From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001 From: chenshijun <csj_sky@126.com> Date: 星期三, 05 六月 2019 15:38:49 +0800 Subject: [PATCH] face rectangle --- code/train_alexnet.py | 34 ++++++++++++++++++++-------------- 1 files changed, 20 insertions(+), 14 deletions(-) diff --git a/code/train_alexnet.py b/code/train_alexnet.py index 9254ee7..68ed30d 100644 --- a/code/train_alexnet.py +++ b/code/train_alexnet.py @@ -94,7 +94,7 @@ model = hopenet.AlexNet(66) load_filtered_state_dict(model, model_zoo.load_url(model_urls['alexnet'])) - print 'Loading data.' + print('Loading data.') transformations = transforms.Compose([transforms.Scale(240), transforms.RandomCrop(224), transforms.ToTensor(), @@ -115,7 +115,7 @@ elif args.dataset == 'AFW': pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) else: - print 'Error: not a valid dataset name' + print('Error: not a valid dataset name') sys.exit() train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, @@ -129,12 +129,15 @@ # Regression loss coefficient alpha = args.alpha + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, {'params': get_non_ignored_params(model), 'lr': args.lr}, {'params': get_fc_params(model), 'lr': args.lr * 5}], lr = args.lr) - print 'Ready to train network.' + print('Ready to train network.') for epoch in range(num_epochs): for i, (images, labels, cont_labels, name) in enumerate(train_loader): images = Variable(images).cuda(gpu) @@ -150,17 +153,21 @@ label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) # Forward pass - yaw, pitch, roll, angles = model(images) + pre_yaw, pre_pitch, pre_roll = model(images) # Cross entropy loss - loss_yaw = criterion(yaw, label_yaw) - loss_pitch = criterion(pitch, label_pitch) - loss_roll = criterion(roll, label_roll) + loss_yaw = criterion(pre_yaw, label_yaw) + loss_pitch = criterion(pre_pitch, label_pitch) + loss_roll = criterion(pre_roll, label_roll) # MSE loss - yaw_predicted = angles[:,0] - pitch_predicted = angles[:,1] - roll_predicted = angles[:,2] + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) @@ -172,17 +179,16 @@ loss_roll += alpha * loss_reg_roll loss_seq = [loss_yaw, loss_pitch, loss_roll] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - optimizer.zero_grad() + grad_seq = [torch.ones(1).cuda(gpu) for _ in range(len(loss_seq))] torch.autograd.backward(loss_seq, grad_seq) optimizer.step() if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' + print('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: - print 'Taking snapshot...' + print('Taking snapshot...') torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') -- Gitblit v1.8.0