/train_preangles.py b/code/train_preangles.py index 31144f6..afb98c8 100644 --- a/code/train_preangles.py +++ b/code/train_preangles.py @@ -133,6 +133,8 @@ pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW': pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW_aug': + pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFW': pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) else: @@ -155,18 +157,23 @@ optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, {'params': get_non_ignored_params(model), 'lr': args.lr}, - {'params': get_fc_params(model), 'lr': args.lr * 2}], + {'params': get_fc_params(model), 'lr': args.lr * 5}], lr = args.lr) print 'Ready to train network.' print 'First phase of training.' for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): + for i, (images, labels, cont_labels, name) in enumerate(train_loader): images = Variable(images.cuda(gpu)) label_yaw = Variable(labels[:,0].cuda(gpu)) label_pitch = Variable(labels[:,1].cuda(gpu)) label_roll = Variable(labels[:,2].cuda(gpu)) + + label_angles = Variable(cont_labels[:,:3].cuda(gpu)) + label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu)) + label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu)) + label_roll_cont = Variable(cont_labels[:,2].cuda(gpu)) optimizer.zero_grad() model.zero_grad() @@ -183,13 +190,13 @@ pitch_predicted = softmax(pre_pitch) roll_predicted = softmax(pre_roll) - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) + loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont) # print yaw_predicted, label_yaw.float(), loss_reg_yaw # Total loss @@ -198,7 +205,6 @@ loss_roll += alpha * loss_reg_roll loss_seq = [loss_yaw, loss_pitch, loss_roll] - # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] torch.autograd.backward(loss_seq, grad_seq) optimizer.step() @@ -215,65 +221,3 @@ print 'Taking snapshot...' torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') - - print 'Second phase of training (finetuning layer).' - for epoch in range(num_epochs_ft): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - label_angles = Variable(labels[:,:3].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, angles = model(images) - - # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) - - # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - # Finetuning loss - loss_angles = reg_criterion(angles[0], label_angles.float()) - - loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' - %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs_ft - 1: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') - - - # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') -- Gitblit v1.8.0