From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001 From: chenshijun <csj_sky@126.com> Date: 星期三, 05 六月 2019 15:38:49 +0800 Subject: [PATCH] face rectangle --- code/datasets.py | 75 ++++++++++++++++++++++++++++++++----- 1 files changed, 64 insertions(+), 11 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index a28c584..e8ab9f4 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -1,6 +1,7 @@ import os import numpy as np import cv2 +import pandas as pd import torch from torch.utils.data.dataset import Dataset @@ -16,6 +17,65 @@ with open(file_path) as f: lines = f.read().splitlines() return lines + +class Synhead(Dataset): + def __init__(self, data_dir, csv_path, transform, test=False): + column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll'] + tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig") + self.data_dir = data_dir + self.transform = transform + self.X_train = tmp_df['path'] + self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']] + self.length = len(tmp_df) + self.test = test + + def __getitem__(self, index): + path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png' + img = Image.open(path) + img = img.convert('RGB') + + x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index] + x_min = float(x_min); x_max = float(x_max) + y_min = float(y_min); y_max = float(y_max) + yaw = -float(yaw); pitch = float(pitch); roll = float(roll) + + # k = 0.2 to 0.40 + k = np.random.random_sample() * 0.2 + 0.2 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + + width, height = img.size + # Crop the face + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Blur? + rnd = np.random.random_sample() + if rnd < 0.05: + img = img.filter(ImageFilter.BLUR) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + labels = torch.LongTensor(binned_pose) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + return self.length class Pose_300W_LP(Dataset): # Head pose from 300W-LP dataset @@ -36,7 +96,6 @@ img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) @@ -76,11 +135,8 @@ bins = np.array(range(-99, 102, 3)) binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 - # Get shape - shape = np.load(shape_path) - # Get target tensors - labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) + labels = binned_pose cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: @@ -111,7 +167,6 @@ img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) @@ -129,7 +184,8 @@ img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians - pose = utils.get_ypr_fro # Head pose from AFLW2000 datasetp.pi + pose = utils.get_ypr_from_mat(mat_path) + pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi @@ -154,11 +210,8 @@ bins = np.array(range(-99, 102, 3)) binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 - # Get shape - shape = np.load(shape_path) - # Get target tensors - labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) + labels = binned_pose cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: -- Gitblit v1.8.0