From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001 From: chenshijun <csj_sky@126.com> Date: 星期三, 05 六月 2019 15:38:49 +0800 Subject: [PATCH] face rectangle --- code/train_alexnet.py | 62 ++++++++++-------------------- 1 files changed, 21 insertions(+), 41 deletions(-) diff --git a/code/train_alexnet.py b/code/train_alexnet.py index 5f60211..68ed30d 100644 --- a/code/train_alexnet.py +++ b/code/train_alexnet.py @@ -1,4 +1,9 @@ +import sys, os, argparse, time + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,17 +13,8 @@ import torch.backends.cudnn as cudnn import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet +import datasets, hopenet import torch.utils.model_zoo as model_zoo - -import time model_urls = { 'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth', @@ -43,16 +39,12 @@ parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', default=0.001, type=float) parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) - args = parser.parse_args() return args def get_ignored_params(model): # Generator function that yields ignored params. - b = [] - b.append(model.features[0]) - b.append(model.features[1]) - b.append(model.features[2]) + b = [model.features[0], model.features[1], model.features[2]] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -75,10 +67,7 @@ yield param def get_fc_params(model): - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) + b = [model.fc_yaw, model.fc_pitch, model.fc_roll] for i in range(len(b)): for module_name, module in b[i].named_modules(): for name, param in module.named_parameters(): @@ -87,11 +76,8 @@ def load_filtered_state_dict(model, snapshot): # By user apaszke from discuss.pytorch.org model_dict = model.state_dict() - # 1. filter out unnecessary keys snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict model_dict.update(snapshot) - # 3. load the new state dict model.load_state_dict(model_dict) if __name__ == '__main__': @@ -108,7 +94,7 @@ model = hopenet.AlexNet(66) load_filtered_state_dict(model, model_zoo.load_url(model_urls['alexnet'])) - print 'Loading data.' + print('Loading data.') transformations = transforms.Compose([transforms.Scale(240), transforms.RandomCrop(224), transforms.ToTensor(), @@ -116,6 +102,8 @@ if args.dataset == 'Pose_300W_LP': pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP_random_ds': + pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW2000': pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) elif args.dataset == 'BIWI': @@ -127,7 +115,7 @@ elif args.dataset == 'AFW': pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) else: - print 'Error: not a valid dataset name' + print('Error: not a valid dataset name') sys.exit() train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, @@ -149,27 +137,24 @@ {'params': get_fc_params(model), 'lr': args.lr * 5}], lr = args.lr) - print 'Ready to train network.' - print 'First phase of training.' + print('Ready to train network.') for epoch in range(num_epochs): - # start = time.time() for i, (images, labels, cont_labels, name) in enumerate(train_loader): - # print i - # print 'start: ', time.time() - start images = Variable(images).cuda(gpu) + + # Binned labels label_yaw = Variable(labels[:,0]).cuda(gpu) label_pitch = Variable(labels[:,1]).cuda(gpu) label_roll = Variable(labels[:,2]).cuda(gpu) - label_angles = Variable(cont_labels[:,:3]).cuda(gpu) + # Continuous labels label_yaw_cont = Variable(cont_labels[:,0]).cuda(gpu) label_pitch_cont = Variable(cont_labels[:,1]).cuda(gpu) label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) - optimizer.zero_grad() - model.zero_grad() - + # Forward pass pre_yaw, pre_pitch, pre_roll = model(images) + # Cross entropy loss loss_yaw = criterion(pre_yaw, label_yaw) loss_pitch = criterion(pre_pitch, label_pitch) @@ -194,21 +179,16 @@ loss_roll += alpha * loss_reg_roll loss_seq = [loss_yaw, loss_pitch, loss_roll] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + grad_seq = [torch.ones(1).cuda(gpu) for _ in range(len(loss_seq))] torch.autograd.backward(loss_seq, grad_seq) optimizer.step() - # print 'end: ', time.time() - start - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' + print('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: - print 'Taking snapshot...' + print('Taking snapshot...') torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') -- Gitblit v1.8.0