From f111cb002b9c6065fdf6bb274ce5857a9e875e8c Mon Sep 17 00:00:00 2001 From: chenshijun <csj_sky@126.com> Date: 星期三, 05 六月 2019 15:38:49 +0800 Subject: [PATCH] face rectangle --- code/train_hopenet.py | 25 +++++++++++++++++-------- 1 files changed, 17 insertions(+), 8 deletions(-) diff --git a/code/train_hopenet.py b/code/train_hopenet.py index 600a9ae..56b9ca3 100644 --- a/code/train_hopenet.py +++ b/code/train_hopenet.py @@ -27,6 +27,7 @@ default=16, type=int) parser.add_argument('--lr', dest='lr', help='Base learning rate.', default=0.001, type=float) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', @@ -34,7 +35,8 @@ parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', default=0.001, type=float) - parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', + default='', type=str) args = parser.parse_args() return args @@ -87,9 +89,14 @@ # ResNet50 structure model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) - print 'Loading data.' + if args.snapshot == '': + load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) + else: + saved_state_dict = torch.load(args.snapshot) + model.load_state_dict(saved_state_dict) + + print('Loading data.') transformations = transforms.Compose([transforms.Scale(240), transforms.RandomCrop(224), transforms.ToTensor(), @@ -99,6 +106,8 @@ pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) elif args.dataset == 'Pose_300W_LP_random_ds': pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Synhead': + pose_dataset = datasets.Synhead(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW2000': pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) elif args.dataset == 'BIWI': @@ -110,7 +119,7 @@ elif args.dataset == 'AFW': pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) else: - print 'Error: not a valid dataset name' + print('Error: not a valid dataset name') sys.exit() train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, @@ -133,7 +142,7 @@ {'params': get_fc_params(model), 'lr': args.lr * 5}], lr = args.lr) - print 'Ready to train network.' + print('Ready to train network.') for epoch in range(num_epochs): for i, (images, labels, cont_labels, name) in enumerate(train_loader): images = Variable(images).cuda(gpu) @@ -149,7 +158,7 @@ label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) # Forward pass - yaw, pitch, roll, angles = model(images) + yaw, pitch, roll = model(images) # Cross entropy loss loss_yaw = criterion(yaw, label_yaw) @@ -175,7 +184,7 @@ loss_roll += alpha * loss_reg_roll loss_seq = [loss_yaw, loss_pitch, loss_roll] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + grad_seq = [torch.ones(1).cuda(gpu) for _ in range(len(loss_seq))] optimizer.zero_grad() torch.autograd.backward(loss_seq, grad_seq) optimizer.step() @@ -186,6 +195,6 @@ # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: - print 'Taking snapshot...' + print('Taking snapshot...') torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') -- Gitblit v1.8.0