From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001 From: chenshijun <csj_sky@126.com> Date: 星期三, 05 六月 2019 15:38:49 +0800 Subject: [PATCH] face rectangle --- code/datasets.py | 693 ++++++++++++++++++++++++++++++++++++++++++++++----------- 1 files changed, 558 insertions(+), 135 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index 0ab364e..e8ab9f4 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -1,141 +1,15 @@ -import numpy as np -import torch -import cv2 -from torch.utils.data.dataset import Dataset import os -from PIL import Image +import numpy as np +import cv2 +import pandas as pd + +import torch +from torch.utils.data.dataset import Dataset +from torchvision import transforms + +from PIL import Image, ImageFilter import utils - -class Pose_300W_LP(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): - self.data_dir = data_dir - self.transform = transform - self.img_ext = img_ext - self.annot_ext = annot_ext - - filename_list = get_list_from_filenames(filename_path) - - self.X_train = filename_list - self.y_train = filename_list - self.length = len(filename_list) - - def __getitem__(self, index): - img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') - - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - label = torch.FloatTensor(pose) - - if self.transform is not None: - img = self.transform(img) - - return img, label, self.X_train[index] - - def __len__(self): - # 122,450 - return self.length - -class AFLW2000(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): - self.data_dir = data_dir - self.transform = transform - self.img_ext = img_ext - self.annot_ext = annot_ext - - filename_list = get_list_from_filenames(filename_path) - - self.X_train = filename_list - self.y_train = filename_list - self.length = len(filename_list) - - def __getitem__(self, index): - img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') - - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - label = torch.FloatTensor(pose) - - if self.transform is not None: - img = self.transform(img) - - return img, label, self.X_train[index] - - def __len__(self): - # 2,000 - return self.length - -class Pose_300W_LP_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): - self.data_dir = data_dir - self.transform = transform - self.img_ext = img_ext - self.annot_ext = annot_ext - - filename_list = get_list_from_filenames(filename_path) - - self.X_train = filename_list - self.y_train = filename_list - self.length = len(filename_list) - - def __getitem__(self, index): - img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') - - # We get the pose in radians - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - # And convert to degrees. - pitch = pose[0] * 180 / np.pi - yaw = pose[1] * 180 / np.pi - roll = pose[2] * 180 / np.pi - # Bin values - bins = np.array(range(-99, 102, 3)) - labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) - - if self.transform is not None: - img = self.transform(img) - - return img, labels, self.X_train[index] - - def __len__(self): - # 122,450 - return self.length - -class AFLW2000_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): - self.data_dir = data_dir - self.transform = transform - self.img_ext = img_ext - self.annot_ext = annot_ext - - filename_list = get_list_from_filenames(filename_path) - - self.X_train = filename_list - self.y_train = filename_list - self.length = len(filename_list) - - def __getitem__(self, index): - img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') - - # We get the pose in radians - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - # And convert to degrees. - pitch = pose[0] * 180 / np.pi - yaw = pose[1] * 180 / np.pi - roll = pose[2] * 180 / np.pi - # Bin values - bins = np.array(range(-99, 102, 3)) - labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) - - if self.transform is not None: - img = self.transform(img) - - return img, labels, self.X_train[index] - - def __len__(self): - # 2,000 - return self.length def get_list_from_filenames(file_path): # input: relative path to .txt file with file names @@ -143,3 +17,552 @@ with open(file_path) as f: lines = f.read().splitlines() return lines + +class Synhead(Dataset): + def __init__(self, data_dir, csv_path, transform, test=False): + column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll'] + tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig") + self.data_dir = data_dir + self.transform = transform + self.X_train = tmp_df['path'] + self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']] + self.length = len(tmp_df) + self.test = test + + def __getitem__(self, index): + path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png' + img = Image.open(path) + img = img.convert('RGB') + + x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index] + x_min = float(x_min); x_max = float(x_max) + y_min = float(y_min); y_max = float(y_max) + yaw = -float(yaw); pitch = float(pitch); roll = float(roll) + + # k = 0.2 to 0.40 + k = np.random.random_sample() * 0.2 + 0.2 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + + width, height = img.size + # Crop the face + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Blur? + rnd = np.random.random_sample() + if rnd < 0.05: + img = img.filter(ImageFilter.BLUR) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + labels = torch.LongTensor(binned_pose) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + return self.length + +class Pose_300W_LP(Dataset): + # Head pose from 300W-LP dataset + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face loosely + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + # k = 0.2 to 0.40 + k = np.random.random_sample() * 0.2 + 0.2 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Blur? + rnd = np.random.random_sample() + if rnd < 0.05: + img = img.filter(ImageFilter.BLUR) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + # Get target tensors + labels = binned_pose + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # 122,450 + return self.length + +class Pose_300W_LP_random_ds(Dataset): + # 300W-LP dataset with random downsampling + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face loosely + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + # k = 0.2 to 0.40 + k = np.random.random_sample() * 0.2 + 0.2 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + + ds = 1 + np.random.randint(0,4) * 5 + original_size = img.size + img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) + img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Blur? + rnd = np.random.random_sample() + if rnd < 0.05: + img = img.filter(ImageFilter.BLUR) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + # Get target tensors + labels = binned_pose + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # 122,450 + return self.length + +class AFLW2000(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face loosely + pt2d = utils.get_pt2d_from_mat(mat_path) + + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.20 + x_min -= 2 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 2 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # 2,000 + return self.length + +class AFLW2000_ds(Dataset): + # AFLW2000 dataset with fixed downsampling + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face loosely + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.20 + x_min -= 2 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 2 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + ds = 3 # downsampling factor + original_size = img.size + img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) + img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # 2,000 + return self.length + +class AFLW_aug(Dataset): + # AFLW dataset with flipping + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # We get the pose in radians + annot = open(txt_path, 'r') + line = annot.readline().split(' ') + pose = [float(line[1]), float(line[2]), float(line[3])] + # And convert to degrees. + yaw = pose[0] * 180 / np.pi + pitch = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Fix the roll in AFLW + roll *= -1 + + # Augment + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # train: 18,863 + # test: 1,966 + return self.length + +class AFLW(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # We get the pose in radians + annot = open(txt_path, 'r') + line = annot.readline().split(' ') + pose = [float(line[1]), float(line[2]), float(line[3])] + # And convert to degrees. + yaw = pose[0] * 180 / np.pi + pitch = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Fix the roll in AFLW + roll *= -1 + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # train: 18,863 + # test: 1,966 + return self.length + +class AFW(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + img_name = self.X_train[index].split('_')[0] + + img = Image.open(os.path.join(self.data_dir, img_name + self.img_ext)) + img = img.convert(self.image_mode) + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # We get the pose in degrees + annot = open(txt_path, 'r') + line = annot.readline().split(' ') + yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])] + + # Crop the face loosely + k = 0.32 + x1 = float(line[4]) + y1 = float(line[5]) + x2 = float(line[6]) + y2 = float(line[7]) + x1 -= 0.8 * k * abs(x2 - x1) + y1 -= 2 * k * abs(y2 - y1) + x2 += 0.8 * k * abs(x2 - x1) + y2 += 1 * k * abs(y2 - y1) + + img = img.crop((int(x1), int(y1), int(x2), int(y2))) + + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # Around 200 + return self.length + +class BIWI(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext)) + img = img.convert(self.image_mode) + pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext) + + y_train_list = self.y_train[index].split('/') + bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext) + + # Load bounding box + bbox = open(bbox_path, 'r') + line = bbox.readline().split(' ') + if len(line) < 4: + x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1] + else: + x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])] + bbox.close() + + # Load pose in degrees + pose_annot = open(pose_path, 'r') + R = [] + for line in pose_annot: + line = line.strip('\n').split(' ') + l = [] + if line[0] != '': + for nb in line: + if nb == '': + continue + l.append(float(nb)) + R.append(l) + + R = np.array(R) + T = R[3,:] + R = R[:3,:] + pose_annot.close() + + R = np.transpose(R) + + roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi + yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi + pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi + + # Loosely crop face + k = 0.35 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + labels = torch.LongTensor(binned_pose) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # 15,667 + return self.length -- Gitblit v1.8.0