From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001
From: chenshijun <csj_sky@126.com>
Date: 星期三, 05 六月 2019 15:38:49 +0800
Subject: [PATCH] face rectangle

---
 code/hopenet.py |  141 ++++++++++++++++------------------------------
 1 files changed, 49 insertions(+), 92 deletions(-)

diff --git a/code/hopenet.py b/code/hopenet.py
index 274044f..c9e0b74 100644
--- a/code/hopenet.py
+++ b/code/hopenet.py
@@ -4,43 +4,9 @@
 import math
 import torch.nn.functional as F
 
-# CNN Model (2 conv layer)
-class Simple_CNN(nn.Module):
-    def __init__(self):
-        super(Simple_CNN, self).__init__()
-        self.layer1 = nn.Sequential(
-            nn.Conv2d(3, 64, kernel_size=3, padding=0),
-            nn.BatchNorm2d(64),
-            nn.ReLU(),
-            nn.MaxPool2d(2))
-        self.layer2 = nn.Sequential(
-            nn.Conv2d(64, 128, kernel_size=3, padding=0),
-            nn.BatchNorm2d(128),
-            nn.ReLU(),
-            nn.MaxPool2d(2))
-        self.layer3 = nn.Sequential(
-            nn.Conv2d(128, 256, kernel_size=3, padding=0),
-            nn.BatchNorm2d(256),
-            nn.ReLU(),
-            nn.MaxPool2d(2))
-        self.layer4 = nn.Sequential(
-            nn.Conv2d(256, 512, kernel_size=3, padding=0),
-            nn.BatchNorm2d(512),
-            nn.ReLU(),
-            nn.MaxPool2d(2))
-        self.fc = nn.Linear(17*17*512, 3)
-
-    def forward(self, x):
-        out = self.layer1(x)
-        out = self.layer2(out)
-        out = self.layer3(out)
-        out = self.layer4(out)
-        out = out.view(out.size(0), -1)
-        out = self.fc(out)
-        return out
-
 class Hopenet(nn.Module):
-    # This is just Hopenet with 3 output layers for yaw, pitch and roll.
+    # Hopenet with 3 output layers for yaw, pitch and roll
+    # Predicts Euler angles by binning and regression with the expected value
     def __init__(self, block, layers, num_bins):
         self.inplanes = 64
         super(Hopenet, self).__init__()
@@ -58,10 +24,8 @@
         self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
         self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
 
-        self.softmax = nn.Softmax()
+        # Vestigial layer from previous experiments
         self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3)
-
-        self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
 
         for m in self.modules():
             if isinstance(m, nn.Conv2d):
@@ -87,12 +51,6 @@
             layers.append(block(self.inplanes, planes))
 
         return nn.Sequential(*layers)
-
-    def get_expectation(angle):
-        angle_pred = F.softmax(angle)
-
-        angle_pred = torch.sum(angle_pred.data * self.idx_tensor, 1)
-        return angle_pred
 
     def forward(self, x):
         x = self.conv1(x)
@@ -111,28 +69,13 @@
         pre_pitch = self.fc_pitch(x)
         pre_roll = self.fc_roll(x)
 
-        yaw = self.softmax(pre_yaw)
-        yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True)
-        pitch = self.softmax(pre_pitch)
-        pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True)
-        roll = self.softmax(pre_roll)
-        roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True)
-        yaw = yaw.view(yaw.size(0), 1)
-        pitch = pitch.view(pitch.size(0), 1)
-        roll = roll.view(roll.size(0), 1)
-        angles = []
-        angles.append(torch.cat([yaw, pitch, roll], 1))
+        return pre_yaw, pre_pitch, pre_roll
 
-        for idx in xrange(1):
-            angles.append(self.fc_finetune(torch.cat((angles[-1], x), 1)))
-
-        return pre_yaw, pre_pitch, pre_roll, angles
-
-class Hopenet_shape(nn.Module):
-    # This is just Hopenet with 3 output layers for yaw, pitch and roll.
-    def __init__(self, block, layers, num_bins, shape_bins):
+class ResNet(nn.Module):
+    # ResNet for regression of 3 Euler angles.
+    def __init__(self, block, layers, num_classes=1000):
         self.inplanes = 64
-        super(Hopenet_shape, self).__init__()
+        super(ResNet, self).__init__()
         self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                                bias=False)
         self.bn1 = nn.BatchNorm2d(64)
@@ -143,19 +86,7 @@
         self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
         self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
         self.avgpool = nn.AvgPool2d(7)
-        self.fc_yaw = nn.Linear(512 * block.expansion, num_bins)
-        self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
-        self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
-        self.fc_shape_0 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_1 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_2 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_3 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_4 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_5 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_6 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_7 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_8 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_9 = nn.Linear(512 * block.expansion, shape_bins)
+        self.fc_angles = nn.Linear(512 * block.expansion, num_classes)
 
         for m in self.modules():
             if isinstance(m, nn.Conv2d):
@@ -195,20 +126,46 @@
 
         x = self.avgpool(x)
         x = x.view(x.size(0), -1)
+        x = self.fc_angles(x)
+        return x
+
+class AlexNet(nn.Module):
+    # AlexNet laid out as a Hopenet - classify Euler angles in bins and
+    # regress the expected value.
+    def __init__(self, num_bins):
+        super(AlexNet, self).__init__()
+        self.features = nn.Sequential(
+            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
+            nn.ReLU(inplace=True),
+            nn.MaxPool2d(kernel_size=3, stride=2),
+            nn.Conv2d(64, 192, kernel_size=5, padding=2),
+            nn.ReLU(inplace=True),
+            nn.MaxPool2d(kernel_size=3, stride=2),
+            nn.Conv2d(192, 384, kernel_size=3, padding=1),
+            nn.ReLU(inplace=True),
+            nn.Conv2d(384, 256, kernel_size=3, padding=1),
+            nn.ReLU(inplace=True),
+            nn.Conv2d(256, 256, kernel_size=3, padding=1),
+            nn.ReLU(inplace=True),
+            nn.MaxPool2d(kernel_size=3, stride=2),
+        )
+        self.classifier = nn.Sequential(
+            nn.Dropout(),
+            nn.Linear(256 * 6 * 6, 4096),
+            nn.ReLU(inplace=True),
+            nn.Dropout(),
+            nn.Linear(4096, 4096),
+            nn.ReLU(inplace=True),
+        )
+        self.fc_yaw = nn.Linear(4096, num_bins)
+        self.fc_pitch = nn.Linear(4096, num_bins)
+        self.fc_roll = nn.Linear(4096, num_bins)
+
+    def forward(self, x):
+        x = self.features(x)
+        x = x.view(x.size(0), 256 * 6 * 6)
+        x = self.classifier(x)
         yaw = self.fc_yaw(x)
         pitch = self.fc_pitch(x)
         roll = self.fc_roll(x)
-
-        shape = []
-        shape.append(self.fc_shape_0(x))
-        shape.append(self.fc_shape_1(x))
-        shape.append(self.fc_shape_2(x))
-        shape.append(self.fc_shape_3(x))
-        shape.append(self.fc_shape_4(x))
-        shape.append(self.fc_shape_5(x))
-        shape.append(self.fc_shape_6(x))
-        shape.append(self.fc_shape_7(x))
-        shape.append(self.fc_shape_8(x))
-        shape.append(self.fc_shape_9(x))
-
-        return yaw, pitch, roll, shape
+        return yaw, pitch, roll

--
Gitblit v1.8.0