From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001 From: chenshijun <csj_sky@126.com> Date: 星期三, 05 六月 2019 15:38:49 +0800 Subject: [PATCH] face rectangle --- code/hopenet.py | 127 ++++++++++++++++++------------------------ 1 files changed, 55 insertions(+), 72 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 1b94fa1..c9e0b74 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -1,46 +1,12 @@ import torch import torch.nn as nn -import torchvision.datasets as dsets from torch.autograd import Variable import math - -# CNN Model (2 conv layer) -class Simple_CNN(nn.Module): - def __init__(self): - super(Simple_CNN, self).__init__() - self.layer1 = nn.Sequential( - nn.Conv2d(3, 64, kernel_size=3, padding=0), - nn.BatchNorm2d(64), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer2 = nn.Sequential( - nn.Conv2d(64, 128, kernel_size=3, padding=0), - nn.BatchNorm2d(128), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer3 = nn.Sequential( - nn.Conv2d(128, 256, kernel_size=3, padding=0), - nn.BatchNorm2d(256), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer4 = nn.Sequential( - nn.Conv2d(256, 512, kernel_size=3, padding=0), - nn.BatchNorm2d(512), - nn.ReLU(), - nn.MaxPool2d(2)) - self.fc = nn.Linear(17*17*512, 3) - - def forward(self, x): - out = self.layer1(x) - out = self.layer2(out) - out = self.layer3(out) - out = self.layer4(out) - out = out.view(out.size(0), -1) - out = self.fc(out) - return out +import torch.nn.functional as F class Hopenet(nn.Module): - # This is just Hopenet with 3 output layers for yaw, pitch and roll. + # Hopenet with 3 output layers for yaw, pitch and roll + # Predicts Euler angles by binning and regression with the expected value def __init__(self, block, layers, num_bins): self.inplanes = 64 super(Hopenet, self).__init__() @@ -58,6 +24,9 @@ self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + # Vestigial layer from previous experiments + self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) + for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels @@ -96,17 +65,17 @@ x = self.avgpool(x) x = x.view(x.size(0), -1) - yaw = self.fc_yaw(x) - pitch = self.fc_pitch(x) - roll = self.fc_roll(x) + pre_yaw = self.fc_yaw(x) + pre_pitch = self.fc_pitch(x) + pre_roll = self.fc_roll(x) - return yaw, pitch, roll + return pre_yaw, pre_pitch, pre_roll -class Hopenet_shape(nn.Module): - # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins, shape_bins): +class ResNet(nn.Module): + # ResNet for regression of 3 Euler angles. + def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 - super(Hopenet_shape, self).__init__() + super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) @@ -117,19 +86,7 @@ self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) - self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) - self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) - self.fc_roll = nn.Linear(512 * block.expansion, num_bins) - self.fc_shape_0 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_1 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_2 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_3 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_4 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_5 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_6 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_7 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_8 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_9 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_angles = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): @@ -169,20 +126,46 @@ x = self.avgpool(x) x = x.view(x.size(0), -1) + x = self.fc_angles(x) + return x + +class AlexNet(nn.Module): + # AlexNet laid out as a Hopenet - classify Euler angles in bins and + # regress the expected value. + def __init__(self, num_bins): + super(AlexNet, self).__init__() + self.features = nn.Sequential( + nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), + nn.Conv2d(64, 192, kernel_size=5, padding=2), + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), + nn.Conv2d(192, 384, kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(384, 256, kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(256, 256, kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), + ) + self.classifier = nn.Sequential( + nn.Dropout(), + nn.Linear(256 * 6 * 6, 4096), + nn.ReLU(inplace=True), + nn.Dropout(), + nn.Linear(4096, 4096), + nn.ReLU(inplace=True), + ) + self.fc_yaw = nn.Linear(4096, num_bins) + self.fc_pitch = nn.Linear(4096, num_bins) + self.fc_roll = nn.Linear(4096, num_bins) + + def forward(self, x): + x = self.features(x) + x = x.view(x.size(0), 256 * 6 * 6) + x = self.classifier(x) yaw = self.fc_yaw(x) pitch = self.fc_pitch(x) roll = self.fc_roll(x) - - shape = [] - shape.append(self.fc_shape_0(x)) - shape.append(self.fc_shape_1(x)) - shape.append(self.fc_shape_2(x)) - shape.append(self.fc_shape_3(x)) - shape.append(self.fc_shape_4(x)) - shape.append(self.fc_shape_5(x)) - shape.append(self.fc_shape_6(x)) - shape.append(self.fc_shape_7(x)) - shape.append(self.fc_shape_8(x)) - shape.append(self.fc_shape_9(x)) - - return yaw, pitch, roll, shape + return yaw, pitch, roll -- Gitblit v1.8.0