From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001
From: chenshijun <csj_sky@126.com>
Date: 星期三, 05 六月 2019 15:38:49 +0800
Subject: [PATCH] face rectangle

---
 code/datasets.py |  300 +++++++++++++++++++----------------------------------------
 1 files changed, 98 insertions(+), 202 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index f5941ae..e8ab9f4 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -1,18 +1,84 @@
-import numpy as np
-import torch
-import cv2
-from torch.utils.data.dataset import Dataset
 import os
+import numpy as np
+import cv2
+import pandas as pd
+
+import torch
+from torch.utils.data.dataset import Dataset
+from torchvision import transforms
+
 from PIL import Image, ImageFilter
 
 import utils
-from torchvision import transforms
 
-def stack_grayscale_tensor(tensor):
-    tensor = torch.cat([tensor, tensor, tensor], 0)
-    return tensor
+def get_list_from_filenames(file_path):
+    # input:    relative path to .txt file with file names
+    # output:   list of relative path names
+    with open(file_path) as f:
+        lines = f.read().splitlines()
+    return lines
+
+class Synhead(Dataset):
+    def __init__(self, data_dir, csv_path, transform, test=False):
+        column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']
+        tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig")
+        self.data_dir = data_dir
+        self.transform = transform
+        self.X_train = tmp_df['path']
+        self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']]
+        self.length = len(tmp_df)
+        self.test = test
+
+    def __getitem__(self, index):
+        path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png'
+        img = Image.open(path)
+        img = img.convert('RGB')
+
+        x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index]
+        x_min = float(x_min); x_max = float(x_max)
+        y_min = float(y_min); y_max = float(y_max)
+        yaw = -float(yaw); pitch = float(pitch); roll = float(roll)
+
+        # k = 0.2 to 0.40
+        k = np.random.random_sample() * 0.2 + 0.2
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+
+        width, height = img.size
+        # Crop the face
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # Flip?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            yaw = -yaw
+            roll = -roll
+            img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Blur?
+        rnd = np.random.random_sample()
+        if rnd < 0.05:
+            img = img.filter(ImageFilter.BLUR)
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        labels = torch.LongTensor(binned_pose)
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, cont_labels, self.X_train[index]
+
+    def __len__(self):
+        return self.length
 
 class Pose_300W_LP(Dataset):
+    # Head pose from 300W-LP dataset
     def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
@@ -30,16 +96,14 @@
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
         img = img.convert(self.image_mode)
         mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
-        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
 
-        # Crop the face
+        # Crop the face loosely
         pt2d = utils.get_pt2d_from_mat(mat_path)
         x_min = min(pt2d[0,:])
         y_min = min(pt2d[1,:])
         x_max = max(pt2d[0,:])
         y_max = max(pt2d[1,:])
 
-        # k = 0.35 was being used beforehand
         # k = 0.2 to 0.40
         k = np.random.random_sample() * 0.2 + 0.2
         x_min -= 0.6 * k * abs(x_max - x_min)
@@ -71,10 +135,8 @@
         bins = np.array(range(-99, 102, 3))
         binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
 
-        # Get shape
-        shape = np.load(shape_path)
-
-        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+        # Get target tensors
+        labels = binned_pose
         cont_labels = torch.FloatTensor([yaw, pitch, roll])
 
         if self.transform is not None:
@@ -87,6 +149,7 @@
         return self.length
 
 class Pose_300W_LP_random_ds(Dataset):
+    # 300W-LP dataset with random downsampling
     def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
@@ -104,9 +167,8 @@
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
         img = img.convert(self.image_mode)
         mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
-        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
 
-        # Crop the face
+        # Crop the face loosely
         pt2d = utils.get_pt2d_from_mat(mat_path)
         x_min = min(pt2d[0,:])
         y_min = min(pt2d[1,:])
@@ -123,17 +185,14 @@
 
         # We get the pose in radians
         pose = utils.get_ypr_from_mat(mat_path)
-        # And convert to degrees.
         pitch = pose[0] * 180 / np.pi
         yaw = pose[1] * 180 / np.pi
         roll = pose[2] * 180 / np.pi
 
-        rnd = np.random.random_sample()
-        if rnd < 0.5:
-            ds = 10
-            original_size = img.size
-            img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
-            img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
+        ds = 1 + np.random.randint(0,4) * 5
+        original_size = img.size
+        img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
+        img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
 
         # Flip?
         rnd = np.random.random_sample()
@@ -151,98 +210,14 @@
         bins = np.array(range(-99, 102, 3))
         binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
 
-        # Get shape
-        shape = np.load(shape_path)
-
-        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+        # Get target tensors
+        labels = binned_pose
         cont_labels = torch.FloatTensor([yaw, pitch, roll])
 
         if self.transform is not None:
             img = self.transform(img)
 
         return img, labels, cont_labels, self.X_train[index]
-
-    def __len__(self):
-        # 122,450
-        return self.length
-
-class Pose_300W_LP_SR(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
-        self.data_dir = data_dir
-        self.transform = transform
-        self.img_ext = img_ext
-        self.annot_ext = annot_ext
-
-        filename_list = get_list_from_filenames(filename_path)
-
-        self.X_train = filename_list
-        self.y_train = filename_list
-        self.image_mode = image_mode
-        self.length = len(filename_list)
-
-    def __getitem__(self, index):
-        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
-        img = img.convert(self.image_mode)
-        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
-
-        # Crop the face
-        pt2d = utils.get_pt2d_from_mat(mat_path)
-        x_min = min(pt2d[0,:])
-        y_min = min(pt2d[1,:])
-        x_max = max(pt2d[0,:])
-        y_max = max(pt2d[1,:])
-
-        # k = 0.2 to 0.40
-        k = np.random.random_sample() * 0.2 + 0.2
-        x_min -= 0.6 * k * abs(x_max - x_min)
-        y_min -= 2 * k * abs(y_max - y_min)
-        x_max += 0.6 * k * abs(x_max - x_min)
-        y_max += 0.6 * k * abs(y_max - y_min)
-        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
-
-        # We get the pose in radians
-        pose = utils.get_ypr_from_mat(mat_path)
-        # And convert to degrees.
-        pitch = pose[0] * 180 / np.pi
-        yaw = pose[1] * 180 / np.pi
-        roll = pose[2] * 180 / np.pi
-
-        rnd = np.random.random_sample()
-        if rnd < 0.5:
-            ds = 10
-            original_size = img.size
-            img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
-            img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
-
-        # Flip?
-        rnd = np.random.random_sample()
-        if rnd < 0.5:
-            yaw = -yaw
-            roll = -roll
-            img = img.transpose(Image.FLIP_LEFT_RIGHT)
-
-        # Blur?
-        rnd = np.random.random_sample()
-        if rnd < 0.05:
-            img = img.filter(ImageFilter.BLUR)
-
-        img_ycc = img.convert('YCbCr')
-
-        # Bin values
-        bins = np.array(range(-99, 102, 3))
-        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
-
-        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
-        cont_labels = torch.FloatTensor([yaw, pitch, roll])
-
-        # Transforms
-        img = transforms.Scale(240)(img)
-        img = transforms.RandomCrop(224)(img)
-        img_ycc = img.convert('YCbCr')
-        img = transforms.ToTensor()
-        img_ycc = transforms.ToTensor()
-
-        return img, img_ycc, labels, cont_labels, self.X_train[index]
 
     def __len__(self):
         # 122,450
@@ -267,7 +242,7 @@
         img = img.convert(self.image_mode)
         mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
 
-        # Crop the face
+        # Crop the face loosely
         pt2d = utils.get_pt2d_from_mat(mat_path)
 
         x_min = min(pt2d[0,:])
@@ -303,6 +278,7 @@
         return self.length
 
 class AFLW2000_ds(Dataset):
+    # AFLW2000 dataset with fixed downsampling
     def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
@@ -321,7 +297,7 @@
         img = img.convert(self.image_mode)
         mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
 
-        # Crop the face
+        # Crop the face loosely
         pt2d = utils.get_pt2d_from_mat(mat_path)
         x_min = min(pt2d[0,:])
         y_min = min(pt2d[1,:])
@@ -335,7 +311,7 @@
         y_max += 0.6 * k * abs(y_max - y_min)
         img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
-        ds = 8
+        ds = 3  # downsampling factor
         original_size = img.size
         img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
         img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
@@ -360,67 +336,8 @@
         # 2,000
         return self.length
 
-class AFLW2000_random_ds(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
-        self.data_dir = data_dir
-        self.transform = transform
-        self.img_ext = img_ext
-        self.annot_ext = annot_ext
-
-        filename_list = get_list_from_filenames(filename_path)
-
-        self.X_train = filename_list
-        self.y_train = filename_list
-        self.image_mode = image_mode
-        self.length = len(filename_list)
-
-    def __getitem__(self, index):
-        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
-        img = img.convert(self.image_mode)
-        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
-
-        # Crop the face
-        pt2d = utils.get_pt2d_from_mat(mat_path)
-        x_min = min(pt2d[0,:])
-        y_min = min(pt2d[1,:])
-        x_max = max(pt2d[0,:])
-        y_max = max(pt2d[1,:])
-
-        k = 0.20
-        x_min -= 2 * k * abs(x_max - x_min)
-        y_min -= 2 * k * abs(y_max - y_min)
-        x_max += 2 * k * abs(x_max - x_min)
-        y_max += 0.6 * k * abs(y_max - y_min)
-        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
-
-        rnd = np.random.random_sample()
-        if rnd < 0.5:
-            ds = 10
-            original_size = img.size
-            img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
-            img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
-
-        # We get the pose in radians
-        pose = utils.get_ypr_from_mat(mat_path)
-        # And convert to degrees.
-        pitch = pose[0] * 180 / np.pi
-        yaw = pose[1] * 180 / np.pi
-        roll = pose[2] * 180 / np.pi
-        # Bin values
-        bins = np.array(range(-99, 102, 3))
-        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
-        cont_labels = torch.FloatTensor([yaw, pitch, roll])
-
-        if self.transform is not None:
-            img = self.transform(img)
-
-        return img, labels, cont_labels, self.X_train[index]
-
-    def __len__(self):
-        # 2,000
-        return self.length
-
 class AFLW_aug(Dataset):
+    # AFLW dataset with flipping
     def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
@@ -447,7 +364,7 @@
         yaw = pose[0] * 180 / np.pi
         pitch = pose[1] * 180 / np.pi
         roll = pose[2] * 180 / np.pi
-        # Something weird with the roll in AFLW
+        # Fix the roll in AFLW
         roll *= -1
 
         # Augment
@@ -457,21 +374,6 @@
             yaw = -yaw
             roll = -roll
             img = img.transpose(Image.FLIP_LEFT_RIGHT)
-
-        # Blur?
-        # rnd = np.random.random_sample()
-        # if rnd < 0.05:
-        #     img = img.filter(ImageFilter.BLUR)
-        #     if rnd < 0.025:
-        #         img = img.filter(ImageFilter.BLUR)
-        #
-        # rnd = np.random.random_sample()
-        # if rnd < 0.05:
-        #     nb = np.random.randint(1,5)
-        #     img = img.rotate(-nb)
-        # elif rnd > 0.95:
-        #     nb = np.random.randint(1,5)
-        #     img = img.rotate(nb)
 
         # Bin values
         bins = np.array(range(-99, 102, 3))
@@ -515,7 +417,7 @@
         yaw = pose[0] * 180 / np.pi
         pitch = pose[1] * 180 / np.pi
         roll = pose[2] * 180 / np.pi
-        # Something weird with the roll in AFLW
+        # Fix the roll in AFLW
         roll *= -1
         # Bin values
         bins = np.array(range(-99, 102, 3))
@@ -559,7 +461,7 @@
         line = annot.readline().split(' ')
         yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])]
 
-        # Crop the face
+        # Crop the face loosely
         k = 0.32
         x1 = float(line[4])
         y1 = float(line[5])
@@ -635,9 +537,11 @@
         R = R[:3,:]
         pose_annot.close()
 
-        roll = np.arctan2(R[1][0], R[0][0]) * 180 / np.pi
-        yaw = np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
-        pitch = -np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
+        R = np.transpose(R)
+
+        roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi
+        yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
+        pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
 
         # Loosely crop face
         k = 0.35
@@ -662,11 +566,3 @@
     def __len__(self):
         # 15,667
         return self.length
-
-
-def get_list_from_filenames(file_path):
-    # input:    relative path to .txt file with file names
-    # output:   list of relative path names
-    with open(file_path) as f:
-        lines = f.read().splitlines()
-    return lines

--
Gitblit v1.8.0