From ec99c6649af6bdbd3c836f20cdc81170e7045cc8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 10:06:48 +0800 Subject: [PATCH] Training hopenet and normal for different alpha values on AFLW --- code/batch_testing_preangles.py | 4 ++-- 1 files changed, 2 insertions(+), 2 deletions(-) diff --git a/code/batch_testing_preangles.py b/code/batch_testing_preangles.py index 11390b0..bb2047f 100644 --- a/code/batch_testing_preangles.py +++ b/code/batch_testing_preangles.py @@ -50,7 +50,7 @@ # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) @@ -61,7 +61,7 @@ print 'Loading data.' transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), + transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) if args.dataset == 'AFLW2000': -- Gitblit v1.8.0