From ec99c6649af6bdbd3c836f20cdc81170e7045cc8 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 14 九月 2017 10:06:48 +0800
Subject: [PATCH] Training hopenet and normal for different alpha values on AFLW

---
 code/test.py |   31 ++++++++++++++++++++-----------
 1 files changed, 20 insertions(+), 11 deletions(-)

diff --git a/code/test.py b/code/test.py
index 8e8fe50..9ff35e6 100644
--- a/code/test.py
+++ b/code/test.py
@@ -27,12 +27,14 @@
           default='', type=str)
     parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
           default='', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
+    parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.',
           default='', type=str)
     parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
           default=1, type=int)
     parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
           default=False, type=bool)
+    parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
 
     args = parser.parse_args()
 
@@ -43,12 +45,12 @@
 
     cudnn.enabled = True
     gpu = args.gpu_id
-    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
+    snapshot_path = args.snapshot
 
     # ResNet101 with 3 outputs.
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
     # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
     # ResNet18
     # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
 
@@ -59,15 +61,22 @@
 
     print 'Loading data.'
 
-    # transformations = transforms.Compose([transforms.Scale(224),
-    # transforms.RandomCrop(224), transforms.ToTensor()])
-
     transformations = transforms.Compose([transforms.Scale(224),
-    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.CenterCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
+    if args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                 transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
     test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                                batch_size=args.batch_size,
                                                num_workers=2)
@@ -101,9 +110,9 @@
         label_roll = labels[:,2].float()
 
         pre_yaw, pre_pitch, pre_roll, angles = model(images)
-        yaw = angles[:,0].cpu().data
-        pitch = angles[:,1].cpu().data
-        roll = angles[:,2].cpu().data
+        yaw = angles[-1][:,0].cpu().data
+        pitch = angles[-1][:,1].cpu().data
+        roll = angles[-1][:,2].cpu().data
 
         # Mean absolute error
         yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)

--
Gitblit v1.8.0