From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001 From: chenshijun <csj_sky@126.com> Date: 星期三, 05 六月 2019 15:38:49 +0800 Subject: [PATCH] face rectangle --- code/datasets.py | 277 ++++++++++++++++++++++++++++++++++++++++++++---------- 1 files changed, 224 insertions(+), 53 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index 5825105..e8ab9f4 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -1,17 +1,84 @@ -import numpy as np -import torch -import cv2 -from torch.utils.data.dataset import Dataset import os +import numpy as np +import cv2 +import pandas as pd + +import torch +from torch.utils.data.dataset import Dataset +from torchvision import transforms + from PIL import Image, ImageFilter import utils -def stack_grayscale_tensor(tensor): - tensor = torch.cat([tensor, tensor, tensor], 0) - return tensor +def get_list_from_filenames(file_path): + # input: relative path to .txt file with file names + # output: list of relative path names + with open(file_path) as f: + lines = f.read().splitlines() + return lines + +class Synhead(Dataset): + def __init__(self, data_dir, csv_path, transform, test=False): + column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll'] + tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig") + self.data_dir = data_dir + self.transform = transform + self.X_train = tmp_df['path'] + self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']] + self.length = len(tmp_df) + self.test = test + + def __getitem__(self, index): + path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png' + img = Image.open(path) + img = img.convert('RGB') + + x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index] + x_min = float(x_min); x_max = float(x_max) + y_min = float(y_min); y_max = float(y_max) + yaw = -float(yaw); pitch = float(pitch); roll = float(roll) + + # k = 0.2 to 0.40 + k = np.random.random_sample() * 0.2 + 0.2 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + + width, height = img.size + # Crop the face + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Blur? + rnd = np.random.random_sample() + if rnd < 0.05: + img = img.filter(ImageFilter.BLUR) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + labels = torch.LongTensor(binned_pose) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + return self.length class Pose_300W_LP(Dataset): + # Head pose from 300W-LP dataset def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -29,16 +96,14 @@ img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) - # k = 0.35 was being used beforehand # k = 0.2 to 0.40 k = np.random.random_sample() * 0.2 + 0.2 x_min -= 0.6 * k * abs(x_max - x_min) @@ -70,10 +135,83 @@ bins = np.array(range(-99, 102, 3)) binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 - # Get shape - shape = np.load(shape_path) + # Get target tensors + labels = binned_pose + cont_labels = torch.FloatTensor([yaw, pitch, roll]) - labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # 122,450 + return self.length + +class Pose_300W_LP_random_ds(Dataset): + # 300W-LP dataset with random downsampling + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face loosely + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + # k = 0.2 to 0.40 + k = np.random.random_sample() * 0.2 + 0.2 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + + ds = 1 + np.random.randint(0,4) * 5 + original_size = img.size + img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) + img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Blur? + rnd = np.random.random_sample() + if rnd < 0.05: + img = img.filter(ImageFilter.BLUR) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + # Get target tensors + labels = binned_pose cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: @@ -104,17 +242,18 @@ img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) - k = 0.15 - x_min -= 0.6 * k * abs(x_max - x_min) + k = 0.20 + x_min -= 2 * k * abs(x_max - x_min) y_min -= 2 * k * abs(y_max - y_min) - x_max += 0.6 * k * abs(x_max - x_min) + x_max += 2 * k * abs(x_max - x_min) y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) @@ -138,7 +277,67 @@ # 2,000 return self.length +class AFLW2000_ds(Dataset): + # AFLW2000 dataset with fixed downsampling + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face loosely + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.20 + x_min -= 2 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 2 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + ds = 3 # downsampling factor + original_size = img.size + img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) + img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # 2,000 + return self.length + class AFLW_aug(Dataset): + # AFLW dataset with flipping def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -165,7 +364,7 @@ yaw = pose[0] * 180 / np.pi pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi - # Something weird with the roll in AFLW + # Fix the roll in AFLW roll *= -1 # Augment @@ -175,21 +374,6 @@ yaw = -yaw roll = -roll img = img.transpose(Image.FLIP_LEFT_RIGHT) - - # Blur? - # rnd = np.random.random_sample() - # if rnd < 0.05: - # img = img.filter(ImageFilter.BLUR) - # if rnd < 0.025: - # img = img.filter(ImageFilter.BLUR) - # - # rnd = np.random.random_sample() - # if rnd < 0.05: - # nb = np.random.randint(1,5) - # img = img.rotate(-nb) - # elif rnd > 0.95: - # nb = np.random.randint(1,5) - # img = img.rotate(nb) # Bin values bins = np.array(range(-99, 102, 3)) @@ -233,7 +417,7 @@ yaw = pose[0] * 180 / np.pi pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi - # Something weird with the roll in AFLW + # Fix the roll in AFLW roll *= -1 # Bin values bins = np.array(range(-99, 102, 3)) @@ -277,7 +461,7 @@ line = annot.readline().split(' ') yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])] - # Crop the face + # Crop the face loosely k = 0.32 x1 = float(line[4]) y1 = float(line[5]) @@ -353,9 +537,11 @@ R = R[:3,:] pose_annot.close() - roll = np.arctan2(R[1][0], R[0][0]) * 180 / np.pi - yaw = np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi - pitch = -np.arctan2(R[2][1], R[2][2]) * 180 / np.pi + R = np.transpose(R) + + roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi + yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi + pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi # Loosely crop face k = 0.35 @@ -364,13 +550,6 @@ x_max += 0.6 * k * abs(x_max - x_min) y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) - - # Flip? - # rnd = np.random.random_sample() - # if rnd < 0.5: - # yaw = -yaw - # roll = -roll - # img = img.transpose(Image.FLIP_LEFT_RIGHT) # Bin values bins = np.array(range(-99, 102, 3)) @@ -387,11 +566,3 @@ def __len__(self): # 15,667 return self.length - - -def get_list_from_filenames(file_path): - # input: relative path to .txt file with file names - # output: list of relative path names - with open(file_path) as f: - lines = f.read().splitlines() - return lines -- Gitblit v1.8.0