From ec99c6649af6bdbd3c836f20cdc81170e7045cc8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 10:06:48 +0800 Subject: [PATCH] Training hopenet and normal for different alpha values on AFLW --- code/train.py | 2 /dev/null | 205 --------------------------------------------------- code/old/test_shape.py | 0 code/old/train_shape.py | 0 code/train_preangles.py | 2 code/old/test_old.py | 0 code/test_preangles.py | 22 ----- 7 files changed, 2 insertions(+), 229 deletions(-) diff --git a/code/batch_testing/batch_testing_AFLW_preangles.py b/code/batch_testing/batch_testing_AFLW_preangles.py deleted file mode 100644 index e0c170e..0000000 --- a/code/batch_testing/batch_testing_AFLW_preangles.py +++ /dev/null @@ -1,147 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torch.backends.cudnn as cudnn -import torchvision -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils - -import glob - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.', - default='', type=str) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=1, type=int) - parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', - default=False, type=bool) - - args = parser.parse_args() - - return args - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - gpu = args.gpu_id - - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - - print 'Loading snapshot list.' - # Load snapshot - snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl'))) - - print 'Loading data.' - - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), transforms.ToTensor()]) - - transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, - transformations) - test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=args.batch_size, - num_workers=2) - - model.cuda(gpu) - - print 'Ready to test network.' - - output_file_name = args.snapshot_folder.split('/')[-1] + '_AFLW_preangles.txt' - txt_output = open(os.join('output/batch_snapshots', output_file_name), 'w') - - for snapshot_path in snapshot_list: - snapshot_name = snapshot_path.split('/')[-1].split('.')[0] - print 'Loading snapshot ' + snapshot_name - - saved_state_dict = torch.load(snapshot_path) - model.load_state_dict(saved_state_dict) - - # Test the Model - model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - total = 0 - n_margins = 20 - yaw_correct = np.zeros(n_margins) - pitch_correct = np.zeros(n_margins) - roll_correct = np.zeros(n_margins) - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - yaw_error = .0 - pitch_error = .0 - roll_error = .0 - - l1loss = torch.nn.L1Loss(size_average=False) - - for i, (images, labels, name) in enumerate(test_loader): - images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() - label_pitch = labels[:,1].float() - label_roll = labels[:,2].float() - - yaw, pitch, roll, angles = model(images) - - # Binned predictions - _, yaw_bpred = torch.max(yaw.data, 1) - _, pitch_bpred = torch.max(pitch.data, 1) - _, roll_bpred = torch.max(roll.data, 1) - - # Continuous predictions - yaw_predicted = utils.softmax_temperature(yaw.data, 1) - pitch_predicted = utils.softmax_temperature(pitch.data, 1) - roll_predicted = utils.softmax_temperature(roll.data, 1) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() - - # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - - if args.save_viz: - name = name[0] - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) - cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) - - print('Test error in degrees of the model on the ' + str(total) + - ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, - pitch_error / total, roll_error / total)) - txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) + - ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total, - pitch_error / total, roll_error / total)) - - txt_output.close() diff --git a/code/test_old.py b/code/old/test_old.py similarity index 100% rename from code/test_old.py rename to code/old/test_old.py diff --git a/code/test_shape.py b/code/old/test_shape.py similarity index 100% rename from code/test_shape.py rename to code/old/test_shape.py diff --git a/code/train_shape.py b/code/old/train_shape.py similarity index 100% rename from code/train_shape.py rename to code/old/train_shape.py diff --git a/code/test_preangles.py b/code/test_preangles.py index 7cf8ebb..1203578 100644 --- a/code/test_preangles.py +++ b/code/test_preangles.py @@ -60,9 +60,6 @@ print 'Loading data.' - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), transforms.ToTensor()]) - transformations = transforms.Compose([transforms.Scale(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) @@ -90,10 +87,6 @@ # Test the Model model.eval() # Change model to 'eval' mode (BN uses moving mean/var). total = 0 - n_margins = 20 - yaw_correct = np.zeros(n_margins) - pitch_correct = np.zeros(n_margins) - roll_correct = np.zeros(n_margins) idx_tensor = [idx for idx in xrange(66)] idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) @@ -132,29 +125,14 @@ pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - # Binned Accuracy - # for er in xrange(n_margins): - # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) - # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) - # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - - # print label_yaw[0], yaw_bpred[0,0] - # Save images with pose cube. # TODO: fix for larger batch size if args.save_viz: name = name[0] cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - #print os.path.join('output/images', name + '.jpg') - #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 - #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) print('Test error in degrees of the model on the ' + str(total) + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, pitch_error / total, roll_error / total)) - - # Binned accuracy - # for idx in xrange(len(yaw_correct)): - # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/train.py b/code/train.py index 03d5cf5..fd0735a 100644 --- a/code/train.py +++ b/code/train.py @@ -251,7 +251,7 @@ loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll - loss_yaw *= 0.35 + loss_yaw *= 1 # Finetuning loss loss_seq = [loss_yaw, loss_pitch, loss_roll] diff --git a/code/train_AFLW.py b/code/train_AFLW.py deleted file mode 100644 index f355f63..0000000 --- a/code/train_AFLW.py +++ /dev/null @@ -1,197 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torchvision -import torch.backends.cudnn as cudnn -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', - default=5, type=int) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=16, type=int) - parser.add_argument('--lr', dest='lr', help='Base learning rate.', - default=0.001, type=float) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--finetune', dest='finetune', help='Boolean: finetune or from Imagenet pretrain.', - default=False, type=bool) - parser.add_argument('--snapshot', dest='snapshot', help='Path to finetune snapshot.', - default='', type=str) - - args = parser.parse_args() - - return args - -def get_ignored_params(model): - # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) - for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k - -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) - for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k - -def load_filtered_state_dict(model, snapshot): - # By user apaszke from discuss.pytorch.org - model_dict = model.state_dict() - # 1. filter out unnecessary keys - snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(snapshot) - # 3. load the new state dict - model.load_state_dict(model_dict) - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - num_epochs = args.num_epochs - batch_size = args.batch_size - gpu = args.gpu_id - - if not os.path.exists('output/snapshots'): - os.makedirs('output/snapshots') - - # ResNet101 with 3 outputs - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - - if args.finetune: - model.load_state_dict(torch.load(args.snapshot)) - else: - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), - transforms.ToTensor()]) - - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, - transformations) - train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - shuffle=True, - num_workers=2) - - model.cuda(gpu) - criterion = nn.CrossEntropyLoss().cuda(gpu) - reg_criterion = nn.MSELoss().cuda(gpu) - # Regression loss coefficient - alpha = 0.1 - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, - {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], - lr = args.lr) - # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, - # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], - # lr = args.lr, momentum = 0.9) - - print 'Ready to train network.' - - for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - - optimizer.zero_grad() - - yaw, pitch, roll = model(images) - - # Cross entropy loss - loss_yaw = criterion(yaw, label_yaw) - loss_pitch = criterion(pitch, label_pitch) - loss_roll = criterion(roll, label_roll) - - # MSE loss - yaw_predicted = F.softmax(yaw) - pitch_predicted = F.softmax(pitch) - roll_predicted = F.softmax(roll) - - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - loss_seq = [loss_yaw, loss_pitch, loss_roll] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - if epoch == 0: - torch.save(model.state_dict(), - 'output/snapshots/resnet50_AFLW_finetuned_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs - 1: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/resnet50_AFLW_finetuned_epoch_'+ str(epoch+1) + '.pkl') - - # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet50_AFLW_finetuned_epoch_' + str(epoch+1) + '.pkl') diff --git a/code/train_AFLW_preangles.py b/code/train_AFLW_preangles.py deleted file mode 100644 index b12149c..0000000 --- a/code/train_AFLW_preangles.py +++ /dev/null @@ -1,265 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torchvision -import torch.backends.cudnn as cudnn -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', - default=5, type=int) - parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', - default=5, type=int) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=16, type=int) - parser.add_argument('--lr', dest='lr', help='Base learning rate.', - default=0.001, type=float) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) - parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', - default=0.00, type=float) - args = parser.parse_args() - return args - -def get_ignored_params(model): - # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.fc_finetune) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. - b = [] - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_fc_params(model): - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - for name, param in module.named_parameters(): - yield param - -def load_filtered_state_dict(model, snapshot): - # By user apaszke from discuss.pytorch.org - model_dict = model.state_dict() - # 1. filter out unnecessary keys - snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(snapshot) - # 3. load the new state dict - model.load_state_dict(model_dict) - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - num_epochs = args.num_epochs - num_epochs_ft = args.num_epochs_ft - batch_size = args.batch_size - gpu = args.gpu_id - - if not os.path.exists('output/snapshots'): - os.makedirs('output/snapshots') - - # ResNet101 with 3 outputs - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, - transformations) - train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - shuffle=True, - num_workers=2) - - model.cuda(gpu) - softmax = nn.Softmax() - criterion = nn.CrossEntropyLoss().cuda(gpu) - reg_criterion = nn.MSELoss().cuda(gpu) - # Regression loss coefficient - alpha = args.alpha - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, - {'params': get_non_ignored_params(model), 'lr': args.lr}, - {'params': get_fc_params(model), 'lr': args.lr * 2}], - lr = args.lr) - - print 'Ready to train network.' - - print 'First phase of training.' - for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, angles = model(images) - - # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) - - # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # print yaw_predicted, label_yaw.float(), loss_reg_yaw - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - loss_seq = [loss_yaw, loss_pitch, loss_roll] - # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') - - print 'Second phase of training (finetuning layer).' - for epoch in range(num_epochs_ft): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - label_angles = Variable(labels[:,:3].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, angles = model(images) - - # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) - - # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - # Finetuning loss - loss_angles = reg_criterion(angles[0], label_angles.float()) - - loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' - %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs_ft - 1: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') - - - # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') diff --git a/code/train_biwi.py b/code/train_biwi.py deleted file mode 100644 index 6cf7fcd..0000000 --- a/code/train_biwi.py +++ /dev/null @@ -1,205 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torchvision -import torch.backends.cudnn as cudnn -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', - default=5, type=int) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=16, type=int) - parser.add_argument('--lr', dest='lr', help='Base learning rate.', - default=0.001, type=float) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--finetune', dest='finetune', help='Boolean: finetune or from Imagenet pretrain.', - default=False, type=bool) - parser.add_argument('--snapshot', dest='snapshot', help='Path to finetune snapshot.', - default='', type=str) - - args = parser.parse_args() - - return args - -def get_ignored_params(model): - # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) - for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k - -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) - for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k - -def load_filtered_state_dict(model, snapshot): - # By user apaszke from discuss.pytorch.org - model_dict = model.state_dict() - # 1. filter out unnecessary keys - snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(snapshot) - # 3. load the new state dict - model.load_state_dict(model_dict) - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - num_epochs = args.num_epochs - batch_size = args.batch_size - gpu = args.gpu_id - - if not os.path.exists('output/snapshots'): - os.makedirs('output/snapshots') - - # ResNet101 with 3 outputs - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - - if args.finetune: - print 'Finetuning.' - model.load_state_dict(torch.load(args.snapshot)) - else: - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), - transforms.ToTensor()]) - - transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, - transformations) - train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - shuffle=True, - num_workers=2) - - model.cuda(gpu) - criterion = nn.CrossEntropyLoss().cuda() - reg_criterion = nn.MSELoss().cuda() - # Regression loss coefficient - alpha = 0.01 - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - # optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, - # {'params': get_non_ignored_params(model), 'lr': args.lr}], - # lr = args.lr) - - optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, - {'params': get_non_ignored_params(model), 'lr': args.lr}], - lr = args.lr, momentum=0.9, weight_decay=0.01) - - print 'Ready to train network.' - - for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - yaw, pitch, roll = model(images) - - # Cross entropy loss - loss_yaw = criterion(yaw, label_yaw) - loss_pitch = criterion(pitch, label_pitch) - loss_roll = criterion(roll, label_roll) - - # MSE loss - yaw_predicted = F.softmax(yaw) - pitch_predicted = F.softmax(pitch) - roll_predicted = F.softmax(roll) - - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - loss_seq = [loss_yaw, loss_pitch, loss_roll] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/resnet50_ftbiwi_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs - 1: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/resnet50_ftbiwi_epoch_'+ str(epoch+1) + '.pkl') - - # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet50_ftbiwi_epoch_' + str(epoch+1) + '.pkl') diff --git a/code/train_preangles.py b/code/train_preangles.py index 5f23b25..6328ef2 100644 --- a/code/train_preangles.py +++ b/code/train_preangles.py @@ -197,7 +197,7 @@ loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll - loss_yaw *= 0.35 + loss_yaw *= 1 loss_seq = [loss_yaw, loss_pitch, loss_roll] # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] -- Gitblit v1.8.0