From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001 From: chenshijun <csj_sky@126.com> Date: 星期三, 05 六月 2019 15:38:49 +0800 Subject: [PATCH] face rectangle --- code/hopenet.py | 71 ++++------------------------------- 1 files changed, 8 insertions(+), 63 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 7b5f764..c9e0b74 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -4,44 +4,10 @@ import math import torch.nn.functional as F -# CNN Model (2 conv layer) -class Simple_CNN(nn.Module): - def __init__(self): - super(Simple_CNN, self).__init__() - self.layer1 = nn.Sequential( - nn.Conv2d(3, 64, kernel_size=3, padding=0), - nn.BatchNorm2d(64), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer2 = nn.Sequential( - nn.Conv2d(64, 128, kernel_size=3, padding=0), - nn.BatchNorm2d(128), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer3 = nn.Sequential( - nn.Conv2d(128, 256, kernel_size=3, padding=0), - nn.BatchNorm2d(256), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer4 = nn.Sequential( - nn.Conv2d(256, 512, kernel_size=3, padding=0), - nn.BatchNorm2d(512), - nn.ReLU(), - nn.MaxPool2d(2)) - self.fc = nn.Linear(17*17*512, 3) - - def forward(self, x): - out = self.layer1(x) - out = self.layer2(out) - out = self.layer3(out) - out = self.layer4(out) - out = out.view(out.size(0), -1) - out = self.fc(out) - return out - class Hopenet(nn.Module): - # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins, iter_ref): + # Hopenet with 3 output layers for yaw, pitch and roll + # Predicts Euler angles by binning and regression with the expected value + def __init__(self, block, layers, num_bins): self.inplanes = 64 super(Hopenet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, @@ -58,12 +24,8 @@ self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) - self.softmax = nn.Softmax() + # Vestigial layer from previous experiments self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) - - self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() - - self.iter_ref = iter_ref for m in self.modules(): if isinstance(m, nn.Conv2d): @@ -107,27 +69,10 @@ pre_pitch = self.fc_pitch(x) pre_roll = self.fc_roll(x) - yaw = self.softmax(pre_yaw) - yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) - pitch = self.softmax(pre_pitch) - pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) - roll = self.softmax(pre_roll) - roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) - yaw = yaw.view(yaw.size(0), 1) - pitch = pitch.view(pitch.size(0), 1) - roll = roll.view(roll.size(0), 1) - angles = [] - preangles = torch.cat([yaw, pitch, roll], 1) - angles.append(preangles) - - # angles predicts the residual - for idx in xrange(self.iter_ref): - angles.append(self.fc_finetune(torch.cat((preangles, x), 1))) - - return pre_yaw, pre_pitch, pre_roll, angles + return pre_yaw, pre_pitch, pre_roll class ResNet(nn.Module): - + # ResNet for regression of 3 Euler angles. def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() @@ -182,11 +127,11 @@ x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc_angles(x) - return x class AlexNet(nn.Module): - + # AlexNet laid out as a Hopenet - classify Euler angles in bins and + # regress the expected value. def __init__(self, num_bins): super(AlexNet, self).__init__() self.features = nn.Sequential( -- Gitblit v1.8.0