From f415df3448622f30c3d1eb680596871672b38dac Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 26 十月 2017 02:51:37 +0800
Subject: [PATCH] after fg

---
 code/test_preangles.py |   60 +++++++++++++++++++++++++-----------------------------------
 1 files changed, 25 insertions(+), 35 deletions(-)

diff --git a/code/test_preangles.py b/code/test_preangles.py
index 7cf8ebb..cfee8d1 100644
--- a/code/test_preangles.py
+++ b/code/test_preangles.py
@@ -60,9 +60,6 @@
 
     print 'Loading data.'
 
-    # transformations = transforms.Compose([transforms.Scale(224),
-    # transforms.RandomCrop(224), transforms.ToTensor()])
-
     transformations = transforms.Compose([transforms.Scale(224),
     transforms.CenterCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
@@ -70,10 +67,15 @@
     if args.dataset == 'AFLW2000':
         pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                 transformations)
+    elif args.dataset == 'AFLW2000_ds':
+        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list,
+                                transformations)
     elif args.dataset == 'BIWI':
         pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFLW':
         pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'Pose_300W_LP':
+        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFW':
         pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
     else:
@@ -90,10 +92,6 @@
     # Test the Model
     model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
     total = 0
-    n_margins = 20
-    yaw_correct = np.zeros(n_margins)
-    pitch_correct = np.zeros(n_margins)
-    roll_correct = np.zeros(n_margins)
 
     idx_tensor = [idx for idx in xrange(66)]
     idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
@@ -104,12 +102,12 @@
 
     l1loss = torch.nn.L1Loss(size_average=False)
 
-    for i, (images, labels, name) in enumerate(test_loader):
+    for i, (images, labels, cont_labels, name) in enumerate(test_loader):
         images = Variable(images).cuda(gpu)
-        total += labels.size(0)
-        label_yaw = labels[:,0].float()
-        label_pitch = labels[:,1].float()
-        label_roll = labels[:,2].float()
+        total += cont_labels.size(0)
+        label_yaw = cont_labels[:,0].float()
+        label_pitch = cont_labels[:,1].float()
+        label_roll = cont_labels[:,2].float()
 
         yaw, pitch, roll, angles = model(images)
 
@@ -123,38 +121,30 @@
         pitch_predicted = utils.softmax_temperature(pitch.data, 1)
         roll_predicted = utils.softmax_temperature(roll.data, 1)
 
-        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
-        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
-        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
+        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99
+        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99
+        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99
 
         # Mean absolute error
-        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
-        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
-        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
-
-        # Binned Accuracy
-        # for er in xrange(n_margins):
-        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
-        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
-        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
-
-        # print label_yaw[0], yaw_bpred[0,0]
+        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw))
+        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch))
+        roll_error += torch.sum(torch.abs(roll_predicted - label_roll))
 
         # Save images with pose cube.
         # TODO: fix for larger batch size
         if args.save_viz:
             name = name[0]
-            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
-            #print os.path.join('output/images', name + '.jpg')
-            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
-            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
-            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+            if args.dataset == 'BIWI':
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png'))
+            else:
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+            if args.batch_size == 1:
+                error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll)))
+                cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=2)
+            # utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0], size=100)
+            utils.draw_axis(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0], tdx = 200, tdy= 200, size=100)
             cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
 
     print('Test error in degrees of the model on the ' + str(total) +
     ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
     pitch_error / total, roll_error / total))
-
-    # Binned accuracy
-    # for idx in xrange(len(yaw_correct)):
-    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total

--
Gitblit v1.8.0