From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001
From: chenshijun <csj_sky@126.com>
Date: 星期三, 05 六月 2019 15:38:49 +0800
Subject: [PATCH] face rectangle

---
 code/datasets.py |   75 ++++++++++++++++++++++++++++++++-----
 1 files changed, 64 insertions(+), 11 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index a28c584..e8ab9f4 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -1,6 +1,7 @@
 import os
 import numpy as np
 import cv2
+import pandas as pd
 
 import torch
 from torch.utils.data.dataset import Dataset
@@ -16,6 +17,65 @@
     with open(file_path) as f:
         lines = f.read().splitlines()
     return lines
+
+class Synhead(Dataset):
+    def __init__(self, data_dir, csv_path, transform, test=False):
+        column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']
+        tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig")
+        self.data_dir = data_dir
+        self.transform = transform
+        self.X_train = tmp_df['path']
+        self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']]
+        self.length = len(tmp_df)
+        self.test = test
+
+    def __getitem__(self, index):
+        path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png'
+        img = Image.open(path)
+        img = img.convert('RGB')
+
+        x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index]
+        x_min = float(x_min); x_max = float(x_max)
+        y_min = float(y_min); y_max = float(y_max)
+        yaw = -float(yaw); pitch = float(pitch); roll = float(roll)
+
+        # k = 0.2 to 0.40
+        k = np.random.random_sample() * 0.2 + 0.2
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+
+        width, height = img.size
+        # Crop the face
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # Flip?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            yaw = -yaw
+            roll = -roll
+            img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Blur?
+        rnd = np.random.random_sample()
+        if rnd < 0.05:
+            img = img.filter(ImageFilter.BLUR)
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        labels = torch.LongTensor(binned_pose)
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, cont_labels, self.X_train[index]
+
+    def __len__(self):
+        return self.length
 
 class Pose_300W_LP(Dataset):
     # Head pose from 300W-LP dataset
@@ -36,7 +96,6 @@
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
         img = img.convert(self.image_mode)
         mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
-        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
 
         # Crop the face loosely
         pt2d = utils.get_pt2d_from_mat(mat_path)
@@ -76,11 +135,8 @@
         bins = np.array(range(-99, 102, 3))
         binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
 
-        # Get shape
-        shape = np.load(shape_path)
-
         # Get target tensors
-        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+        labels = binned_pose
         cont_labels = torch.FloatTensor([yaw, pitch, roll])
 
         if self.transform is not None:
@@ -111,7 +167,6 @@
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
         img = img.convert(self.image_mode)
         mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
-        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
 
         # Crop the face loosely
         pt2d = utils.get_pt2d_from_mat(mat_path)
@@ -129,7 +184,8 @@
         img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
         # We get the pose in radians
-        pose = utils.get_ypr_fro    # Head pose from AFLW2000 datasetp.pi
+        pose = utils.get_ypr_from_mat(mat_path)
+        pitch = pose[0] * 180 / np.pi
         yaw = pose[1] * 180 / np.pi
         roll = pose[2] * 180 / np.pi
 
@@ -154,11 +210,8 @@
         bins = np.array(range(-99, 102, 3))
         binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
 
-        # Get shape
-        shape = np.load(shape_path)
-
         # Get target tensors
-        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+        labels = binned_pose
         cont_labels = torch.FloatTensor([yaw, pitch, roll])
 
         if self.transform is not None:

--
Gitblit v1.8.0