From afc68af3a67b2f936429feb3a68c1f09e03ce930 Mon Sep 17 00:00:00 2001 From: zhaoqingang <zhaoqg0118@163.com> Date: 星期五, 11 四月 2025 10:07:24 +0800 Subject: [PATCH] 智能体中心不显示自研智能体 --- app/service/v2/chat.py | 839 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 files changed, 818 insertions(+), 21 deletions(-) diff --git a/app/service/v2/chat.py b/app/service/v2/chat.py index 136a113..a4d6986 100644 --- a/app/service/v2/chat.py +++ b/app/service/v2/chat.py @@ -1,28 +1,825 @@ +import asyncio +import datetime +import io import json +import time +import uuid +import fitz +from fastapi import HTTPException +from sqlalchemy import or_ + +from Log import logger +from app.config.agent_base_url import RG_CHAT_DIALOG, DF_CHAT_AGENT, DF_CHAT_PARAMETERS, RG_CHAT_SESSIONS, \ + DF_CHAT_WORKFLOW, DF_UPLOAD_FILE, RG_ORIGINAL_URL, RG_CHAT_UPDATE_URL, DF_WORKFLOW_DRAFT, DF_WORKFLOW_PUBLISH +from app.config.config import settings +from app.config.const import * +from app.models import DialogModel, ApiTokenModel, UserTokenModel, ComplexChatSessionDao, ChatDataRequest, \ + ComplexChatDao, KnowledgeModel, UserModel, KnowledgeUserModel +from app.models.v2.session_model import ChatSessionDao, ChatData +from app.service.v2.app_driver.chat_agent import ChatAgent +from app.service.v2.app_driver.chat_data import ChatBaseApply from app.service.v2.app_driver.chat_dialog import ChatDialog +from app.service.v2.app_driver.chat_workflow import ChatWorkflow +from docx import Document +from dashscope import get_tokenizer # dashscope鐗堟湰 >= 1.14.0 -async def service_chat_dialog(chat_id:str, question: str, session_id: str): - token = "ragflow-YzMzE1NDRjYzMyZjExZWY5ZjkxMDI0Mm" - url = f"/api/v1/chats/{chat_id}/completions" - chat = ChatDialog(token) - data = { - "question": question, - "stream": True, - "session_id": session_id - } - headers = { - 'Content-Type': 'application/json', - 'Authorization': f"Bearer {token}" - } +async def update_session_log(db, session_id: str, message: dict, conversation_id: str): + await ChatSessionDao(db).update_session_by_id( + session_id=session_id, + session=None, + message=message, + conversation_id=conversation_id + ) + + +async def add_session_log(db, session_id: str, question: str, chat_id: str, user_id, event_type: str, + conversation_id: str, agent_type, query: dict = None): try: - for ans in chat.chat_completions(url, data, headers): - - yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n" - ChatSessionModel.update_by_id(conv.id, conv.to_dict()) + session = await ChatSessionDao(db).update_or_insert_by_id( + session_id=session_id, + name=question[:255], + agent_id=chat_id, + agent_type=agent_type, + tenant_id=user_id, + message={"role": "user", "content": question, "query": query}, + conversation_id=conversation_id, + event_type=event_type + ) + return session except Exception as e: - yield "data:" + json.dumps({"code": 500, "message": str(e), - "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, - ensure_ascii=False) + "\n\n" - yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n" \ No newline at end of file + logger.error(e) + return None + + +async def get_app_token(db, app_id): + app_token = db.query(UserTokenModel).filter_by(id=app_id).first() + if app_token: + return app_token.access_token + return "" + + +async def get_chat_token(db, app_id): + app_token = db.query(ApiTokenModel).filter_by(app_id=app_id).first() + if app_token: + return app_token.token + return "" + +async def get_workflow_token(db): + user_token = db.query(UserTokenModel).filter(UserTokenModel.id == workflow_server).first() + return user_token.access_token if user_token else "" + + +async def add_chat_token(db, data): + try: + api_token = ApiTokenModel(**data) + db.add(api_token) + db.commit() + except Exception as e: + logger.error(e) + + +async def get_chat_info(db, chat_id: str): + return db.query(DialogModel).filter_by(id=chat_id, status=Dialog_STATSU_ON).first() + + +async def get_chat_object(mode): + if mode == workflow_chat: + url = settings.dify_base_url + DF_CHAT_WORKFLOW + return ChatWorkflow(), url + else: + url = settings.dify_base_url + DF_CHAT_AGENT + return ChatAgent(), url + + +async def get_user_kb(db, user_id: int, kb_ids: list) -> list: + res = [] + user = db.query(UserModel).filter(UserModel.id == user_id).first() + if user is None: + return res + query = db.query(KnowledgeModel) + if user.permission != "admin": + klg_list = [j.id for i in user.groups for j in i.knowledges] + for i in db.query(KnowledgeUserModel).filter(KnowledgeUserModel.user_id == user_id, + KnowledgeUserModel.status == 1).all(): + if i.kb_id not in klg_list: + klg_list.append(i.kb_id) + query = query.filter(or_(KnowledgeModel.id.in_(klg_list), KnowledgeModel.tenant_id == str(user_id))) + kb_list = query.all() + for kb in kb_list: + if kb.id in kb_ids: + if kb.permission == "team": + res.append(kb.id) + elif kb.tenant_id == str(user_id): + res.append(kb.id) + return res + else: + return kb_ids + + +async def service_chat_dialog(db, chat_id: str, question: str, session_id: str, user_id: int, mode: str, kb_ids: list): + conversation_id = "" + token = await get_chat_token(db, rg_api_token) + url = settings.fwr_base_url + RG_CHAT_DIALOG.format(chat_id) + kb_id = await get_user_kb(db, user_id, kb_ids) + if not kb_id: + yield "data: " + json.dumps({"message": smart_message_error, + "error": "\n**ERROR**: The agent has no knowledge base to work with!", + "status": http_400}, + ensure_ascii=False) + "\n\n" + return + chat = ChatDialog() + session = await add_session_log(db, session_id, question, chat_id, user_id, mode, session_id, RG_TYPE) + if session: + conversation_id = session.conversation_id + message = {"role": "assistant", "answer": "", "reference": {}} + try: + async for ans in chat.chat_completions(url, await chat.complex_request_data(question, kb_id, conversation_id), + await chat.get_headers(token)): + data = {} + error = "" + status = http_200 + if ans.get("code", None) == 102: + error = ans.get("message", "error锛�") + status = http_400 + event = smart_message_error + else: + if isinstance(ans.get("data"), bool) and ans.get("data") is True: + event = smart_message_end + else: + data = ans.get("data", {}) + # conversation_id = data.get("session_id", "") + if "session_id" in data: + del data["session_id"] + message = data + event = smart_message_cover + message_str = "data: " + json.dumps( + {"event": event, "data": data, "error": error, "status": status, "session_id": session_id}, + ensure_ascii=False) + "\n\n" + for i in range(0, len(message_str), max_chunk_size): + chunk = message_str[i:i + max_chunk_size] + # print(chunk) + yield chunk # 鍙戦�佸垎鍧楁秷鎭� + except Exception as e: + + logger.error(e) + try: + yield "data: " + json.dumps({"message": smart_message_error, + "error": "\n**ERROR**: " + str(e), "status": http_500}, + ensure_ascii=False) + "\n\n" + except: + ... + finally: + message["role"] = "assistant" + await update_session_log(db, session_id, message, conversation_id) + + +async def data_process(data): + if isinstance(data, str): + return data.replace("dify", "smart") + elif isinstance(data, dict): + for k in list(data.keys()): + if isinstance(k, str) and "dify" in k: + new_k = k.replace("dify", "smart") + data[new_k] = await data_process(data[k]) + del data[k] + else: + data[k] = await data_process(data[k]) + return data + elif isinstance(data, list): + for i in range(len(data)): + data[i] = await data_process(data[i]) + return data + else: + return data + + +async def service_chat_workflow(db, chat_id: str, chat_data: ChatData, session_id: str, user_id, mode: str): + conversation_id = "" + answer_event = "" + answer_agent = "" + answer_workflow = "" + download_url = "" + message_id = "" + task_id = "" + error = "" + files = [] + node_list = [] + token = await get_chat_token(db, chat_id) + chat, url = await get_chat_object(mode) + if hasattr(chat_data, "query"): + query = chat_data.query + else: + query = "start new conversation" + session = await add_session_log(db, session_id, query if query else "start new conversation", chat_id, user_id, + mode, conversation_id, DF_TYPE, chat_data.to_dict()) + if session: + conversation_id = session.conversation_id + try: + async for ans in chat.chat_completions(url, + await chat.request_data(query, conversation_id, str(user_id), chat_data), + await chat.get_headers(token)): + data = {} + status = http_200 + conversation_id = ans.get("conversation_id") + task_id = ans.get("task_id") + if ans.get("event") == message_error: + error = ans.get("message", "鍙傛暟寮傚父锛�") + status = http_400 + event = smart_message_error + elif ans.get("event") == message_agent: + data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")} + answer_agent += ans.get("answer", "") + message_id = ans.get("message_id", "") + event = smart_message_stream + elif ans.get("event") == message_event: + data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")} + answer_event += ans.get("answer", "") + message_id = ans.get("message_id", "") + event = smart_message_stream + elif ans.get("event") == message_file: + data = {"url": ans.get("url", ""), "id": ans.get("id", ""), + "type": ans.get("type", "")} + files.append(data) + event = smart_message_file + elif ans.get("event") in [workflow_started, node_started, node_finished]: + data = ans.get("data", {}) + data["inputs"] = await data_process(data.get("inputs", {})) + data["outputs"] = await data_process(data.get("outputs", {})) + data["files"] = await data_process(data.get("files", [])) + data["process_data"] = "" + if data.get("status") == "failed": + status = http_500 + error = data.get("error", "") + node_list.append(ans) + event = [smart_workflow_started, smart_node_started, smart_node_finished][ + [workflow_started, node_started, node_finished].index(ans.get("event"))] + elif ans.get("event") == workflow_finished: + data = ans.get("data", {}) + answer_workflow = data.get("outputs", {}).get("output", data.get("outputs", {}).get("answer")) + download_url = data.get("outputs", {}).get("download_url") + event = smart_workflow_finished + if data.get("status") == "failed": + status = http_500 + error = data.get("error", "") + node_list.append(ans) + + elif ans.get("event") == message_end: + event = smart_message_end + else: + continue + + yield "data: " + json.dumps( + {"event": event, "data": data, "error": error, "status": status, "task_id": task_id, + "session_id": session_id}, + ensure_ascii=False) + "\n\n" + + except Exception as e: + logger.error(e) + try: + yield "data: " + json.dumps({"message": smart_message_error, + "error": "\n**ERROR**: " + str(e), "status": http_500}, + ensure_ascii=False) + "\n\n" + except: + ... + finally: + await update_session_log(db, session_id, {"role": "assistant", + "answer": answer_event or answer_agent or answer_workflow or error, + "download_url": download_url, + "node_list": node_list, "task_id": task_id, "id": message_id, + "error": error}, conversation_id) + + +async def service_chat_basic(db, chat_id: str, chat_data: ChatData, session_id: str, user_id, mode: str): + if chat_id == basic_report_talk: + complex_chat = await ComplexChatDao(db).get_complex_chat_by_mode(chat_data.report_mode) + if complex_chat: + ... + + +async def service_chat_parameters(db, chat_id, user_id): + chat_info = db.query(DialogModel).filter_by(id=chat_id).first() + if not chat_info: + return {} + return chat_info.parameters + + +async def service_chat_sessions(db, chat_id, name): + token = await get_chat_token(db, rg_api_token) + # print(token) + if not token: + return {} + url = settings.fwr_base_url + RG_CHAT_SESSIONS.format(chat_id) + chat = ChatDialog() + return await chat.chat_sessions(url, {"name": name}, await chat.get_headers(token)) + + +async def service_chat_sessions_list(db, chat_id, current, page_size, user_id, keyword): + total, session_list = await ChatSessionDao(db).get_session_list( + user_id=user_id, + agent_id=chat_id, + keyword=keyword, + page=current, + page_size=page_size + ) + return json.dumps({"total": total, "rows": [session.to_dict() for session in session_list]}) + + +async def service_chat_session_log(db, session_id): + session_log = await ChatSessionDao(db).get_session_by_id(session_id) + if not session_log: + return {} + log_info = session_log.log_to_json() + if session_log.event_type == complex_chat: + total, message_list = await ComplexChatSessionDao(db).get_session_list(session_id) + log_info["message"] = [message.log_to_json() for message in message_list[::-1]] + + return json.dumps(log_info) + + +async def service_chat_upload(db, chat_id, file, user_id): + files = [] + token = await get_chat_token(db, chat_id) + if not token: + return files + url = settings.dify_base_url + DF_UPLOAD_FILE + chat = ChatBaseApply() + for f in file: + try: + file_content = await f.read() + file_upload = await chat.chat_upload(url, {"file": (f.filename, file_content)}, {"user": str(user_id)}, + {'Authorization': f'Bearer {token}'}) + try: + tokens = await read_file(file_content, f.filename, f.content_type) + file_upload["tokens"] = tokens + except: + ... + files.append(file_upload) + except Exception as e: + logger.error(e) + return json.dumps(files) if files else "" + + +async def get_str_token(input_str): + # 鑾峰彇tokenizer瀵硅薄锛岀洰鍓嶅彧鏀寔閫氫箟鍗冮棶绯诲垪妯″瀷 + tokenizer = get_tokenizer('qwen-turbo') + # 灏嗗瓧绗︿覆鍒囧垎鎴恡oken骞惰浆鎹负token id + tokens = tokenizer.encode(input_str) + return len(tokens) + + +async def read_pdf(pdf_stream): + text = "" + with fitz.open(stream=pdf_stream, filetype="pdf") as pdf_document: + for page in pdf_document: + text += page.get_text() + return text + + +async def read_word(word_stream): + # 浣跨敤 python-docx 鎵撳紑 Word 鏂囦欢娴� + doc = Document(io.BytesIO(word_stream)) + + # 鎻愬彇姣忎釜娈佃惤鐨勬枃鏈� + text = "" + for para in doc.paragraphs: + text += para.text + + return text + + +async def read_file(file, filename, content_type): + text = "" + if content_type == "application/pdf" or filename.endswith('.pdf'): + + # 鎻愬彇 PDF 鍐呭 + text = await read_pdf(file) + elif content_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document" or filename.endswith( + '.docx'): + text = await read_word(file) + + return await get_str_token(text) + + +async def service_chunk_retrieval(query, knowledge_id, top_k, similarity_threshold, api_key): + # print(query) + + try: + request_data = json.loads(query) + payload = { + "question": request_data.get("query", ""), + "dataset_ids": request_data.get("dataset_ids", []), + "page_size": top_k, + "similarity_threshold": similarity_threshold if similarity_threshold else 0.2 + } + except json.JSONDecodeError as e: + fixed_json = query.replace("'", '"') + try: + request_data = json.loads(fixed_json) + payload = { + "question": request_data.get("query", ""), + "dataset_ids": request_data.get("dataset_ids", []), + "page_size": top_k, + "similarity_threshold": similarity_threshold if similarity_threshold else 0.2 + } + except Exception: + payload = { + "question": query, + "dataset_ids": [knowledge_id], + "page_size": top_k, + "similarity_threshold": similarity_threshold if similarity_threshold else 0.2 + } + # print(payload) + url = settings.fwr_base_url + RG_ORIGINAL_URL + chat = ChatBaseApply() + response = await chat.chat_post(url, payload, await chat.get_headers(api_key)) + if not response: + raise HTTPException(status_code=500, detail="鏈嶅姟寮傚父锛�") + records = [ + { + "content": chunk["content"], + "score": chunk["similarity"], + "title": chunk.get("document_keyword", "Unknown Document"), + "metadata": {"document_id": chunk["document_id"], + "path": f"{settings.fwr_base_url}/document/{chunk['document_id']}?ext={chunk.get('document_keyword').split('.')[-1]}&prefix=document", + 'highlight': chunk.get("highlight"), "image_id": chunk.get("image_id"), + "positions": chunk.get("positions"), } + } + for chunk in response.get("data", {}).get("chunks", []) + ] + # print(len(records)) + # print(records) + return records + + +async def service_base_chunk_retrieval(query, knowledge_id, top_k, similarity_threshold, api_key): + # request_data = json.loads(query) + payload = { + "question": query, + "dataset_ids": [knowledge_id], + "page_size": top_k, + "similarity_threshold": similarity_threshold + } + url = settings.fwr_base_url + RG_ORIGINAL_URL + # url = "http://192.168.20.116:11080/" + RG_ORIGINAL_URL + chat = ChatBaseApply() + response = await chat.chat_post(url, payload, await chat.get_headers(api_key)) + if not response: + raise HTTPException(status_code=500, detail="鏈嶅姟寮傚父锛�") + records = [ + { + "content": chunk["content"], + "score": chunk["similarity"], + "title": chunk.get("document_keyword", "Unknown Document"), + "metadata": {"document_id": chunk["document_id"]} + } + for chunk in response.get("data", {}).get("chunks", []) + ] + return records + + +async def add_complex_log(db, message_id, chat_id, session_id, chat_mode, query, user_id, mode, agent_type, + message_type, conversation_id="", node_data=None, query_data=None): + if not node_data: + node_data = [] + if not query_data: + query_data = {} + # print(node_data) + # print("--------------------------------------------------------") + # print(query_data) + try: + complex_log = ComplexChatSessionDao(db) + if not conversation_id: + session = await complex_log.get_session_by_session_id(session_id, chat_id) + if session: + conversation_id = session.conversation_id + await complex_log.create_session(message_id, + chat_id=chat_id, + session_id=session_id, + chat_mode=chat_mode, + message_type=message_type, + content=query, + event_type=mode, + tenant_id=user_id, + conversation_id=conversation_id, + node_data=json.dumps(node_data), + query=json.dumps(query_data), + agent_type=agent_type) + return conversation_id, True + + except Exception as e: + logger.error(e) + return conversation_id, False + + +async def add_query_files(db, message_id): + query = {} + complex_log = await ComplexChatSessionDao(db).get_session_by_id(message_id) + if complex_log: + query = json.loads(complex_log.query) + return query.get("files", []) + + +async def service_complex_chat(db, chat_id, mode, user_id, chat_request: ChatDataRequest): + answer_event = "" + answer_agent = "" + answer_dialog = "" + answer_workflow = "" + download_url = "" + message_id = "" + task_id = "" + error = "" + node_list = [] + reference = {} + conversation_id = "" + query_data = chat_request.to_dict() + new_message_id = str(uuid.uuid4()) + inputs = {"is_deep": chat_request.isDeep} + files = chat_request.files + if chat_request.chatMode == complex_content_optimization_chat: + inputs["type"] = chat_request.optimizeType + elif chat_request.chatMode == complex_dialog_chat: + if not files and chat_request.parentId: + files = await add_query_files(db, chat_request.parentId) + if chat_request.chatMode != complex_content_optimization_chat: + await add_session_log(db, chat_request.sessionId, chat_request.query if chat_request.query else "鏈懡鍚嶄細璇�", + chat_id, user_id, + mode, "", DF_TYPE) + conversation_id, message = await add_complex_log(db, new_message_id, chat_id, chat_request.sessionId, + chat_request.chatMode, chat_request.query, user_id, mode, + DF_TYPE, 1, query_data=query_data) + if not message: + yield "data: " + json.dumps({"message": smart_message_error, + "error": "\n**ERROR**: 鍒涘缓浼氳瘽澶辫触锛�", "status": http_500}, + ensure_ascii=False) + "\n\n" + return + + query_data["parentId"] = new_message_id + try: + if chat_request.chatMode == complex_knowledge_chat or chat_request.chatMode == complex_knowledge_chat_deep: + if not conversation_id: + session = await service_chat_sessions(db, chat_id, chat_request.query) + # print(session) + if not session or session.get("code") != 0: + yield "data: " + json.dumps( + {"message": smart_message_error, "error": "\n**ERROR**: chat agent error", "status": http_500}) + return + conversation_id = session.get("data", {}).get("id") + token = await get_chat_token(db, rg_api_token) + url = settings.fwr_base_url + RG_CHAT_DIALOG.format(chat_id) + chat = ChatDialog() + try: + async for ans in chat.chat_completions(url, await chat.complex_request_data(chat_request.query, + chat_request.knowledgeId, + conversation_id), + await chat.get_headers(token)): + data = {} + error = "" + status = http_200 + if ans.get("code", None) == 102: + error = ans.get("message", "error锛�") + status = http_400 + event = smart_message_error + else: + if isinstance(ans.get("data"), bool) and ans.get("data") is True: + event = smart_message_end + else: + data = ans.get("data", {}) + # conversation_id = data.get("session_id", "") + if "session_id" in data: + del data["session_id"] + data["prompt"] = "" + if not message_id: + message_id = data.get("id", "") + answer_dialog = data.get("answer", "") + reference = data.get("reference", {}) + event = smart_message_cover + message_str = "data: " + json.dumps( + {"event": event, "data": data, "error": error, "status": status, "message_id": message_id, + "parent_id": new_message_id, + "session_id": chat_request.sessionId}, + ensure_ascii=False) + "\n\n" + for i in range(0, len(message_str), max_chunk_size): + chunk = message_str[i:i + max_chunk_size] + # print(chunk) + yield chunk # 鍙戦�佸垎鍧楁秷鎭� + except Exception as e: + + logger.error(e) + try: + yield "data: " + json.dumps({"message": smart_message_error, + "error": "\n**ERROR**: " + str(e), "status": http_500}, + ensure_ascii=False) + "\n\n" + except: + ... + else: + token = await get_chat_token(db, chat_id) + chat, url = await get_chat_object(mode) + async for ans in chat.chat_completions(url, + await chat.complex_request_data(chat_request.query, conversation_id, + str(user_id), files=files, + inputs=inputs), + await chat.get_headers(token)): + # print(ans) + data = {} + status = http_200 + conversation_id = ans.get("conversation_id") + task_id = ans.get("task_id") + if ans.get("event") == message_error: + error = ans.get("message", "鍙傛暟寮傚父锛�") + status = http_400 + event = smart_message_error + elif ans.get("event") == message_agent: + data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")} + answer_agent += ans.get("answer", "") + message_id = ans.get("message_id", "") + event = smart_message_stream + elif ans.get("event") == message_event: + data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")} + answer_event += ans.get("answer", "") + message_id = ans.get("message_id", "") + event = smart_message_stream + elif ans.get("event") == message_file: + data = {"url": ans.get("url", ""), "id": ans.get("id", ""), + "type": ans.get("type", "")} + files.append(data) + event = smart_message_file + elif ans.get("event") in [workflow_started, node_started, node_finished]: + data = ans.get("data", {}) + data["inputs"] = await data_process(data.get("inputs", {})) + data["outputs"] = await data_process(data.get("outputs", {})) + data["files"] = await data_process(data.get("files", [])) + data["process_data"] = "" + if data.get("status") == "failed": + status = http_500 + error = data.get("error", "") + node_list.append(ans) + event = [smart_workflow_started, smart_node_started, smart_node_finished][ + [workflow_started, node_started, node_finished].index(ans.get("event"))] + elif ans.get("event") == workflow_finished: + data = ans.get("data", {}) + answer_workflow = data.get("outputs", {}).get("output", data.get("outputs", {}).get("answer")) + download_url = data.get("outputs", {}).get("download_url") + event = smart_workflow_finished + if data.get("status") == "failed": + status = http_500 + error = data.get("error", "") + node_list.append(ans) + + elif ans.get("event") == message_end: + event = smart_message_end + else: + continue + + yield "data: " + json.dumps( + {"event": event, "data": data, "error": error, "status": status, "task_id": task_id, + "message_id": message_id, + "parent_id": new_message_id, + "session_id": chat_request.sessionId}, + ensure_ascii=False) + "\n\n" + + except Exception as e: + logger.error(e) + try: + yield "data: " + json.dumps({"message": smart_message_error, + "error": "\n**ERROR**: " + str(e), "status": http_500}, + ensure_ascii=False) + "\n\n" + except: + ... + finally: + # await update_session_log(db, session_id, {"role": "assistant", + # "answer": answer_event or answer_agent or answer_workflow or error, + # "download_url": download_url, + # "node_list": node_list, "task_id": task_id, "id": message_id, + # "error": error}, conversation_id) + if message_id: + await add_complex_log(db, message_id, chat_id, chat_request.sessionId, chat_request.chatMode, + answer_event or answer_agent or answer_workflow or answer_dialog or error, user_id, + mode, DF_TYPE, 2, conversation_id, node_data=node_list or reference, + query_data=query_data) + + +async def service_complex_upload(db, chat_id, file, user_id): + files = [] + token = await get_chat_token(db, chat_id) + if not token: + return files + url = settings.dify_base_url + DF_UPLOAD_FILE + chat = ChatBaseApply() + for f in file: + try: + file_content = await f.read() + file_upload = await chat.chat_upload(url, {"file": (f.filename, file_content)}, {"user": str(user_id)}, + {'Authorization': f'Bearer {token}'}) + # try: + # tokens = await read_file(file_content, f.filename, f.content_type) + # file_upload["tokens"] = tokens + # except: + # ... + files.append(file_upload) + except Exception as e: + logger.error(e) + return json.dumps(files) if files else "" + + +async def service_complex_model(db, chat_type, model_type, model_name, model_provider): + if chat_type == 1 and model_type == 1: + return await set_dialog_model(db, complex_knowledge_chat, model_name,model_provider) + elif chat_type == 1 and model_type == 2: + return await set_dialog_model(db, complex_knowledge_chat_deep, model_name, model_provider) + else: + if model_type == 1: + chats = [complex_dialog_chat, complex_network_chat, complex_mindmap_chat, complex_content_optimization_chat] + else: + chats = [complex_dialog_chat, complex_network_chat] + return await set_workflow_model(db,chats + , # , complex_network_chat, complex_mindmap_chat, complex_content_optimization_chat + model_type, model_name, model_provider) + + +async def set_dialog_model(db, chat_mode, model_name, model_provider): + chat = await ComplexChatDao(db).get_complex_chat_by_mode(chat_mode) + if chat: + access_token = await get_chat_token(db, rg_api_token) + url = settings.fwr_base_url + RG_CHAT_UPDATE_URL.format(chat.id) + chat_base = ChatBaseApply() + payload = { + "name": chat.name, + "llm": { + "model_name": model_name + } + } + response = await chat_base.chat_put(url, payload, await chat_base.get_headers(access_token)) + # print(response) + if not response: + return "鏈嶅姟寮傚父,淇敼澶辫触锛�" + await ComplexChatDao(db).update_complex_chat_by_id(chat.id, {"chat_model": model_name, "chat_model_ds": model_name, "chat_provider": model_provider, "update_date": datetime.datetime.now()}) + return "" + +async def set_workflow_model(db, chat_modes, model_type, model_name, model_provider): + chat_base = ChatBaseApply() + token = await get_workflow_token(db) + for chat_mode in chat_modes: + chat = await ComplexChatDao(db).get_complex_chat_by_mode(chat_mode) + if chat: + + get_draft_url = settings.dify_base_url + DF_WORKFLOW_DRAFT.format(chat.id) + draft_data = await chat_base.chat_get(get_draft_url, {}, await chat_base.get_headers(token)) + if draft_data: + graph = draft_data.get("graph") + for node in graph.get("nodes"): + if node.get("data", {}).get("type") == "llm": + if model_type == 1 and "娣卞害鎼滅储" not in node.get("data", {}).get("title"): + node["data"]["model"]["name"] = model_name + node["data"]["model"]["provider"] = model_provider + elif model_type == 2 and "娣卞害鎼滅储" in node.get("data", {}).get("title"): + node["data"]["model"]["name"] = model_name + node["data"]["model"]["provider"] = model_provider + + draft_data_query = {"conversation_variables": draft_data.get("conversation_variables"), + "environment_variables": draft_data.get("environment_variables"), + "hash": draft_data.get("hash"), + "features": draft_data.get("features"), + "graph": graph} + set_draft_data = await chat_base.chat_post(get_draft_url, draft_data_query, await chat_base.get_headers(token)) + if set_draft_data and set_draft_data.get("result") == "success": + publish_url = settings.dify_base_url + DF_WORKFLOW_PUBLISH.format(chat.id) + publish_data = await chat_base.chat_post(publish_url, {}, await chat_base.get_headers(token)) + if publish_data and publish_data.get("result") == "success": + update_kwargs = {"chat_provider": model_provider, "update_date": datetime.datetime.now()} + if model_type == 1: + update_kwargs["chat_model"] = model_name + else: + update_kwargs["chat_model_ds"] = model_name + await ComplexChatDao(db).update_complex_chat_by_id(chat.id, update_kwargs) + + +async def service_get_complex_model(db): + res = {} + for complexs in await ComplexChatDao(db).aget_complex_chat(): + if complexs.chat_mode == complex_knowledge_chat: + res["dialog"] = {"modelName": complexs.chat_model, "modelProvider": complexs.chat_provider} + elif complexs.chat_mode == complex_knowledge_chat_deep: + res["dialog_ds"] = {"modelName": complexs.chat_model_ds, "modelProvider": complexs.chat_provider} + else: + res["workflow"] = {"modelName": complexs.chat_model, "modelProvider": complexs.chat_provider} + res["workflow_ds"] = {"modelName": complexs.chat_model_ds, "modelProvider": complexs.chat_provider} + + return json.dumps(res) + +if __name__ == "__main__": + q = json.dumps({"query": "璁惧", "dataset_ids": ["fc68db52f43111efb94a0242ac120004"]}) + top_k = 2 + similarity_threshold = 0.5 + api_key = "ragflow-Y4MGYwY2JlZjM2YjExZWY4ZWU5MDI0Mm" + + + # a = service_chunk_retrieval(q, top_k, similarity_threshold, api_key) + # print(a) + async def a(): + b = await service_chunk_retrieval(q, top_k, similarity_threshold, api_key) + print(b) + + + asyncio.run(a()) -- Gitblit v1.8.0