From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001 From: chenshijun <csj_sky@126.com> Date: 星期三, 05 六月 2019 15:38:49 +0800 Subject: [PATCH] face rectangle --- code/hopenet.py | 198 +++++++++++++++++++++++++++++++++++++++++-------- 1 files changed, 165 insertions(+), 33 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index e6f8f50..c9e0b74 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -1,39 +1,171 @@ import torch import torch.nn as nn -import torchvision.datasets as dsets from torch.autograd import Variable +import math +import torch.nn.functional as F -# CNN Model (2 conv layer) -class Simple_CNN(nn.Module): - def __init__(self): - super(Simple_CNN, self).__init__() - self.layer1 = nn.Sequential( - nn.Conv2d(3, 64, kernel_size=3, padding=0), - nn.BatchNorm2d(64), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer2 = nn.Sequential( - nn.Conv2d(64, 128, kernel_size=3, padding=0), - nn.BatchNorm2d(128), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer3 = nn.Sequential( - nn.Conv2d(128, 256, kernel_size=3, padding=0), - nn.BatchNorm2d(256), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer4 = nn.Sequential( - nn.Conv2d(256, 512, kernel_size=3, padding=0), - nn.BatchNorm2d(512), - nn.ReLU(), - nn.MaxPool2d(2)) - self.fc = nn.Linear(17*17*512, 3) +class Hopenet(nn.Module): + # Hopenet with 3 output layers for yaw, pitch and roll + # Predicts Euler angles by binning and regression with the expected value + def __init__(self, block, layers, num_bins): + self.inplanes = 64 + super(Hopenet, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7) + self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) + self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) + self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + + # Vestigial layer from previous experiments + self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) def forward(self, x): - out = self.layer1(x) - out = self.layer2(out) - out = self.layer3(out) - out = self.layer4(out) - out = out.view(out.size(0), -1) - out = self.fc(out) - return out + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + pre_yaw = self.fc_yaw(x) + pre_pitch = self.fc_pitch(x) + pre_roll = self.fc_roll(x) + + return pre_yaw, pre_pitch, pre_roll + +class ResNet(nn.Module): + # ResNet for regression of 3 Euler angles. + def __init__(self, block, layers, num_classes=1000): + self.inplanes = 64 + super(ResNet, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7) + self.fc_angles = nn.Linear(512 * block.expansion, num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + x = self.fc_angles(x) + return x + +class AlexNet(nn.Module): + # AlexNet laid out as a Hopenet - classify Euler angles in bins and + # regress the expected value. + def __init__(self, num_bins): + super(AlexNet, self).__init__() + self.features = nn.Sequential( + nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), + nn.Conv2d(64, 192, kernel_size=5, padding=2), + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), + nn.Conv2d(192, 384, kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(384, 256, kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(256, 256, kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), + ) + self.classifier = nn.Sequential( + nn.Dropout(), + nn.Linear(256 * 6 * 6, 4096), + nn.ReLU(inplace=True), + nn.Dropout(), + nn.Linear(4096, 4096), + nn.ReLU(inplace=True), + ) + self.fc_yaw = nn.Linear(4096, num_bins) + self.fc_pitch = nn.Linear(4096, num_bins) + self.fc_roll = nn.Linear(4096, num_bins) + + def forward(self, x): + x = self.features(x) + x = x.view(x.size(0), 256 * 6 * 6) + x = self.classifier(x) + yaw = self.fc_yaw(x) + pitch = self.fc_pitch(x) + roll = self.fc_roll(x) + return yaw, pitch, roll -- Gitblit v1.8.0