From ec99c6649af6bdbd3c836f20cdc81170e7045cc8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 10:06:48 +0800 Subject: [PATCH] Training hopenet and normal for different alpha values on AFLW --- code/test.py | 31 ++++++++++++++++++++----------- 1 files changed, 20 insertions(+), 11 deletions(-) diff --git a/code/test.py b/code/test.py index 8e8fe50..9ff35e6 100644 --- a/code/test.py +++ b/code/test.py @@ -27,12 +27,14 @@ default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', default='', type=str) parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', default=1, type=int) parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', default=False, type=bool) + parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) args = parser.parse_args() @@ -43,12 +45,12 @@ cudnn.enabled = True gpu = args.gpu_id - snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') + snapshot_path = args.snapshot # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) @@ -59,15 +61,22 @@ print 'Loading data.' - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), transforms.ToTensor()]) - transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), + transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=args.batch_size, num_workers=2) @@ -101,9 +110,9 @@ label_roll = labels[:,2].float() pre_yaw, pre_pitch, pre_roll, angles = model(images) - yaw = angles[:,0].cpu().data - pitch = angles[:,1].cpu().data - roll = angles[:,2].cpu().data + yaw = angles[-1][:,0].cpu().data + pitch = angles[-1][:,1].cpu().data + roll = angles[-1][:,2].cpu().data # Mean absolute error yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) -- Gitblit v1.8.0