From f415df3448622f30c3d1eb680596871672b38dac Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 26 十月 2017 02:51:37 +0800 Subject: [PATCH] after fg --- code/hopenet.py | 26 +++++++++++++------------- 1 files changed, 13 insertions(+), 13 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index b2dd097..80160d9 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -339,13 +339,13 @@ preangles = torch.cat([yaw, pitch, roll], 1) angles.append(preangles) - return pre_yaw, pre_pitch, pre_roll, angles, sr_output + return pre_yaw, pre_pitch, pre_roll, angles, sr_y -class Hopenet_LSTM(nn.Module): +class Hopenet_new(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. def __init__(self, block, layers, num_bins): self.inplanes = 64 - super(Hopenet_LSTM, self).__init__() + super(Hopenet_new, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) @@ -361,14 +361,11 @@ self.fc_roll = nn.Linear(512 * block.expansion, num_bins) self.softmax = nn.Softmax() - self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) + self.fc_finetune_new = nn.Linear(512 * block.expansion + 256 * block.expansion + 3, 3) + self.conv1x1 = nn.Conv2d(1024, 64, kernel_size = 1, stride = 1, bias=False) + self.maxpool_interm = nn.MaxPool2d(kernel_size=5, stride=3, padding=1) self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() - - self.lstm = nn.LSTM(512 * block.expansion + 3, 256 * block.expansion, 2, batch_first=True) - self.fc_lstm = nn.Linear(256 * block.expansion, 3) - - self.block_expansion = block.expansion for m in self.modules(): if isinstance(m, nn.Conv2d): @@ -396,7 +393,6 @@ return nn.Sequential(*layers) def forward(self, x): - x = self.conv1(x) x = self.bn1(x) x = self.relu(x) @@ -405,6 +401,11 @@ x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) + x_interm = self.conv1x1(x) + x_interm = self.relu(x_interm) + x_interm = self.maxpool_interm(x_interm) + x_interm = x_interm.view(x_interm.size(0), -1) + x = self.layer4(x) x = self.avgpool(x) @@ -413,7 +414,6 @@ pre_pitch = self.fc_pitch(x) pre_roll = self.fc_roll(x) - # Yaw, pitch, roll yaw = self.softmax(pre_yaw) yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 pitch = self.softmax(pre_pitch) @@ -425,8 +425,8 @@ roll = roll.view(roll.size(0), 1) preangles = torch.cat([yaw, pitch, roll], 1) - residuals, _ = self.lstm(torch.cat((preangles, x), 1), (h0, c0)) - residuals = self.fc_lstm(residuals[:, -1, :]) + # angles predicts the residual + residuals = self.fc_finetune_new(torch.cat((preangles, x_interm, x), 1)) final_angles = preangles + residuals return pre_yaw, pre_pitch, pre_roll, preangles, final_angles -- Gitblit v1.8.0