From 7e6f863a5928b8481975e9fdf6460dde2c0b14bf Mon Sep 17 00:00:00 2001
From: zhangmeng <775834166@qq.com>
Date: 星期六, 19 十月 2019 14:29:39 +0800
Subject: [PATCH] remove files

---
 /dev/null |   54 ---------------------------
 goconv.go |    7 ---
 2 files changed, 0 insertions(+), 61 deletions(-)

diff --git a/csrc/gpu-conv/CUDALERP.cu b/csrc/gpu-conv/CUDALERP.cu
deleted file mode 100644
index ee44fee..0000000
--- a/csrc/gpu-conv/CUDALERP.cu
+++ /dev/null
@@ -1,95 +0,0 @@
-/*******************************************************************
-*   CUDALERP.cu
-*   CUDALERP
-*
-*	Author: Kareem Omar
-*	kareem.omar@uah.edu
-*	https://github.com/komrad36
-*
-*	Last updated Jan 7, 2016
-*******************************************************************/
-//
-// The file CUDALERP.h exposes two extremely high performance GPU
-// resize operations,
-// CUDALERP (bilinear interpolation), and 
-// CUDANERP (nearest neighbor interpolation), for 8-bit unsigned
-// integer (i.e. grayscale) data.
-//
-// For 32-bit float data, see the CUDAFLERP project instead.
-//
-// CUDALERP offers superior accuracy to CUDA's built-in texture
-// interpolator at comparable performance. The accuracy if compiled
-// with -use-fast-math off is nearly equivalent to my CPU interpolator,
-// KLERP, while still being as fast as the built-in interpolation.
-// 
-// Particularly for large images, CUDALERP dramatically outperforms
-// even the highly tuned CPU AVX2 versions.
-// 
-// All functionality is contained in the header 'CUDALERP.h' and
-// the source file 'CUDALERP.cu' and has no external dependencies at all.
-// 
-// Note that these are intended for computer vision use(hence the speed)
-// and are designed for grayscale images.
-// 
-// The file 'main.cpp' is an example and speed test driver.
-//
-
-#include "CUDALERP.h"
-
-__global__ void
-#ifndef __INTELLISENSE__
-__launch_bounds__(256, 0)
-#endif
-CUDANERP_kernel(const cudaTextureObject_t d_img_tex, const float gxs, const float gys, uint8_t* __restrict const d_out, const int neww) {
-	uint32_t x = (blockIdx.x << 9) + (threadIdx.x << 1);
-	const uint32_t y = blockIdx.y;
-	const float fy = y*gys;
-#pragma unroll
-	for (int i = 0; i < 2; ++i, ++x) {
-		const float fx = x*gxs;
-		float res = 255.0f*tex2D<float>(d_img_tex, fx, fy);
-		if (x < neww) d_out[y*neww + x] = res;
-	}
-}
-
-__global__ void
-#ifndef __INTELLISENSE__
-__launch_bounds__(256, 0)
-#endif
-CUDALERP_kernel(const cudaTextureObject_t d_img_tex, const float gxs, const float gys, uint8_t* __restrict const d_out, const int neww) {
-	uint32_t x = (blockIdx.x << 9) + (threadIdx.x << 1);
-	const uint32_t y = blockIdx.y;
-	const float fy = (y + 0.5f)*gys - 0.5f;
-	const float wt_y = fy - floor(fy);
-	const float invwt_y = 1.0f - wt_y;
-#pragma unroll
-	for (int i = 0; i < 2; ++i, ++x) {
-		const float fx = (x + 0.5f)*gxs - 0.5f;
-		// less accurate and not really much (or any) faster
-		// -----------------
-		// const float res = tex2D<float>(d_img_tex, fx, fy);
-		// -----------------
-		const float4 f = tex2Dgather<float4>(d_img_tex, fx + 0.5f, fy + 0.5f);
-		const float wt_x = fx - floor(fx);
-		const float invwt_x = 1.0f - wt_x;
-		const float xa = invwt_x*f.w + wt_x*f.z;
-		const float xb = invwt_x*f.x + wt_x*f.y;
-		const float res = 255.0f*(invwt_y*xa + wt_y*xb) + 0.5f;
-		// -----------------
-		if (x < neww) d_out[y*neww + x] = res;
-	}
-}
-
-void CUDANERP(const cudaTextureObject_t d_img_tex, const int oldw, const int oldh, uint8_t* __restrict const d_out, const uint32_t neww, const uint32_t newh) {
-	const float gxs = static_cast<float>(oldw) / static_cast<float>(neww);
-	const float gys = static_cast<float>(oldh) / static_cast<float>(newh);
-	CUDANERP_kernel<<<{((neww - 1) >> 9) + 1, newh}, 256>>>(d_img_tex, gxs, gys, d_out, neww);
-	cudaDeviceSynchronize();
-}
-
-void CUDALERP(const cudaTextureObject_t d_img_tex, const int oldw, const int oldh, uint8_t* __restrict const d_out, const uint32_t neww, const uint32_t newh) {
-	const float gxs = static_cast<float>(oldw) / static_cast<float>(neww);
-	const float gys = static_cast<float>(oldh) / static_cast<float>(newh);
-	CUDALERP_kernel<<<{((neww - 1) >> 9) + 1, newh}, 256>>>(d_img_tex, gxs, gys, d_out, neww);
-	cudaDeviceSynchronize();
-}
diff --git a/csrc/gpu-conv/CUDALERP.h b/csrc/gpu-conv/CUDALERP.h
deleted file mode 100644
index 1645cb9..0000000
--- a/csrc/gpu-conv/CUDALERP.h
+++ /dev/null
@@ -1,54 +0,0 @@
-/*******************************************************************
-*   CUDALERP.h
-*   CUDALERP
-*
-*	Author: Kareem Omar
-*	kareem.omar@uah.edu
-*	https://github.com/komrad36
-*
-*	Last updated Jan 7, 2016
-*******************************************************************/
-//
-// The file CUDALERP.h exposes two extremely high performance GPU
-// resize operations,
-// CUDALERP (bilinear interpolation), and 
-// CUDANERP (nearest neighbor interpolation), for 8-bit unsigned
-// integer (i.e. grayscale) data.
-//
-// For 32-bit float data, see the CUDAFLERP project instead.
-//
-// CUDALERP offers superior accuracy to CUDA's built-in texture
-// interpolator at comparable performance. The accuracy if compiled
-// with -use-fast-math off is nearly equivalent to my CPU interpolator,
-// KLERP, while still being as fast as the built-in interpolation.
-// 
-// Particularly for large images, CUDALERP dramatically outperforms
-// even the highly tuned CPU AVX2 versions.
-// 
-// All functionality is contained in the header 'CUDALERP.h' and
-// the source file 'CUDALERP.cu' and has no external dependencies at all.
-// 
-// Note that these are intended for computer vision use(hence the speed)
-// and are designed for grayscale images.
-// 
-// The file 'main.cpp' is an example and speed test driver.
-//
-
-#pragma once
-
-#include "cuda_runtime.h"
-
-#include <cstdint>
-
-#ifdef __INTELLISENSE__
-#include <algorithm>
-#define asm(x)
-#include "device_launch_parameters.h"
-#define __CUDACC__
-#include "device_functions.h"
-#undef __CUDACC__
-#endif
-
-void CUDALERP(const cudaTextureObject_t d_img_tex, const int oldw, const int oldh, uint8_t* __restrict const d_out, const uint32_t neww, const uint32_t newh);
-
-void CUDANERP(const cudaTextureObject_t d_img_tex, const int oldw, const int oldh, uint8_t* __restrict const d_out, const uint32_t neww, const uint32_t newh);
diff --git a/goconv.go b/goconv.go
index b81ec36..55869ba 100644
--- a/goconv.go
+++ b/goconv.go
@@ -121,10 +121,3 @@
 }
 
 /////////////// for conv
-
-// ConvGPU conv gpu resize
-func ConvGPU(in []byte, w, h, dstW, dstH int) []byte {
-
-	return nil
-
-}

--
Gitblit v1.8.0