From fef063eba228e63bc853b9ffba769c6f3ca0d1eb Mon Sep 17 00:00:00 2001 From: Nataniel Ruiz <nataniel777@hotmail.com> Date: 星期二, 11 七月 2017 11:19:30 +0800 Subject: [PATCH] README.md edited online with Bitbucket --- code/test_resnet_bins.py | 74 +++++++++++++++++++++++++++---------- 1 files changed, 54 insertions(+), 20 deletions(-) diff --git a/code/test_resnet_bins.py b/code/test_resnet_bins.py index 34fc8f5..30aa158 100644 --- a/code/test_resnet_bins.py +++ b/code/test_resnet_bins.py @@ -6,6 +6,7 @@ from torchvision import transforms import torch.backends.cudnn as cudnn import torchvision +import torch.nn.functional as F import cv2 import matplotlib.pyplot as plt @@ -13,7 +14,7 @@ import os import argparse -from datasets import AFLW2000 +import datasets import hopenet import utils @@ -43,10 +44,9 @@ gpu = args.gpu_id snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') - model = torchvision.models.resnet18() - # Parameters of newly constructed modules have requires_grad=True by default - num_ftrs = model.fc.in_features - model.fc = nn.Linear(num_ftrs, 3) + # ResNet50 with 3 outputs. + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) print 'Loading snapshot.' # Load snapshot @@ -55,9 +55,10 @@ print 'Loading data.' - transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), transforms.ToTensor()]) + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor()]) - pose_dataset = AFLW2000(args.data_dir, args.filename_list, + pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, transformations) test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, @@ -69,22 +70,55 @@ # Test the Model model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - error = .0 total = 0 + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + for i, (images, labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) - labels = Variable(labels).cuda(gpu) - outputs = model(images) - _, predicted = torch.max(outputs.data, 1) + total += labels.size(0) - # TODO: There are more efficient ways. - for idx in xrange(len(outputs)): - # if abs(outputs[idx].data[1] - labels[idx].data[1]) * 180 / np.pi > 30: - print name - print abs(outputs[idx].data - labels[idx].data) * 180 / np.pi, 180 * outputs[idx].data / np.pi, labels[idx].data * 180 / np.pi - # error += utils.mse_loss(outputs[idx], labels[idx]) - error += abs(outputs[idx].data - labels[idx].data) * 180 / np.pi + label_yaw = labels[:,0] + label_pitch = labels[:,1] + label_roll = labels[:,2] + yaw, pitch, roll = model(images) + # _, yaw_predicted = torch.max(yaw.data, 1) + # _, pitch_predicted = torch.max(pitch.data, 1) + # _, roll_predicted = torch.max(roll.data, 1) - print('Test MSE error of the model on the ' + str(total) + - ' test images: %.4f' % (error / total)) + yaw_predicted = F.softmax(yaw) + pitch_predicted = F.softmax(pitch) + roll_predicted = F.softmax(roll) + + yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) + pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) + roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) + + yaw_error += abs(yaw_predicted - label_yaw[0]) * 3 + pitch_error += abs(pitch_predicted - label_pitch[0]) * 3 + roll_error += abs(roll_predicted - label_roll[0]) * 3 + + # print yaw_predicted * 3, label_yaw[0] * 3, abs(yaw_predicted - label_yaw[0]) * 3 + + # for er in xrange(0,n_margins): + # yaw_correct[er] += (label_yaw[0] in range(yaw_predicted[0,0] - er, yaw_predicted[0,0] + er + 1)) + # pitch_correct[er] += (label_pitch[0] in range(pitch_predicted[0,0] - er, pitch_predicted[0,0] + er + 1)) + # roll_correct[er] += (label_roll[0] in range(roll_predicted[0,0] - er, roll_predicted[0,0] + er + 1)) + + # print label_yaw[0], yaw_predicted[0,0] + # 4 -> 15 + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + # for idx in xrange(len(yaw_correct)): + # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total -- Gitblit v1.8.0