From ec99c6649af6bdbd3c836f20cdc81170e7045cc8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 10:06:48 +0800 Subject: [PATCH] Training hopenet and normal for different alpha values on AFLW --- code/test.py | 24 ++++++++++++++++++------ 1 files changed, 18 insertions(+), 6 deletions(-) diff --git a/code/test.py b/code/test.py index b01d07e..9ff35e6 100644 --- a/code/test.py +++ b/code/test.py @@ -33,6 +33,8 @@ default=1, type=int) parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', default=False, type=bool) + parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) args = parser.parse_args() @@ -48,7 +50,7 @@ # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) @@ -60,11 +62,21 @@ print 'Loading data.' transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), + transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=args.batch_size, num_workers=2) @@ -98,9 +110,9 @@ label_roll = labels[:,2].float() pre_yaw, pre_pitch, pre_roll, angles = model(images) - yaw = angles[0][:,0].cpu().data - pitch = angles[0][:,1].cpu().data - roll = angles[0][:,2].cpu().data + yaw = angles[-1][:,0].cpu().data + pitch = angles[-1][:,1].cpu().data + roll = angles[-1][:,2].cpu().data # Mean absolute error yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) -- Gitblit v1.8.0