From 0126e953b3f293b111179e4777103c64f778870c Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 17 六月 2021 09:57:28 +0800
Subject: [PATCH] bug

---
 lib/detecter_tools/darknet/detector.c | 4012 ++++++++++++++++++++++++++++++-----------------------------
 1 files changed, 2,042 insertions(+), 1,970 deletions(-)

diff --git a/lib/detecter_tools/darknet/detector.c b/lib/detecter_tools/darknet/detector.c
index 4977e9d..a2fdf0b 100644
--- a/lib/detecter_tools/darknet/detector.c
+++ b/lib/detecter_tools/darknet/detector.c
@@ -1,1970 +1,2042 @@
-#include <stdlib.h>
-#include "darknet.h"
-#include "network.h"
-#include "region_layer.h"
-#include "cost_layer.h"
-#include "utils.h"
-#include "parser.h"
-#include "box.h"
-#include "demo.h"
-#include "option_list.h"
-
-#ifndef __COMPAR_FN_T
-#define __COMPAR_FN_T
-typedef int (*__compar_fn_t)(const void*, const void*);
-#ifdef __USE_GNU
-typedef __compar_fn_t comparison_fn_t;
-#endif
-#endif
-
-#include "http_stream.h"
-
-int check_mistakes = 0;
-
-static int coco_ids[] = { 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90 };
-
-void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port, int show_imgs, int benchmark_layers, char* chart_path)
-{
-    list *options = read_data_cfg(datacfg);
-    char *train_images = option_find_str(options, "train", "data/train.txt");
-    char *valid_images = option_find_str(options, "valid", train_images);
-    char *backup_directory = option_find_str(options, "backup", "/backup/");
-
-    network net_map;
-    if (calc_map) {
-        FILE* valid_file = fopen(valid_images, "r");
-        if (!valid_file) {
-            printf("\n Error: There is no %s file for mAP calculation!\n Don't use -map flag.\n Or set valid=%s in your %s file. \n", valid_images, train_images, datacfg);
-            getchar();
-            exit(-1);
-        }
-        else fclose(valid_file);
-
-        cuda_set_device(gpus[0]);
-        printf(" Prepare additional network for mAP calculation...\n");
-        net_map = parse_network_cfg_custom(cfgfile, 1, 1);
-        net_map.benchmark_layers = benchmark_layers;
-        const int net_classes = net_map.layers[net_map.n - 1].classes;
-
-        int k;  // free memory unnecessary arrays
-        for (k = 0; k < net_map.n - 1; ++k) free_layer_custom(net_map.layers[k], 1);
-
-        char *name_list = option_find_str(options, "names", "data/names.list");
-        int names_size = 0;
-        char **names = get_labels_custom(name_list, &names_size);
-        if (net_classes != names_size) {
-            printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
-                name_list, names_size, net_classes, cfgfile);
-            if (net_classes > names_size) getchar();
-        }
-        free_ptrs((void**)names, net_map.layers[net_map.n - 1].classes);
-    }
-
-    srand(time(0));
-    char *base = basecfg(cfgfile);
-    printf("%s\n", base);
-    float avg_loss = -1;
-    network* nets = (network*)xcalloc(ngpus, sizeof(network));
-
-    srand(time(0));
-    int seed = rand();
-    int k;
-    for (k = 0; k < ngpus; ++k) {
-        srand(seed);
-#ifdef GPU
-        cuda_set_device(gpus[k]);
-#endif
-        nets[k] = parse_network_cfg(cfgfile);
-        nets[k].benchmark_layers = benchmark_layers;
-        if (weightfile) {
-            load_weights(&nets[k], weightfile);
-        }
-        if (clear) {
-            *nets[k].seen = 0;
-            *nets[k].cur_iteration = 0;
-        }
-        nets[k].learning_rate *= ngpus;
-    }
-    srand(time(0));
-    network net = nets[0];
-
-    const int actual_batch_size = net.batch * net.subdivisions;
-    if (actual_batch_size == 1) {
-        printf("\n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 \n");
-        getchar();
-    }
-    else if (actual_batch_size < 8) {
-        printf("\n Warning: You set batch=%d lower than 64! It is recommended to set batch=64 subdivision=64 \n", actual_batch_size);
-    }
-
-    int imgs = net.batch * net.subdivisions * ngpus;
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    data train, buffer;
-
-    layer l = net.layers[net.n - 1];
-
-    int classes = l.classes;
-
-    list *plist = get_paths(train_images);
-    int train_images_num = plist->size;
-    char **paths = (char **)list_to_array(plist);
-
-    const int init_w = net.w;
-    const int init_h = net.h;
-    const int init_b = net.batch;
-    int iter_save, iter_save_last, iter_map;
-    iter_save = get_current_iteration(net);
-    iter_save_last = get_current_iteration(net);
-    iter_map = get_current_iteration(net);
-    float mean_average_precision = -1;
-    float best_map = mean_average_precision;
-
-    load_args args = { 0 };
-    args.w = net.w;
-    args.h = net.h;
-    args.c = net.c;
-    args.paths = paths;
-    args.n = imgs;
-    args.m = plist->size;
-    args.classes = classes;
-    args.flip = net.flip;
-    args.jitter = l.jitter;
-    args.resize = l.resize;
-    args.num_boxes = l.max_boxes;
-    net.num_boxes = args.num_boxes;
-    net.train_images_num = train_images_num;
-    args.d = &buffer;
-    args.type = DETECTION_DATA;
-    args.threads = 64;    // 16 or 64
-
-    args.angle = net.angle;
-    args.gaussian_noise = net.gaussian_noise;
-    args.blur = net.blur;
-    args.mixup = net.mixup;
-    args.exposure = net.exposure;
-    args.saturation = net.saturation;
-    args.hue = net.hue;
-    args.letter_box = net.letter_box;
-    if (dont_show && show_imgs) show_imgs = 2;
-    args.show_imgs = show_imgs;
-
-#ifdef OPENCV
-    //int num_threads = get_num_threads();
-    //if(num_threads > 2) args.threads = get_num_threads() - 2;
-    args.threads = 6 * ngpus;   // 3 for - Amazon EC2 Tesla V100: p3.2xlarge (8 logical cores) - p3.16xlarge
-    //args.threads = 12 * ngpus;    // Ryzen 7 2700X (16 logical cores)
-    mat_cv* img = NULL;
-    float max_img_loss = 5;
-    int number_of_lines = 100;
-    int img_size = 1000;
-    char windows_name[100];
-    sprintf(windows_name, "chart_%s.png", base);
-    img = draw_train_chart(windows_name, max_img_loss, net.max_batches, number_of_lines, img_size, dont_show, chart_path);
-#endif    //OPENCV
-    if (net.track) {
-        args.track = net.track;
-        args.augment_speed = net.augment_speed;
-        if (net.sequential_subdivisions) args.threads = net.sequential_subdivisions * ngpus;
-        else args.threads = net.subdivisions * ngpus;
-        args.mini_batch = net.batch / net.time_steps;
-        printf("\n Tracking! batch = %d, subdiv = %d, time_steps = %d, mini_batch = %d \n", net.batch, net.subdivisions, net.time_steps, args.mini_batch);
-    }
-    //printf(" imgs = %d \n", imgs);
-
-    pthread_t load_thread = load_data(args);
-
-    int count = 0;
-    double time_remaining, avg_time = -1, alpha_time = 0.01;
-
-    //while(i*imgs < N*120){
-    while (get_current_iteration(net) < net.max_batches) {
-        if (l.random && count++ % 10 == 0) {
-            float rand_coef = 1.4;
-            if (l.random != 1.0) rand_coef = l.random;
-            printf("Resizing, random_coef = %.2f \n", rand_coef);
-            float random_val = rand_scale(rand_coef);    // *x or /x
-            int dim_w = roundl(random_val*init_w / net.resize_step + 1) * net.resize_step;
-            int dim_h = roundl(random_val*init_h / net.resize_step + 1) * net.resize_step;
-            if (random_val < 1 && (dim_w > init_w || dim_h > init_h)) dim_w = init_w, dim_h = init_h;
-
-            int max_dim_w = roundl(rand_coef*init_w / net.resize_step + 1) * net.resize_step;
-            int max_dim_h = roundl(rand_coef*init_h / net.resize_step + 1) * net.resize_step;
-
-            // at the beginning (check if enough memory) and at the end (calc rolling mean/variance)
-            if (avg_loss < 0 || get_current_iteration(net) > net.max_batches - 100) {
-                dim_w = max_dim_w;
-                dim_h = max_dim_h;
-            }
-
-            if (dim_w < net.resize_step) dim_w = net.resize_step;
-            if (dim_h < net.resize_step) dim_h = net.resize_step;
-            int dim_b = (init_b * max_dim_w * max_dim_h) / (dim_w * dim_h);
-            int new_dim_b = (int)(dim_b * 0.8);
-            if (new_dim_b > init_b) dim_b = new_dim_b;
-
-            args.w = dim_w;
-            args.h = dim_h;
-
-            int k;
-            if (net.dynamic_minibatch) {
-                for (k = 0; k < ngpus; ++k) {
-                    (*nets[k].seen) = init_b * net.subdivisions * get_current_iteration(net); // remove this line, when you will save to weights-file both: seen & cur_iteration
-                    nets[k].batch = dim_b;
-                    int j;
-                    for (j = 0; j < nets[k].n; ++j)
-                        nets[k].layers[j].batch = dim_b;
-                }
-                net.batch = dim_b;
-                imgs = net.batch * net.subdivisions * ngpus;
-                args.n = imgs;
-                printf("\n %d x %d  (batch = %d) \n", dim_w, dim_h, net.batch);
-            }
-            else
-                printf("\n %d x %d \n", dim_w, dim_h);
-
-            pthread_join(load_thread, 0);
-            train = buffer;
-            free_data(train);
-            load_thread = load_data(args);
-
-            for (k = 0; k < ngpus; ++k) {
-                resize_network(nets + k, dim_w, dim_h);
-            }
-            net = nets[0];
-        }
-        double time = what_time_is_it_now();
-        pthread_join(load_thread, 0);
-        train = buffer;
-        if (net.track) {
-            net.sequential_subdivisions = get_current_seq_subdivisions(net);
-            args.threads = net.sequential_subdivisions * ngpus;
-            printf(" sequential_subdivisions = %d, sequence = %d \n", net.sequential_subdivisions, get_sequence_value(net));
-        }
-        load_thread = load_data(args);
-
-        /*
-        int k;
-        for(k = 0; k < l.max_boxes; ++k){
-        box b = float_to_box(train.y.vals[10] + 1 + k*5);
-        if(!b.x) break;
-        printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
-        }
-        image im = float_to_image(448, 448, 3, train.X.vals[10]);
-        int k;
-        for(k = 0; k < l.max_boxes; ++k){
-        box b = float_to_box(train.y.vals[10] + 1 + k*5);
-        printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
-        draw_bbox(im, b, 8, 1,0,0);
-        }
-        save_image(im, "truth11");
-        */
-
-        const double load_time = (what_time_is_it_now() - time);
-        printf("Loaded: %lf seconds", load_time);
-        if (load_time > 0.1 && avg_loss > 0) printf(" - performance bottleneck on CPU or Disk HDD/SSD");
-        printf("\n");
-
-        time = what_time_is_it_now();
-        float loss = 0;
-#ifdef GPU
-        if (ngpus == 1) {
-            int wait_key = (dont_show) ? 0 : 1;
-            loss = train_network_waitkey(net, train, wait_key);
-        }
-        else {
-            loss = train_networks(nets, ngpus, train, 4);
-        }
-#else
-        loss = train_network(net, train);
-#endif
-        if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss;    // if(-inf or nan)
-        avg_loss = avg_loss*.9 + loss*.1;
-
-        const int iteration = get_current_iteration(net);
-        //i = get_current_batch(net);
-
-        int calc_map_for_each = 4 * train_images_num / (net.batch * net.subdivisions);  // calculate mAP for each 4 Epochs
-        calc_map_for_each = fmax(calc_map_for_each, 100);
-        int next_map_calc = iter_map + calc_map_for_each;
-        next_map_calc = fmax(next_map_calc, net.burn_in);
-        //next_map_calc = fmax(next_map_calc, 400);
-        if (calc_map) {
-            printf("\n (next mAP calculation at %d iterations) ", next_map_calc);
-            if (mean_average_precision > 0) printf("\n Last accuracy mAP@0.5 = %2.2f %%, best = %2.2f %% ", mean_average_precision * 100, best_map * 100);
-        }
-
-        if (net.cudnn_half) {
-            if (iteration < net.burn_in * 3) fprintf(stderr, "\n Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in);
-            else fprintf(stderr, "\n Tensor Cores are used.\n");
-            fflush(stderr);
-        }
-        printf("\n %d: %f, %f avg loss, %f rate, %lf seconds, %d images, %f hours left\n", iteration, loss, avg_loss, get_current_rate(net), (what_time_is_it_now() - time), iteration*imgs, avg_time);
-        fflush(stdout);
-
-        int draw_precision = 0;
-        if (calc_map && (iteration >= next_map_calc || iteration == net.max_batches)) {
-            if (l.random) {
-                printf("Resizing to initial size: %d x %d ", init_w, init_h);
-                args.w = init_w;
-                args.h = init_h;
-                int k;
-                if (net.dynamic_minibatch) {
-                    for (k = 0; k < ngpus; ++k) {
-                        for (k = 0; k < ngpus; ++k) {
-                            nets[k].batch = init_b;
-                            int j;
-                            for (j = 0; j < nets[k].n; ++j)
-                                nets[k].layers[j].batch = init_b;
-                        }
-                    }
-                    net.batch = init_b;
-                    imgs = init_b * net.subdivisions * ngpus;
-                    args.n = imgs;
-                    printf("\n %d x %d  (batch = %d) \n", init_w, init_h, init_b);
-                }
-                pthread_join(load_thread, 0);
-                free_data(train);
-                train = buffer;
-                load_thread = load_data(args);
-                for (k = 0; k < ngpus; ++k) {
-                    resize_network(nets + k, init_w, init_h);
-                }
-                net = nets[0];
-            }
-
-            copy_weights_net(net, &net_map);
-
-            // combine Training and Validation networks
-            //network net_combined = combine_train_valid_networks(net, net_map);
-
-            iter_map = iteration;
-            mean_average_precision = validate_detector_map(datacfg, cfgfile, weightfile, 0.25, 0.5, 0, net.letter_box, &net_map);// &net_combined);
-            printf("\n mean_average_precision (mAP@0.5) = %f \n", mean_average_precision);
-            if (mean_average_precision > best_map) {
-                best_map = mean_average_precision;
-                printf("New best mAP!\n");
-                char buff[256];
-                sprintf(buff, "%s/%s_best.weights", backup_directory, base);
-                save_weights(net, buff);
-            }
-
-            draw_precision = 1;
-        }
-        time_remaining = ((net.max_batches - iteration) / ngpus)*(what_time_is_it_now() - time + load_time) / 60 / 60;
-        // set initial value, even if resume training from 10000 iteration
-        if (avg_time < 0) avg_time = time_remaining;
-        else avg_time = alpha_time * time_remaining + (1 -  alpha_time) * avg_time;
-#ifdef OPENCV
-        draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, net.max_batches, mean_average_precision, draw_precision, "mAP%", dont_show, mjpeg_port, avg_time);
-#endif    // OPENCV
-
-        //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) {
-        //if (i % 100 == 0) {
-        if (iteration >= (iter_save + 1000) || iteration % 1000 == 0) {
-            iter_save = iteration;
-#ifdef GPU
-            if (ngpus != 1) sync_nets(nets, ngpus, 0);
-#endif
-            char buff[256];
-            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, iteration);
-            save_weights(net, buff);
-        }
-
-        if (iteration >= (iter_save_last + 100) || (iteration % 100 == 0 && iteration > 1)) {
-            iter_save_last = iteration;
-#ifdef GPU
-            if (ngpus != 1) sync_nets(nets, ngpus, 0);
-#endif
-            char buff[256];
-            sprintf(buff, "%s/%s_last.weights", backup_directory, base);
-            save_weights(net, buff);
-        }
-        free_data(train);
-    }
-#ifdef GPU
-    if (ngpus != 1) sync_nets(nets, ngpus, 0);
-#endif
-    char buff[256];
-    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
-    save_weights(net, buff);
-
-#ifdef OPENCV
-    release_mat(&img);
-    destroy_all_windows_cv();
-#endif
-
-    // free memory
-    pthread_join(load_thread, 0);
-    free_data(buffer);
-
-    free_load_threads(&args);
-
-    free(base);
-    free(paths);
-    free_list_contents(plist);
-    free_list(plist);
-
-    free_list_contents_kvp(options);
-    free_list(options);
-
-    for (k = 0; k < ngpus; ++k) free_network(nets[k]);
-    free(nets);
-    //free_network(net);
-
-    if (calc_map) {
-        net_map.n = 0;
-        free_network(net_map);
-    }
-}
-
-
-static int get_coco_image_id(char *filename)
-{
-    char *p = strrchr(filename, '/');
-    char *c = strrchr(filename, '_');
-    if (c) p = c;
-    return atoi(p + 1);
-}
-
-static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h)
-{
-    int i, j;
-    //int image_id = get_coco_image_id(image_path);
-    char *p = basecfg(image_path);
-    int image_id = atoi(p);
-    for (i = 0; i < num_boxes; ++i) {
-        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
-        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
-        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
-        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
-
-        if (xmin < 0) xmin = 0;
-        if (ymin < 0) ymin = 0;
-        if (xmax > w) xmax = w;
-        if (ymax > h) ymax = h;
-
-        float bx = xmin;
-        float by = ymin;
-        float bw = xmax - xmin;
-        float bh = ymax - ymin;
-
-        for (j = 0; j < classes; ++j) {
-            if (dets[i].prob[j] > 0) {
-                char buff[1024];
-                sprintf(buff, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
-                fprintf(fp, buff);
-                //printf("%s", buff);
-            }
-        }
-    }
-}
-
-void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h)
-{
-    int i, j;
-    for (i = 0; i < total; ++i) {
-        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1;
-        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1;
-        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1;
-        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1;
-
-        if (xmin < 1) xmin = 1;
-        if (ymin < 1) ymin = 1;
-        if (xmax > w) xmax = w;
-        if (ymax > h) ymax = h;
-
-        for (j = 0; j < classes; ++j) {
-            if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
-                xmin, ymin, xmax, ymax);
-        }
-    }
-}
-
-void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h)
-{
-    int i, j;
-    for (i = 0; i < total; ++i) {
-        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
-        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
-        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
-        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
-
-        if (xmin < 0) xmin = 0;
-        if (ymin < 0) ymin = 0;
-        if (xmax > w) xmax = w;
-        if (ymax > h) ymax = h;
-
-        for (j = 0; j < classes; ++j) {
-            int myclass = j;
-            if (dets[i].prob[myclass] > 0) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[myclass],
-                xmin, ymin, xmax, ymax);
-        }
-    }
-}
-
-static void print_kitti_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h, char *outfile, char *prefix)
-{
-    char *kitti_ids[] = { "car", "pedestrian", "cyclist" };
-    FILE *fpd = 0;
-    char buffd[1024];
-    snprintf(buffd, 1024, "%s/%s/data/%s.txt", prefix, outfile, id);
-
-    fpd = fopen(buffd, "w");
-    int i, j;
-    for (i = 0; i < total; ++i)
-    {
-        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
-        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
-        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
-        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
-
-        if (xmin < 0) xmin = 0;
-        if (ymin < 0) ymin = 0;
-        if (xmax > w) xmax = w;
-        if (ymax > h) ymax = h;
-
-        for (j = 0; j < classes; ++j)
-        {
-            //if (dets[i].prob[j]) fprintf(fpd, "%s 0 0 0 %f %f %f %f -1 -1 -1 -1 0 0 0 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]);
-            if (dets[i].prob[j]) fprintf(fpd, "%s -1 -1 -10 %f %f %f %f -1 -1 -1 -1000 -1000 -1000 -10 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]);
-        }
-    }
-    fclose(fpd);
-}
-
-static void eliminate_bdd(char *buf, char *a)
-{
-    int n = 0;
-    int i, k;
-    for (i = 0; buf[i] != '\0'; i++)
-    {
-        if (buf[i] == a[n])
-        {
-            k = i;
-            while (buf[i] == a[n])
-            {
-                if (a[++n] == '\0')
-                {
-                    for (k; buf[k + n] != '\0'; k++)
-                    {
-                        buf[k] = buf[k + n];
-                    }
-                    buf[k] = '\0';
-                    break;
-                }
-                i++;
-            }
-            n = 0; i--;
-        }
-    }
-}
-
-static void get_bdd_image_id(char *filename)
-{
-    char *p = strrchr(filename, '/');
-    eliminate_bdd(p, ".jpg");
-    eliminate_bdd(p, "/");
-    strcpy(filename, p);
-}
-
-static void print_bdd_detections(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h)
-{
-    char *bdd_ids[] = { "bike" , "bus" , "car" , "motor" ,"person", "rider", "traffic light", "traffic sign", "train", "truck" };
-    get_bdd_image_id(image_path);
-    int i, j;
-
-    for (i = 0; i < num_boxes; ++i)
-    {
-        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
-        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
-        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
-        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
-
-        if (xmin < 0) xmin = 0;
-        if (ymin < 0) ymin = 0;
-        if (xmax > w) xmax = w;
-        if (ymax > h) ymax = h;
-
-        float bx1 = xmin;
-        float by1 = ymin;
-        float bx2 = xmax;
-        float by2 = ymax;
-
-        for (j = 0; j < classes; ++j)
-        {
-            if (dets[i].prob[j])
-            {
-                fprintf(fp, "\t{\n\t\t\"name\":\"%s\",\n\t\t\"category\":\"%s\",\n\t\t\"bbox\":[%f, %f, %f, %f],\n\t\t\"score\":%f\n\t},\n", image_path, bdd_ids[j], bx1, by1, bx2, by2, dets[i].prob[j]);
-            }
-        }
-    }
-}
-
-void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile)
-{
-    int j;
-    list *options = read_data_cfg(datacfg);
-    char *valid_images = option_find_str(options, "valid", "data/train.list");
-    char *name_list = option_find_str(options, "names", "data/names.list");
-    char *prefix = option_find_str(options, "results", "results");
-    char **names = get_labels(name_list);
-    char *mapf = option_find_str(options, "map", 0);
-    int *map = 0;
-    if (mapf) map = read_map(mapf);
-
-    network net = parse_network_cfg_custom(cfgfile, 1, 1);    // set batch=1
-    if (weightfile) {
-        load_weights(&net, weightfile);
-    }
-    //set_batch_network(&net, 1);
-    fuse_conv_batchnorm(net);
-    calculate_binary_weights(net);
-    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    srand(time(0));
-
-    list *plist = get_paths(valid_images);
-    char **paths = (char **)list_to_array(plist);
-
-    layer l = net.layers[net.n - 1];
-    int classes = l.classes;
-
-    char buff[1024];
-    char *type = option_find_str(options, "eval", "voc");
-    FILE *fp = 0;
-    FILE **fps = 0;
-    int coco = 0;
-    int imagenet = 0;
-    int bdd = 0;
-    int kitti = 0;
-
-    if (0 == strcmp(type, "coco")) {
-        if (!outfile) outfile = "coco_results";
-        snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
-        fp = fopen(buff, "w");
-        fprintf(fp, "[\n");
-        coco = 1;
-    }
-    else if (0 == strcmp(type, "bdd")) {
-        if (!outfile) outfile = "bdd_results";
-        snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
-        fp = fopen(buff, "w");
-        fprintf(fp, "[\n");
-        bdd = 1;
-    }
-    else if (0 == strcmp(type, "kitti")) {
-        char buff2[1024];
-        if (!outfile) outfile = "kitti_results";
-        printf("%s\n", outfile);
-        snprintf(buff, 1024, "%s/%s", prefix, outfile);
-        int mkd = make_directory(buff, 0777);
-        snprintf(buff2, 1024, "%s/%s/data", prefix, outfile);
-        int mkd2 = make_directory(buff2, 0777);
-        kitti = 1;
-    }
-    else if (0 == strcmp(type, "imagenet")) {
-        if (!outfile) outfile = "imagenet-detection";
-        snprintf(buff, 1024, "%s/%s.txt", prefix, outfile);
-        fp = fopen(buff, "w");
-        imagenet = 1;
-        classes = 200;
-    }
-    else {
-        if (!outfile) outfile = "comp4_det_test_";
-        fps = (FILE**) xcalloc(classes, sizeof(FILE *));
-        for (j = 0; j < classes; ++j) {
-            snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]);
-            fps[j] = fopen(buff, "w");
-        }
-    }
-
-
-    int m = plist->size;
-    int i = 0;
-    int t;
-
-    float thresh = .001;
-    float nms = .45;
-
-    int nthreads = 4;
-    if (m < 4) nthreads = m;
-    image* val = (image*)xcalloc(nthreads, sizeof(image));
-    image* val_resized = (image*)xcalloc(nthreads, sizeof(image));
-    image* buf = (image*)xcalloc(nthreads, sizeof(image));
-    image* buf_resized = (image*)xcalloc(nthreads, sizeof(image));
-    pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t));
-
-    load_args args = { 0 };
-    args.w = net.w;
-    args.h = net.h;
-    args.c = net.c;
-    args.type = IMAGE_DATA;
-    const int letter_box = net.letter_box;
-    if (letter_box) args.type = LETTERBOX_DATA;
-
-    for (t = 0; t < nthreads; ++t) {
-        args.path = paths[i + t];
-        args.im = &buf[t];
-        args.resized = &buf_resized[t];
-        thr[t] = load_data_in_thread(args);
-    }
-    time_t start = time(0);
-    for (i = nthreads; i < m + nthreads; i += nthreads) {
-        fprintf(stderr, "%d\n", i);
-        for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
-            pthread_join(thr[t], 0);
-            val[t] = buf[t];
-            val_resized[t] = buf_resized[t];
-        }
-        for (t = 0; t < nthreads && i + t < m; ++t) {
-            args.path = paths[i + t];
-            args.im = &buf[t];
-            args.resized = &buf_resized[t];
-            thr[t] = load_data_in_thread(args);
-        }
-        for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
-            char *path = paths[i + t - nthreads];
-            char *id = basecfg(path);
-            float *X = val_resized[t].data;
-            network_predict(net, X);
-            int w = val[t].w;
-            int h = val[t].h;
-            int nboxes = 0;
-            detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letter_box);
-            if (nms) {
-                if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
-                else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
-            }
-
-            if (coco) {
-                print_cocos(fp, path, dets, nboxes, classes, w, h);
-            }
-            else if (imagenet) {
-                print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h);
-            }
-            else if (bdd) {
-                print_bdd_detections(fp, path, dets, nboxes, classes, w, h);
-            }
-            else if (kitti) {
-                print_kitti_detections(fps, id, dets, nboxes, classes, w, h, outfile, prefix);
-            }
-            else {
-                print_detector_detections(fps, id, dets, nboxes, classes, w, h);
-            }
-
-            free_detections(dets, nboxes);
-            free(id);
-            free_image(val[t]);
-            free_image(val_resized[t]);
-        }
-    }
-    if (fps) {
-        for (j = 0; j < classes; ++j) {
-            fclose(fps[j]);
-        }
-        free(fps);
-    }
-    if (coco) {
-#ifdef WIN32
-        fseek(fp, -3, SEEK_CUR);
-#else
-        fseek(fp, -2, SEEK_CUR);
-#endif
-        fprintf(fp, "\n]\n");
-    }
-
-    if (bdd) {
-#ifdef WIN32
-        fseek(fp, -3, SEEK_CUR);
-#else
-        fseek(fp, -2, SEEK_CUR);
-#endif
-        fprintf(fp, "\n]\n");
-        fclose(fp);
-    }
-
-    if (fp) fclose(fp);
-
-    if (val) free(val);
-    if (val_resized) free(val_resized);
-    if (thr) free(thr);
-    if (buf) free(buf);
-    if (buf_resized) free(buf_resized);
-
-    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)time(0) - start);
-}
-
-void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
-{
-    network net = parse_network_cfg_custom(cfgfile, 1, 1);    // set batch=1
-    if (weightfile) {
-        load_weights(&net, weightfile);
-    }
-    //set_batch_network(&net, 1);
-    fuse_conv_batchnorm(net);
-    srand(time(0));
-
-    //list *plist = get_paths("data/coco_val_5k.list");
-    list *options = read_data_cfg(datacfg);
-    char *valid_images = option_find_str(options, "valid", "data/train.txt");
-    list *plist = get_paths(valid_images);
-    char **paths = (char **)list_to_array(plist);
-
-    //layer l = net.layers[net.n - 1];
-
-    int j, k;
-
-    int m = plist->size;
-    int i = 0;
-
-    float thresh = .001;
-    float iou_thresh = .5;
-    float nms = .4;
-
-    int total = 0;
-    int correct = 0;
-    int proposals = 0;
-    float avg_iou = 0;
-
-    for (i = 0; i < m; ++i) {
-        char *path = paths[i];
-        image orig = load_image(path, 0, 0, net.c);
-        image sized = resize_image(orig, net.w, net.h);
-        char *id = basecfg(path);
-        network_predict(net, sized.data);
-        int nboxes = 0;
-        int letterbox = 0;
-        detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox);
-        if (nms) do_nms_obj(dets, nboxes, 1, nms);
-
-        char labelpath[4096];
-        replace_image_to_label(path, labelpath);
-
-        int num_labels = 0;
-        box_label *truth = read_boxes(labelpath, &num_labels);
-        for (k = 0; k < nboxes; ++k) {
-            if (dets[k].objectness > thresh) {
-                ++proposals;
-            }
-        }
-        for (j = 0; j < num_labels; ++j) {
-            ++total;
-            box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
-            float best_iou = 0;
-            for (k = 0; k < nboxes; ++k) {
-                float iou = box_iou(dets[k].bbox, t);
-                if (dets[k].objectness > thresh && iou > best_iou) {
-                    best_iou = iou;
-                }
-            }
-            avg_iou += best_iou;
-            if (best_iou > iou_thresh) {
-                ++correct;
-            }
-        }
-        //fprintf(stderr, " %s - %s - ", paths[i], labelpath);
-        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total);
-        free(id);
-        free_image(orig);
-        free_image(sized);
-    }
-}
-
-typedef struct {
-    box b;
-    float p;
-    int class_id;
-    int image_index;
-    int truth_flag;
-    int unique_truth_index;
-} box_prob;
-
-int detections_comparator(const void *pa, const void *pb)
-{
-    box_prob a = *(const box_prob *)pa;
-    box_prob b = *(const box_prob *)pb;
-    float diff = a.p - b.p;
-    if (diff < 0) return 1;
-    else if (diff > 0) return -1;
-    return 0;
-}
-
-float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, const int map_points, int letter_box, network *existing_net)
-{
-    int j;
-    list *options = read_data_cfg(datacfg);
-    char *valid_images = option_find_str(options, "valid", "data/train.txt");
-    char *difficult_valid_images = option_find_str(options, "difficult", NULL);
-    char *name_list = option_find_str(options, "names", "data/names.list");
-    int names_size = 0;
-    char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
-    //char *mapf = option_find_str(options, "map", 0);
-    //int *map = 0;
-    //if (mapf) map = read_map(mapf);
-    FILE* reinforcement_fd = NULL;
-
-    network net;
-    //int initial_batch;
-    if (existing_net) {
-        char *train_images = option_find_str(options, "train", "data/train.txt");
-        valid_images = option_find_str(options, "valid", train_images);
-        net = *existing_net;
-        remember_network_recurrent_state(*existing_net);
-        free_network_recurrent_state(*existing_net);
-    }
-    else {
-        net = parse_network_cfg_custom(cfgfile, 1, 1);    // set batch=1
-        if (weightfile) {
-            load_weights(&net, weightfile);
-        }
-        //set_batch_network(&net, 1);
-        fuse_conv_batchnorm(net);
-        calculate_binary_weights(net);
-    }
-    if (net.layers[net.n - 1].classes != names_size) {
-        printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
-            name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
-        getchar();
-    }
-    srand(time(0));
-    printf("\n calculation mAP (mean average precision)...\n");
-
-    list *plist = get_paths(valid_images);
-    char **paths = (char **)list_to_array(plist);
-
-    char **paths_dif = NULL;
-    if (difficult_valid_images) {
-        list *plist_dif = get_paths(difficult_valid_images);
-        paths_dif = (char **)list_to_array(plist_dif);
-    }
-
-
-    layer l = net.layers[net.n - 1];
-    int classes = l.classes;
-
-    int m = plist->size;
-    int i = 0;
-    int t;
-
-    const float thresh = .005;
-    const float nms = .45;
-    //const float iou_thresh = 0.5;
-
-    int nthreads = 4;
-    if (m < 4) nthreads = m;
-    image* val = (image*)xcalloc(nthreads, sizeof(image));
-    image* val_resized = (image*)xcalloc(nthreads, sizeof(image));
-    image* buf = (image*)xcalloc(nthreads, sizeof(image));
-    image* buf_resized = (image*)xcalloc(nthreads, sizeof(image));
-    pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t));
-
-    load_args args = { 0 };
-    args.w = net.w;
-    args.h = net.h;
-    args.c = net.c;
-    if (letter_box) args.type = LETTERBOX_DATA;
-    else args.type = IMAGE_DATA;
-
-    //const float thresh_calc_avg_iou = 0.24;
-    float avg_iou = 0;
-    int tp_for_thresh = 0;
-    int fp_for_thresh = 0;
-
-    box_prob* detections = (box_prob*)xcalloc(1, sizeof(box_prob));
-    int detections_count = 0;
-    int unique_truth_count = 0;
-
-    int* truth_classes_count = (int*)xcalloc(classes, sizeof(int));
-
-    // For multi-class precision and recall computation
-    float *avg_iou_per_class = (float*)xcalloc(classes, sizeof(float));
-    int *tp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int));
-    int *fp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int));
-
-    for (t = 0; t < nthreads; ++t) {
-        args.path = paths[i + t];
-        args.im = &buf[t];
-        args.resized = &buf_resized[t];
-        thr[t] = load_data_in_thread(args);
-    }
-    time_t start = time(0);
-    for (i = nthreads; i < m + nthreads; i += nthreads) {
-        fprintf(stderr, "\r%d", i);
-        for (t = 0; t < nthreads && (i + t - nthreads) < m; ++t) {
-            pthread_join(thr[t], 0);
-            val[t] = buf[t];
-            val_resized[t] = buf_resized[t];
-        }
-        for (t = 0; t < nthreads && (i + t) < m; ++t) {
-            args.path = paths[i + t];
-            args.im = &buf[t];
-            args.resized = &buf_resized[t];
-            thr[t] = load_data_in_thread(args);
-        }
-        for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
-            const int image_index = i + t - nthreads;
-            char *path = paths[image_index];
-            char *id = basecfg(path);
-            float *X = val_resized[t].data;
-            network_predict(net, X);
-
-            int nboxes = 0;
-            float hier_thresh = 0;
-            detection *dets;
-            if (args.type == LETTERBOX_DATA) {
-                dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box);
-            }
-            else {
-                dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letter_box);
-            }
-            //detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); // for letter_box=1
-            if (nms) {
-                if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
-                else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
-            }
-            //if (nms) do_nms_obj(dets, nboxes, l.classes, nms);
-
-            char labelpath[4096];
-            replace_image_to_label(path, labelpath);
-            int num_labels = 0;
-            box_label *truth = read_boxes(labelpath, &num_labels);
-            int j;
-            for (j = 0; j < num_labels; ++j) {
-                truth_classes_count[truth[j].id]++;
-            }
-
-            // difficult
-            box_label *truth_dif = NULL;
-            int num_labels_dif = 0;
-            if (paths_dif)
-            {
-                char *path_dif = paths_dif[image_index];
-
-                char labelpath_dif[4096];
-                replace_image_to_label(path_dif, labelpath_dif);
-
-                truth_dif = read_boxes(labelpath_dif, &num_labels_dif);
-            }
-
-            const int checkpoint_detections_count = detections_count;
-
-            int i;
-            for (i = 0; i < nboxes; ++i) {
-
-                int class_id;
-                for (class_id = 0; class_id < classes; ++class_id) {
-                    float prob = dets[i].prob[class_id];
-                    if (prob > 0) {
-                        detections_count++;
-                        detections = (box_prob*)xrealloc(detections, detections_count * sizeof(box_prob));
-                        detections[detections_count - 1].b = dets[i].bbox;
-                        detections[detections_count - 1].p = prob;
-                        detections[detections_count - 1].image_index = image_index;
-                        detections[detections_count - 1].class_id = class_id;
-                        detections[detections_count - 1].truth_flag = 0;
-                        detections[detections_count - 1].unique_truth_index = -1;
-
-                        int truth_index = -1;
-                        float max_iou = 0;
-                        for (j = 0; j < num_labels; ++j)
-                        {
-                            box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
-                            //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n",
-                            //    box_iou(dets[i].bbox, t), prob, class_id, truth[j].id);
-                            float current_iou = box_iou(dets[i].bbox, t);
-                            if (current_iou > iou_thresh && class_id == truth[j].id) {
-                                if (current_iou > max_iou) {
-                                    max_iou = current_iou;
-                                    truth_index = unique_truth_count + j;
-                                }
-                            }
-                        }
-
-                        // best IoU
-                        if (truth_index > -1) {
-                            detections[detections_count - 1].truth_flag = 1;
-                            detections[detections_count - 1].unique_truth_index = truth_index;
-                        }
-                        else {
-                            // if object is difficult then remove detection
-                            for (j = 0; j < num_labels_dif; ++j) {
-                                box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h };
-                                float current_iou = box_iou(dets[i].bbox, t);
-                                if (current_iou > iou_thresh && class_id == truth_dif[j].id) {
-                                    --detections_count;
-                                    break;
-                                }
-                            }
-                        }
-
-                        // calc avg IoU, true-positives, false-positives for required Threshold
-                        if (prob > thresh_calc_avg_iou) {
-                            int z, found = 0;
-                            for (z = checkpoint_detections_count; z < detections_count - 1; ++z) {
-                                if (detections[z].unique_truth_index == truth_index) {
-                                    found = 1; break;
-                                }
-                            }
-
-                            if (truth_index > -1 && found == 0) {
-                                avg_iou += max_iou;
-                                ++tp_for_thresh;
-                                avg_iou_per_class[class_id] += max_iou;
-                                tp_for_thresh_per_class[class_id]++;
-                            }
-                            else{
-                                fp_for_thresh++;
-                                fp_for_thresh_per_class[class_id]++;
-                            }
-                        }
-                    }
-                }
-            }
-
-            unique_truth_count += num_labels;
-
-            //static int previous_errors = 0;
-            //int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh);
-            //int errors_in_this_image = total_errors - previous_errors;
-            //previous_errors = total_errors;
-            //if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb");
-            //char buff[1000];
-            //sprintf(buff, "%s\n", path);
-            //if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd);
-
-            free_detections(dets, nboxes);
-            free(id);
-            free_image(val[t]);
-            free_image(val_resized[t]);
-        }
-    }
-
-    //for (t = 0; t < nthreads; ++t) {
-    //    pthread_join(thr[t], 0);
-    //}
-
-    if ((tp_for_thresh + fp_for_thresh) > 0)
-        avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh);
-
-    int class_id;
-    for(class_id = 0; class_id < classes; class_id++){
-        if ((tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]) > 0)
-            avg_iou_per_class[class_id] = avg_iou_per_class[class_id] / (tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]);
-    }
-
-    // SORT(detections)
-    qsort(detections, detections_count, sizeof(box_prob), detections_comparator);
-
-    typedef struct {
-        double precision;
-        double recall;
-        int tp, fp, fn;
-    } pr_t;
-
-    // for PR-curve
-    pr_t** pr = (pr_t**)xcalloc(classes, sizeof(pr_t*));
-    for (i = 0; i < classes; ++i) {
-        pr[i] = (pr_t*)xcalloc(detections_count, sizeof(pr_t));
-    }
-    printf("\n detections_count = %d, unique_truth_count = %d  \n", detections_count, unique_truth_count);
-
-
-    int* detection_per_class_count = (int*)xcalloc(classes, sizeof(int));
-    for (j = 0; j < detections_count; ++j) {
-        detection_per_class_count[detections[j].class_id]++;
-    }
-
-    int* truth_flags = (int*)xcalloc(unique_truth_count, sizeof(int));
-
-    int rank;
-    for (rank = 0; rank < detections_count; ++rank) {
-        if (rank % 100 == 0)
-            printf(" rank = %d of ranks = %d \r", rank, detections_count);
-
-        if (rank > 0) {
-            int class_id;
-            for (class_id = 0; class_id < classes; ++class_id) {
-                pr[class_id][rank].tp = pr[class_id][rank - 1].tp;
-                pr[class_id][rank].fp = pr[class_id][rank - 1].fp;
-            }
-        }
-
-        box_prob d = detections[rank];
-        // if (detected && isn't detected before)
-        if (d.truth_flag == 1) {
-            if (truth_flags[d.unique_truth_index] == 0)
-            {
-                truth_flags[d.unique_truth_index] = 1;
-                pr[d.class_id][rank].tp++;    // true-positive
-            } else
-                pr[d.class_id][rank].fp++;
-        }
-        else {
-            pr[d.class_id][rank].fp++;    // false-positive
-        }
-
-        for (i = 0; i < classes; ++i)
-        {
-            const int tp = pr[i][rank].tp;
-            const int fp = pr[i][rank].fp;
-            const int fn = truth_classes_count[i] - tp;    // false-negative = objects - true-positive
-            pr[i][rank].fn = fn;
-
-            if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp);
-            else pr[i][rank].precision = 0;
-
-            if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn);
-            else pr[i][rank].recall = 0;
-
-            if (rank == (detections_count - 1) && detection_per_class_count[i] != (tp + fp)) {    // check for last rank
-                    printf(" class_id: %d - detections = %d, tp+fp = %d, tp = %d, fp = %d \n", i, detection_per_class_count[i], tp+fp, tp, fp);
-            }
-        }
-    }
-
-    free(truth_flags);
-
-
-    double mean_average_precision = 0;
-
-    for (i = 0; i < classes; ++i) {
-        double avg_precision = 0;
-
-        // MS COCO - uses 101-Recall-points on PR-chart.
-        // PascalVOC2007 - uses 11-Recall-points on PR-chart.
-        // PascalVOC2010-2012 - uses Area-Under-Curve on PR-chart.
-        // ImageNet - uses Area-Under-Curve on PR-chart.
-
-        // correct mAP calculation: ImageNet, PascalVOC 2010-2012
-        if (map_points == 0)
-        {
-            double last_recall = pr[i][detections_count - 1].recall;
-            double last_precision = pr[i][detections_count - 1].precision;
-            for (rank = detections_count - 2; rank >= 0; --rank)
-            {
-                double delta_recall = last_recall - pr[i][rank].recall;
-                last_recall = pr[i][rank].recall;
-
-                if (pr[i][rank].precision > last_precision) {
-                    last_precision = pr[i][rank].precision;
-                }
-
-                avg_precision += delta_recall * last_precision;
-            }
-        }
-        // MSCOCO - 101 Recall-points, PascalVOC - 11 Recall-points
-        else
-        {
-            int point;
-            for (point = 0; point < map_points; ++point) {
-                double cur_recall = point * 1.0 / (map_points-1);
-                double cur_precision = 0;
-                for (rank = 0; rank < detections_count; ++rank)
-                {
-                    if (pr[i][rank].recall >= cur_recall) {    // > or >=
-                        if (pr[i][rank].precision > cur_precision) {
-                            cur_precision = pr[i][rank].precision;
-                        }
-                    }
-                }
-                //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision);
-
-                avg_precision += cur_precision;
-            }
-            avg_precision = avg_precision / map_points;
-        }
-
-        printf("class_id = %d, name = %s, ap = %2.2f%%   \t (TP = %d, FP = %d) \n",
-            i, names[i], avg_precision * 100, tp_for_thresh_per_class[i], fp_for_thresh_per_class[i]);
-
-        float class_precision = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)fp_for_thresh_per_class[i]);
-        float class_recall = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)(truth_classes_count[i] - tp_for_thresh_per_class[i]));
-        //printf("Precision = %1.2f, Recall = %1.2f, avg IOU = %2.2f%% \n\n", class_precision, class_recall, avg_iou_per_class[i]);
-
-        mean_average_precision += avg_precision;
-    }
-
-    const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh);
-    const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh));
-    const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall);
-    printf("\n for conf_thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n",
-        thresh_calc_avg_iou, cur_precision, cur_recall, f1_score);
-
-    printf(" for conf_thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n",
-        thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100);
-
-    mean_average_precision = mean_average_precision / classes;
-    printf("\n IoU threshold = %2.0f %%, ", iou_thresh * 100);
-    if (map_points) printf("used %d Recall-points \n", map_points);
-    else printf("used Area-Under-Curve for each unique Recall \n");
-
-    printf(" mean average precision (mAP@%0.2f) = %f, or %2.2f %% \n", iou_thresh, mean_average_precision, mean_average_precision * 100);
-
-    for (i = 0; i < classes; ++i) {
-        free(pr[i]);
-    }
-    free(pr);
-    free(detections);
-    free(truth_classes_count);
-    free(detection_per_class_count);
-
-    free(avg_iou_per_class);
-    free(tp_for_thresh_per_class);
-    free(fp_for_thresh_per_class);
-
-    fprintf(stderr, "Total Detection Time: %d Seconds\n", (int)(time(0) - start));
-    printf("\nSet -points flag:\n");
-    printf(" `-points 101` for MS COCO \n");
-    printf(" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n");
-    printf(" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n");
-    if (reinforcement_fd != NULL) fclose(reinforcement_fd);
-
-    // free memory
-    free_ptrs((void**)names, net.layers[net.n - 1].classes);
-    free_list_contents_kvp(options);
-    free_list(options);
-
-    if (existing_net) {
-        //set_batch_network(&net, initial_batch);
-        //free_network_recurrent_state(*existing_net);
-        restore_network_recurrent_state(*existing_net);
-        //randomize_network_recurrent_state(*existing_net);
-    }
-    else {
-        free_network(net);
-    }
-    if (val) free(val);
-    if (val_resized) free(val_resized);
-    if (thr) free(thr);
-    if (buf) free(buf);
-    if (buf_resized) free(buf_resized);
-
-    return mean_average_precision;
-}
-
-typedef struct {
-    float w, h;
-} anchors_t;
-
-int anchors_comparator(const void *pa, const void *pb)
-{
-    anchors_t a = *(const anchors_t *)pa;
-    anchors_t b = *(const anchors_t *)pb;
-    float diff = b.w*b.h - a.w*a.h;
-    if (diff < 0) return 1;
-    else if (diff > 0) return -1;
-    return 0;
-}
-
-int anchors_data_comparator(const float **pa, const float **pb)
-{
-    float *a = (float *)*pa;
-    float *b = (float *)*pb;
-    float diff = b[0] * b[1] - a[0] * a[1];
-    if (diff < 0) return 1;
-    else if (diff > 0) return -1;
-    return 0;
-}
-
-
-void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show)
-{
-    printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height);
-    if (width < 0 || height < 0) {
-        printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 \n");
-        printf("Error: set width and height \n");
-        return;
-    }
-
-    //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
-    float* rel_width_height_array = (float*)xcalloc(1000, sizeof(float));
-
-
-    list *options = read_data_cfg(datacfg);
-    char *train_images = option_find_str(options, "train", "data/train.list");
-    list *plist = get_paths(train_images);
-    int number_of_images = plist->size;
-    char **paths = (char **)list_to_array(plist);
-
-    int classes = option_find_int(options, "classes", 1);
-    int* counter_per_class = (int*)xcalloc(classes, sizeof(int));
-
-    srand(time(0));
-    int number_of_boxes = 0;
-    printf(" read labels from %d images \n", number_of_images);
-
-    int i, j;
-    for (i = 0; i < number_of_images; ++i) {
-        char *path = paths[i];
-        char labelpath[4096];
-        replace_image_to_label(path, labelpath);
-
-        int num_labels = 0;
-        box_label *truth = read_boxes(labelpath, &num_labels);
-        //printf(" new path: %s \n", labelpath);
-        char *buff = (char*)xcalloc(6144, sizeof(char));
-        for (j = 0; j < num_labels; ++j)
-        {
-            if (truth[j].x > 1 || truth[j].x <= 0 || truth[j].y > 1 || truth[j].y <= 0 ||
-                truth[j].w > 1 || truth[j].w <= 0 || truth[j].h > 1 || truth[j].h <= 0)
-            {
-                printf("\n\nWrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f \n",
-                    labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h);
-                sprintf(buff, "echo \"Wrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f\" >> bad_label.list",
-                    labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h);
-                system(buff);
-                if (check_mistakes) getchar();
-            }
-            if (truth[j].id >= classes) {
-                classes = truth[j].id + 1;
-                counter_per_class = (int*)xrealloc(counter_per_class, classes * sizeof(int));
-            }
-            counter_per_class[truth[j].id]++;
-
-            number_of_boxes++;
-            rel_width_height_array = (float*)xrealloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float));
-
-            rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width;
-            rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height;
-            printf("\r loaded \t image: %d \t box: %d", i + 1, number_of_boxes);
-        }
-        free(buff);
-    }
-    printf("\n all loaded. \n");
-    printf("\n calculating k-means++ ...");
-
-    matrix boxes_data;
-    model anchors_data;
-    boxes_data = make_matrix(number_of_boxes, 2);
-
-    printf("\n");
-    for (i = 0; i < number_of_boxes; ++i) {
-        boxes_data.vals[i][0] = rel_width_height_array[i * 2];
-        boxes_data.vals[i][1] = rel_width_height_array[i * 2 + 1];
-        //if (w > 410 || h > 410) printf("i:%d,  w = %f, h = %f \n", i, w, h);
-    }
-
-    // Is used: distance(box, centroid) = 1 - IoU(box, centroid)
-
-    // K-means
-    anchors_data = do_kmeans(boxes_data, num_of_clusters);
-
-    qsort((void*)anchors_data.centers.vals, num_of_clusters, 2 * sizeof(float), (__compar_fn_t)anchors_data_comparator);
-
-    //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66
-    //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 };
-
-    printf("\n");
-    float avg_iou = 0;
-    for (i = 0; i < number_of_boxes; ++i) {
-        float box_w = rel_width_height_array[i * 2]; //points->data.fl[i * 2];
-        float box_h = rel_width_height_array[i * 2 + 1]; //points->data.fl[i * 2 + 1];
-                                                         //int cluster_idx = labels->data.i[i];
-        int cluster_idx = 0;
-        float min_dist = FLT_MAX;
-        float best_iou = 0;
-        for (j = 0; j < num_of_clusters; ++j) {
-            float anchor_w = anchors_data.centers.vals[j][0];   // centers->data.fl[j * 2];
-            float anchor_h = anchors_data.centers.vals[j][1];   // centers->data.fl[j * 2 + 1];
-            float min_w = (box_w < anchor_w) ? box_w : anchor_w;
-            float min_h = (box_h < anchor_h) ? box_h : anchor_h;
-            float box_intersect = min_w*min_h;
-            float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect;
-            float iou = box_intersect / box_union;
-            float distance = 1 - iou;
-            if (distance < min_dist) {
-              min_dist = distance;
-              cluster_idx = j;
-              best_iou = iou;
-            }
-        }
-
-        float anchor_w = anchors_data.centers.vals[cluster_idx][0]; //centers->data.fl[cluster_idx * 2];
-        float anchor_h = anchors_data.centers.vals[cluster_idx][1]; //centers->data.fl[cluster_idx * 2 + 1];
-        if (best_iou > 1 || best_iou < 0) { // || box_w > width || box_h > height) {
-            printf(" Wrong label: i = %d, box_w = %f, box_h = %f, anchor_w = %f, anchor_h = %f, iou = %f \n",
-                i, box_w, box_h, anchor_w, anchor_h, best_iou);
-        }
-        else avg_iou += best_iou;
-    }
-
-    char buff[1024];
-    FILE* fwc = fopen("counters_per_class.txt", "wb");
-    if (fwc) {
-        sprintf(buff, "counters_per_class = ");
-        printf("\n%s", buff);
-        fwrite(buff, sizeof(char), strlen(buff), fwc);
-        for (i = 0; i < classes; ++i) {
-            sprintf(buff, "%d", counter_per_class[i]);
-            printf("%s", buff);
-            fwrite(buff, sizeof(char), strlen(buff), fwc);
-            if (i < classes - 1) {
-                fwrite(", ", sizeof(char), 2, fwc);
-                printf(", ");
-            }
-        }
-        printf("\n");
-        fclose(fwc);
-    }
-    else {
-        printf(" Error: file counters_per_class.txt can't be open \n");
-    }
-
-    avg_iou = 100 * avg_iou / number_of_boxes;
-    printf("\n avg IoU = %2.2f %% \n", avg_iou);
-
-
-    FILE* fw = fopen("anchors.txt", "wb");
-    if (fw) {
-        printf("\nSaving anchors to the file: anchors.txt \n");
-        printf("anchors = ");
-        for (i = 0; i < num_of_clusters; ++i) {
-            float anchor_w = anchors_data.centers.vals[i][0]; //centers->data.fl[i * 2];
-            float anchor_h = anchors_data.centers.vals[i][1]; //centers->data.fl[i * 2 + 1];
-            if (width > 32) sprintf(buff, "%3.0f,%3.0f", anchor_w, anchor_h);
-            else sprintf(buff, "%2.4f,%2.4f", anchor_w, anchor_h);
-            printf("%s", buff);
-            fwrite(buff, sizeof(char), strlen(buff), fw);
-            if (i + 1 < num_of_clusters) {
-                fwrite(", ", sizeof(char), 2, fw);
-                printf(", ");
-            }
-        }
-        printf("\n");
-        fclose(fw);
-    }
-    else {
-        printf(" Error: file anchors.txt can't be open \n");
-    }
-
-    if (show) {
-#ifdef OPENCV
-        show_acnhors(number_of_boxes, num_of_clusters, rel_width_height_array, anchors_data, width, height);
-#endif // OPENCV
-    }
-    free(rel_width_height_array);
-    free(counter_per_class);
-
-    getchar();
-}
-
-
-void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
-    float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers)
-{
-    list *options = read_data_cfg(datacfg);
-    char *name_list = option_find_str(options, "names", "data/names.list");
-    int names_size = 0;
-    char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
-
-    image **alphabet = load_alphabet();
-    network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
-    if (weightfile) {
-        load_weights(&net, weightfile);
-    }
-    net.benchmark_layers = benchmark_layers;
-    fuse_conv_batchnorm(net);
-    calculate_binary_weights(net);
-    if (net.layers[net.n - 1].classes != names_size) {
-        printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
-            name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
-        if (net.layers[net.n - 1].classes > names_size) getchar();
-    }
-    srand(2222222);
-    char buff[256];
-    char *input = buff;
-    char *json_buf = NULL;
-    int json_image_id = 0;
-    FILE* json_file = NULL;
-    if (outfile) {
-        json_file = fopen(outfile, "wb");
-        if(!json_file) {
-          error("fopen failed");
-        }
-        char *tmp = "[\n";
-        fwrite(tmp, sizeof(char), strlen(tmp), json_file);
-    }
-    int j;
-    float nms = .45;    // 0.4F
-    while (1) {
-        if (filename) {
-            strncpy(input, filename, 256);
-            if (strlen(input) > 0)
-                if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0;
-        }
-        else {
-            printf("Enter Image Path: ");
-            fflush(stdout);
-            input = fgets(input, 256, stdin);
-            if (!input) break;
-            strtok(input, "\n");
-        }
-        //image im;
-        //image sized = load_image_resize(input, net.w, net.h, net.c, &im);
-        image im = load_image(input, 0, 0, net.c);
-        image sized;
-        if(letter_box) sized = letterbox_image(im, net.w, net.h);
-        else sized = resize_image(im, net.w, net.h);
-        layer l = net.layers[net.n - 1];
-
-        //box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
-        //float **probs = calloc(l.w*l.h*l.n, sizeof(float*));
-        //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)xcalloc(l.classes, sizeof(float));
-
-        float *X = sized.data;
-
-        //time= what_time_is_it_now();
-        double time = get_time_point();
-        network_predict(net, X);
-        //network_predict_image(&net, im); letterbox = 1;
-        printf("%s: Predicted in %lf milli-seconds.\n", input, ((double)get_time_point() - time) / 1000);
-        //printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time));
-
-        int nboxes = 0;
-        detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter_box);
-        if (nms) {
-            if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
-            else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
-        }
-        draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output);
-        save_image(im, "predictions");
-        if (!dont_show) {
-            show_image(im, "predictions");
-        }
-
-        if (json_file) {
-            if (json_buf) {
-                char *tmp = ", \n";
-                fwrite(tmp, sizeof(char), strlen(tmp), json_file);
-            }
-            ++json_image_id;
-            json_buf = detection_to_json(dets, nboxes, l.classes, names, json_image_id, input);
-
-            fwrite(json_buf, sizeof(char), strlen(json_buf), json_file);
-            free(json_buf);
-        }
-
-        // pseudo labeling concept - fast.ai
-        if (save_labels)
-        {
-            char labelpath[4096];
-            replace_image_to_label(input, labelpath);
-
-            FILE* fw = fopen(labelpath, "wb");
-            int i;
-            for (i = 0; i < nboxes; ++i) {
-                char buff[1024];
-                int class_id = -1;
-                float prob = 0;
-                for (j = 0; j < l.classes; ++j) {
-                    if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) {
-                        prob = dets[i].prob[j];
-                        class_id = j;
-                    }
-                }
-                if (class_id >= 0) {
-                    sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h);
-                    fwrite(buff, sizeof(char), strlen(buff), fw);
-                }
-            }
-            fclose(fw);
-        }
-
-        free_detections(dets, nboxes);
-        free_image(im);
-        free_image(sized);
-
-        if (!dont_show) {
-            wait_until_press_key_cv();
-            destroy_all_windows_cv();
-        }
-
-        if (filename) break;
-    }
-
-    if (json_file) {
-        char *tmp = "\n]";
-        fwrite(tmp, sizeof(char), strlen(tmp), json_file);
-        fclose(json_file);
-    }
-
-    // free memory
-    free_ptrs((void**)names, net.layers[net.n - 1].classes);
-    free_list_contents_kvp(options);
-    free_list(options);
-
-    int i;
-    const int nsize = 8;
-    for (j = 0; j < nsize; ++j) {
-        for (i = 32; i < 127; ++i) {
-            free_image(alphabet[j][i]);
-        }
-        free(alphabet[j]);
-    }
-    free(alphabet);
-
-    free_network(net);
-}
-
-#if defined(OPENCV) && defined(GPU)
-
-// adversarial attack dnn
-void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num,
-    int letter_box, int benchmark_layers)
-{
-    list *options = read_data_cfg(datacfg);
-    char *name_list = option_find_str(options, "names", "data/names.list");
-    int names_size = 0;
-    char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
-
-    image **alphabet = load_alphabet();
-    network net = parse_network_cfg(cfgfile);// parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
-    net.adversarial = 1;
-    set_batch_network(&net, 1);
-    if (weightfile) {
-        load_weights(&net, weightfile);
-    }
-    net.benchmark_layers = benchmark_layers;
-    //fuse_conv_batchnorm(net);
-    //calculate_binary_weights(net);
-    if (net.layers[net.n - 1].classes != names_size) {
-        printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
-            name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
-        if (net.layers[net.n - 1].classes > names_size) getchar();
-    }
-
-    srand(2222222);
-    char buff[256];
-    char *input = buff;
-
-    int j;
-    float nms = .45;    // 0.4F
-    while (1) {
-        if (filename) {
-            strncpy(input, filename, 256);
-            if (strlen(input) > 0)
-                if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0;
-        }
-        else {
-            printf("Enter Image Path: ");
-            fflush(stdout);
-            input = fgets(input, 256, stdin);
-            if (!input) break;
-            strtok(input, "\n");
-        }
-        //image im;
-        //image sized = load_image_resize(input, net.w, net.h, net.c, &im);
-        image im = load_image(input, 0, 0, net.c);
-        image sized;
-        if (letter_box) sized = letterbox_image(im, net.w, net.h);
-        else sized = resize_image(im, net.w, net.h);
-
-        image src_sized = copy_image(sized);
-
-        layer l = net.layers[net.n - 1];
-        net.num_boxes = l.max_boxes;
-        int num_truth = l.truths;
-        float *truth_cpu = (float *)xcalloc(num_truth, sizeof(float));
-
-        int *it_num_set = (int *)xcalloc(1, sizeof(int));
-        float *lr_set = (float *)xcalloc(1, sizeof(float));
-        int *boxonly = (int *)xcalloc(1, sizeof(int));
-
-        cv_draw_object(sized, truth_cpu, net.num_boxes, num_truth, it_num_set, lr_set, boxonly, l.classes, names);
-
-        net.learning_rate = *lr_set;
-        it_num = *it_num_set;
-
-        float *X = sized.data;
-
-        mat_cv* img = NULL;
-        float max_img_loss = 5;
-        int number_of_lines = 100;
-        int img_size = 1000;
-        char windows_name[100];
-        char *base = basecfg(cfgfile);
-        sprintf(windows_name, "chart_%s.png", base);
-        img = draw_train_chart(windows_name, max_img_loss, it_num, number_of_lines, img_size, dont_show, NULL);
-
-        int iteration;
-        for (iteration = 0; iteration < it_num; ++iteration)
-        {
-            forward_backward_network_gpu(net, X, truth_cpu);
-
-            float avg_loss = get_network_cost(net);
-            draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, it_num, 0, 0, "mAP%", dont_show, 0, 0);
-
-            float inv_loss = 1.0 / max_val_cmp(0.01, avg_loss);
-            //net.learning_rate = *lr_set * inv_loss;
-
-            if (*boxonly) {
-                int dw = truth_cpu[2] * sized.w, dh = truth_cpu[3] * sized.h;
-                int dx = truth_cpu[0] * sized.w - dw / 2, dy = truth_cpu[1] * sized.h - dh / 2;
-                image crop = crop_image(sized, dx, dy, dw, dh);
-                copy_image_inplace(src_sized, sized);
-                embed_image(crop, sized, dx, dy);
-            }
-
-            show_image_cv(sized, "image_optimization");
-            wait_key_cv(20);
-        }
-
-        net.train = 0;
-        quantize_image(sized);
-        network_predict(net, X);
-
-        save_image_png(sized, "drawn");
-        //sized = load_image("drawn.png", 0, 0, net.c);
-
-        int nboxes = 0;
-        detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, 0, 0, 1, &nboxes, letter_box);
-        if (nms) {
-            if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
-            else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
-        }
-        draw_detections_v3(sized, dets, nboxes, thresh, names, alphabet, l.classes, 1);
-        save_image(sized, "pre_predictions");
-        if (!dont_show) {
-            show_image(sized, "pre_predictions");
-        }
-
-        free_detections(dets, nboxes);
-        free_image(im);
-        free_image(sized);
-        free_image(src_sized);
-
-        if (!dont_show) {
-            wait_until_press_key_cv();
-            destroy_all_windows_cv();
-        }
-
-        free(lr_set);
-        free(it_num_set);
-
-        if (filename) break;
-    }
-
-    // free memory
-    free_ptrs((void**)names, net.layers[net.n - 1].classes);
-    free_list_contents_kvp(options);
-    free_list(options);
-
-    int i;
-    const int nsize = 8;
-    for (j = 0; j < nsize; ++j) {
-        for (i = 32; i < 127; ++i) {
-            free_image(alphabet[j][i]);
-        }
-        free(alphabet[j]);
-    }
-    free(alphabet);
-
-    free_network(net);
-}
-#else // defined(OPENCV) && defined(GPU)
-void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num,
-    int letter_box, int benchmark_layers)
-{
-    printf(" ./darknet detector draw ... can't be used without OpenCV and CUDA! \n");
-    getchar();
-}
-#endif // defined(OPENCV) && defined(GPU)
-
-void run_detector(int argc, char **argv)
-{
-    int dont_show = find_arg(argc, argv, "-dont_show");
-    int benchmark = find_arg(argc, argv, "-benchmark");
-    int benchmark_layers = find_arg(argc, argv, "-benchmark_layers");
-    //if (benchmark_layers) benchmark = 1;
-    if (benchmark) dont_show = 1;
-    int show = find_arg(argc, argv, "-show");
-    int letter_box = find_arg(argc, argv, "-letter_box");
-    int calc_map = find_arg(argc, argv, "-map");
-    int map_points = find_int_arg(argc, argv, "-points", 0);
-    check_mistakes = find_arg(argc, argv, "-check_mistakes");
-    int show_imgs = find_arg(argc, argv, "-show_imgs");
-    int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1);
-    int dontdraw_bbox = find_arg(argc, argv, "-dontdraw_bbox");
-    int json_port = find_int_arg(argc, argv, "-json_port", -1);
-    char *http_post_host = find_char_arg(argc, argv, "-http_post_host", 0);
-    int time_limit_sec = find_int_arg(argc, argv, "-time_limit_sec", 0);
-    char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
-    char *outfile = find_char_arg(argc, argv, "-out", 0);
-    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
-    float thresh = find_float_arg(argc, argv, "-thresh", .25);    // 0.24
-    float iou_thresh = find_float_arg(argc, argv, "-iou_thresh", .5);    // 0.5 for mAP
-    float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
-    int cam_index = find_int_arg(argc, argv, "-c", 0);
-    int frame_skip = find_int_arg(argc, argv, "-s", 0);
-    int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
-    int width = find_int_arg(argc, argv, "-width", -1);
-    int height = find_int_arg(argc, argv, "-height", -1);
-    // extended output in test mode (output of rect bound coords)
-    // and for recall mode (extended output table-like format with results for best_class fit)
-    int ext_output = find_arg(argc, argv, "-ext_output");
-    int save_labels = find_arg(argc, argv, "-save_labels");
-    char* chart_path = find_char_arg(argc, argv, "-chart", 0);
-    if (argc < 4) {
-        fprintf(stderr, "usage: %s %s [train/test/valid/demo/map] [data] [cfg] [weights (optional)]\n", argv[0], argv[1]);
-        return;
-    }
-    char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
-    int *gpus = 0;
-    int gpu = 0;
-    int ngpus = 0;
-    if (gpu_list) {
-        printf("%s\n", gpu_list);
-        int len = (int)strlen(gpu_list);
-        ngpus = 1;
-        int i;
-        for (i = 0; i < len; ++i) {
-            if (gpu_list[i] == ',') ++ngpus;
-        }
-        gpus = (int*)xcalloc(ngpus, sizeof(int));
-        for (i = 0; i < ngpus; ++i) {
-            gpus[i] = atoi(gpu_list);
-            gpu_list = strchr(gpu_list, ',') + 1;
-        }
-    }
-    else {
-        gpu = gpu_index;
-        gpus = &gpu;
-        ngpus = 1;
-    }
-
-    int clear = find_arg(argc, argv, "-clear");
-
-    char *datacfg = argv[3];
-    char *cfg = argv[4];
-    char *weights = (argc > 5) ? argv[5] : 0;
-    if (weights)
-        if (strlen(weights) > 0)
-            if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0;
-    char *filename = (argc > 6) ? argv[6] : 0;
-    if (0 == strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels, outfile, letter_box, benchmark_layers);
-    else if (0 == strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show, calc_map, mjpeg_port, show_imgs, benchmark_layers, chart_path);
-    else if (0 == strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);
-    else if (0 == strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
-    else if (0 == strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh, iou_thresh, map_points, letter_box, NULL);
-    else if (0 == strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show);
-    else if (0 == strcmp(argv[2], "draw")) {
-        int it_num = 100;
-        draw_object(datacfg, cfg, weights, filename, thresh, dont_show, it_num, letter_box, benchmark_layers);
-    }
-    else if (0 == strcmp(argv[2], "demo")) {
-        list *options = read_data_cfg(datacfg);
-        int classes = option_find_int(options, "classes", 20);
-        char *name_list = option_find_str(options, "names", "data/names.list");
-        char **names = get_labels(name_list);
-        if (filename)
-            if (strlen(filename) > 0)
-                if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0;
-        demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename,
-            mjpeg_port, dontdraw_bbox, json_port, dont_show, ext_output, letter_box, time_limit_sec, http_post_host, benchmark, benchmark_layers);
-
-        free_list_contents_kvp(options);
-        free_list(options);
-    }
-    else printf(" There isn't such command: %s", argv[2]);
-
-    if (gpus && gpu_list && ngpus > 1) free(gpus);
-}
+#include <stdlib.h>
+#include "darknet.h"
+#include "network.h"
+#include "region_layer.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+#include "box.h"
+#include "demo.h"
+#include "option_list.h"
+
+#ifndef __COMPAR_FN_T
+#define __COMPAR_FN_T
+typedef int (*__compar_fn_t)(const void*, const void*);
+#ifdef __USE_GNU
+typedef __compar_fn_t comparison_fn_t;
+#endif
+#endif
+
+#include "http_stream.h"
+
+int check_mistakes = 0;
+
+static int coco_ids[] = { 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90 };
+
+void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port, int show_imgs, int benchmark_layers, char* chart_path)
+{
+    list *options = read_data_cfg(datacfg);
+    char *train_images = option_find_str(options, "train", "data/train.txt");
+    char *valid_images = option_find_str(options, "valid", train_images);
+    char *backup_directory = option_find_str(options, "backup", "/backup/");
+
+    network net_map;
+    if (calc_map) {
+        FILE* valid_file = fopen(valid_images, "r");
+        if (!valid_file) {
+            printf("\n Error: There is no %s file for mAP calculation!\n Don't use -map flag.\n Or set valid=%s in your %s file. \n", valid_images, train_images, datacfg);
+            getchar();
+            exit(-1);
+        }
+        else fclose(valid_file);
+
+        cuda_set_device(gpus[0]);
+        printf(" Prepare additional network for mAP calculation...\n");
+        net_map = parse_network_cfg_custom(cfgfile, 1, 1);
+        net_map.benchmark_layers = benchmark_layers;
+        const int net_classes = net_map.layers[net_map.n - 1].classes;
+
+        int k;  // free memory unnecessary arrays
+        for (k = 0; k < net_map.n - 1; ++k) free_layer_custom(net_map.layers[k], 1);
+
+        char *name_list = option_find_str(options, "names", "data/names.list");
+        int names_size = 0;
+        char **names = get_labels_custom(name_list, &names_size);
+        if (net_classes != names_size) {
+            printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
+                name_list, names_size, net_classes, cfgfile);
+            if (net_classes > names_size) getchar();
+        }
+        free_ptrs((void**)names, net_map.layers[net_map.n - 1].classes);
+    }
+
+    srand(time(0));
+    char *base = basecfg(cfgfile);
+    printf("%s\n", base);
+    float avg_loss = -1;
+    float avg_contrastive_acc = 0;
+    network* nets = (network*)xcalloc(ngpus, sizeof(network));
+
+    srand(time(0));
+    int seed = rand();
+    int k;
+    for (k = 0; k < ngpus; ++k) {
+        srand(seed);
+#ifdef GPU
+        cuda_set_device(gpus[k]);
+#endif
+        nets[k] = parse_network_cfg(cfgfile);
+        nets[k].benchmark_layers = benchmark_layers;
+        if (weightfile) {
+            load_weights(&nets[k], weightfile);
+        }
+        if (clear) {
+            *nets[k].seen = 0;
+            *nets[k].cur_iteration = 0;
+        }
+        nets[k].learning_rate *= ngpus;
+    }
+    srand(time(0));
+    network net = nets[0];
+
+    const int actual_batch_size = net.batch * net.subdivisions;
+    if (actual_batch_size == 1) {
+        printf("\n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 \n");
+        getchar();
+    }
+    else if (actual_batch_size < 8) {
+        printf("\n Warning: You set batch=%d lower than 64! It is recommended to set batch=64 subdivision=64 \n", actual_batch_size);
+    }
+
+    int imgs = net.batch * net.subdivisions * ngpus;
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    data train, buffer;
+
+    layer l = net.layers[net.n - 1];
+    for (k = 0; k < net.n; ++k) {
+        layer lk = net.layers[k];
+        if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) {
+            l = lk;
+            printf(" Detection layer: %d - type = %d \n", k, l.type);
+        }
+    }
+
+    int classes = l.classes;
+
+    list *plist = get_paths(train_images);
+    int train_images_num = plist->size;
+    char **paths = (char **)list_to_array(plist);
+
+    const int init_w = net.w;
+    const int init_h = net.h;
+    const int init_b = net.batch;
+    int iter_save, iter_save_last, iter_map;
+    iter_save = get_current_iteration(net);
+    iter_save_last = get_current_iteration(net);
+    iter_map = get_current_iteration(net);
+    float mean_average_precision = -1;
+    float best_map = mean_average_precision;
+
+    load_args args = { 0 };
+    args.w = net.w;
+    args.h = net.h;
+    args.c = net.c;
+    args.paths = paths;
+    args.n = imgs;
+    args.m = plist->size;
+    args.classes = classes;
+    args.flip = net.flip;
+    args.jitter = l.jitter;
+    args.resize = l.resize;
+    args.num_boxes = l.max_boxes;
+    args.truth_size = l.truth_size;
+    net.num_boxes = args.num_boxes;
+    net.train_images_num = train_images_num;
+    args.d = &buffer;
+    args.type = DETECTION_DATA;
+    args.threads = 64;    // 16 or 64
+
+    args.angle = net.angle;
+    args.gaussian_noise = net.gaussian_noise;
+    args.blur = net.blur;
+    args.mixup = net.mixup;
+    args.exposure = net.exposure;
+    args.saturation = net.saturation;
+    args.hue = net.hue;
+    args.letter_box = net.letter_box;
+    args.mosaic_bound = net.mosaic_bound;
+    args.contrastive = net.contrastive;
+    args.contrastive_jit_flip = net.contrastive_jit_flip;
+    args.contrastive_color = net.contrastive_color;
+    if (dont_show && show_imgs) show_imgs = 2;
+    args.show_imgs = show_imgs;
+
+#ifdef OPENCV
+    //int num_threads = get_num_threads();
+    //if(num_threads > 2) args.threads = get_num_threads() - 2;
+    args.threads = 6 * ngpus;   // 3 for - Amazon EC2 Tesla V100: p3.2xlarge (8 logical cores) - p3.16xlarge
+    //args.threads = 12 * ngpus;    // Ryzen 7 2700X (16 logical cores)
+    mat_cv* img = NULL;
+    float max_img_loss = net.max_chart_loss;
+    int number_of_lines = 100;
+    int img_size = 1000;
+    char windows_name[100];
+    sprintf(windows_name, "chart_%s.png", base);
+    img = draw_train_chart(windows_name, max_img_loss, net.max_batches, number_of_lines, img_size, dont_show, chart_path);
+#endif    //OPENCV
+    if (net.contrastive && args.threads > net.batch/2) args.threads = net.batch / 2;
+    if (net.track) {
+        args.track = net.track;
+        args.augment_speed = net.augment_speed;
+        if (net.sequential_subdivisions) args.threads = net.sequential_subdivisions * ngpus;
+        else args.threads = net.subdivisions * ngpus;
+        args.mini_batch = net.batch / net.time_steps;
+        printf("\n Tracking! batch = %d, subdiv = %d, time_steps = %d, mini_batch = %d \n", net.batch, net.subdivisions, net.time_steps, args.mini_batch);
+    }
+    //printf(" imgs = %d \n", imgs);
+
+    pthread_t load_thread = load_data(args);
+
+    int count = 0;
+    double time_remaining, avg_time = -1, alpha_time = 0.01;
+
+    //while(i*imgs < N*120){
+    while (get_current_iteration(net) < net.max_batches) {
+        if (l.random && count++ % 10 == 0) {
+            float rand_coef = 1.4;
+            if (l.random != 1.0) rand_coef = l.random;
+            printf("Resizing, random_coef = %.2f \n", rand_coef);
+            float random_val = rand_scale(rand_coef);    // *x or /x
+            int dim_w = roundl(random_val*init_w / net.resize_step + 1) * net.resize_step;
+            int dim_h = roundl(random_val*init_h / net.resize_step + 1) * net.resize_step;
+            if (random_val < 1 && (dim_w > init_w || dim_h > init_h)) dim_w = init_w, dim_h = init_h;
+
+            int max_dim_w = roundl(rand_coef*init_w / net.resize_step + 1) * net.resize_step;
+            int max_dim_h = roundl(rand_coef*init_h / net.resize_step + 1) * net.resize_step;
+
+            // at the beginning (check if enough memory) and at the end (calc rolling mean/variance)
+            if (avg_loss < 0 || get_current_iteration(net) > net.max_batches - 100) {
+                dim_w = max_dim_w;
+                dim_h = max_dim_h;
+            }
+
+            if (dim_w < net.resize_step) dim_w = net.resize_step;
+            if (dim_h < net.resize_step) dim_h = net.resize_step;
+            int dim_b = (init_b * max_dim_w * max_dim_h) / (dim_w * dim_h);
+            int new_dim_b = (int)(dim_b * 0.8);
+            if (new_dim_b > init_b) dim_b = new_dim_b;
+
+            args.w = dim_w;
+            args.h = dim_h;
+
+            int k;
+            if (net.dynamic_minibatch) {
+                for (k = 0; k < ngpus; ++k) {
+                    (*nets[k].seen) = init_b * net.subdivisions * get_current_iteration(net); // remove this line, when you will save to weights-file both: seen & cur_iteration
+                    nets[k].batch = dim_b;
+                    int j;
+                    for (j = 0; j < nets[k].n; ++j)
+                        nets[k].layers[j].batch = dim_b;
+                }
+                net.batch = dim_b;
+                imgs = net.batch * net.subdivisions * ngpus;
+                args.n = imgs;
+                printf("\n %d x %d  (batch = %d) \n", dim_w, dim_h, net.batch);
+            }
+            else
+                printf("\n %d x %d \n", dim_w, dim_h);
+
+            pthread_join(load_thread, 0);
+            train = buffer;
+            free_data(train);
+            load_thread = load_data(args);
+
+            for (k = 0; k < ngpus; ++k) {
+                resize_network(nets + k, dim_w, dim_h);
+            }
+            net = nets[0];
+        }
+        double time = what_time_is_it_now();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        if (net.track) {
+            net.sequential_subdivisions = get_current_seq_subdivisions(net);
+            args.threads = net.sequential_subdivisions * ngpus;
+            printf(" sequential_subdivisions = %d, sequence = %d \n", net.sequential_subdivisions, get_sequence_value(net));
+        }
+        load_thread = load_data(args);
+        //wait_key_cv(500);
+
+        /*
+        int k;
+        for(k = 0; k < l.max_boxes; ++k){
+        box b = float_to_box(train.y.vals[10] + 1 + k*5);
+        if(!b.x) break;
+        printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
+        }
+        image im = float_to_image(448, 448, 3, train.X.vals[10]);
+        int k;
+        for(k = 0; k < l.max_boxes; ++k){
+        box b = float_to_box(train.y.vals[10] + 1 + k*5);
+        printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
+        draw_bbox(im, b, 8, 1,0,0);
+        }
+        save_image(im, "truth11");
+        */
+
+        const double load_time = (what_time_is_it_now() - time);
+        printf("Loaded: %lf seconds", load_time);
+        if (load_time > 0.1 && avg_loss > 0) printf(" - performance bottleneck on CPU or Disk HDD/SSD");
+        printf("\n");
+
+        time = what_time_is_it_now();
+        float loss = 0;
+#ifdef GPU
+        if (ngpus == 1) {
+            int wait_key = (dont_show) ? 0 : 1;
+            loss = train_network_waitkey(net, train, wait_key);
+        }
+        else {
+            loss = train_networks(nets, ngpus, train, 4);
+        }
+#else
+        loss = train_network(net, train);
+#endif
+        if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss;    // if(-inf or nan)
+        avg_loss = avg_loss*.9 + loss*.1;
+
+        const int iteration = get_current_iteration(net);
+        //i = get_current_batch(net);
+
+        int calc_map_for_each = 4 * train_images_num / (net.batch * net.subdivisions);  // calculate mAP for each 4 Epochs
+        calc_map_for_each = fmax(calc_map_for_each, 100);
+        int next_map_calc = iter_map + calc_map_for_each;
+        next_map_calc = fmax(next_map_calc, net.burn_in);
+        //next_map_calc = fmax(next_map_calc, 400);
+        if (calc_map) {
+            printf("\n (next mAP calculation at %d iterations) ", next_map_calc);
+            if (mean_average_precision > 0) printf("\n Last accuracy mAP@0.5 = %2.2f %%, best = %2.2f %% ", mean_average_precision * 100, best_map * 100);
+        }
+
+        if (net.cudnn_half) {
+            if (iteration < net.burn_in * 3) fprintf(stderr, "\n Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in);
+            else fprintf(stderr, "\n Tensor Cores are used.\n");
+            fflush(stderr);
+        }
+        printf("\n %d: %f, %f avg loss, %f rate, %lf seconds, %d images, %f hours left\n", iteration, loss, avg_loss, get_current_rate(net), (what_time_is_it_now() - time), iteration*imgs, avg_time);
+        fflush(stdout);
+
+        int draw_precision = 0;
+        if (calc_map && (iteration >= next_map_calc || iteration == net.max_batches)) {
+            if (l.random) {
+                printf("Resizing to initial size: %d x %d ", init_w, init_h);
+                args.w = init_w;
+                args.h = init_h;
+                int k;
+                if (net.dynamic_minibatch) {
+                    for (k = 0; k < ngpus; ++k) {
+                        for (k = 0; k < ngpus; ++k) {
+                            nets[k].batch = init_b;
+                            int j;
+                            for (j = 0; j < nets[k].n; ++j)
+                                nets[k].layers[j].batch = init_b;
+                        }
+                    }
+                    net.batch = init_b;
+                    imgs = init_b * net.subdivisions * ngpus;
+                    args.n = imgs;
+                    printf("\n %d x %d  (batch = %d) \n", init_w, init_h, init_b);
+                }
+                pthread_join(load_thread, 0);
+                free_data(train);
+                train = buffer;
+                load_thread = load_data(args);
+                for (k = 0; k < ngpus; ++k) {
+                    resize_network(nets + k, init_w, init_h);
+                }
+                net = nets[0];
+            }
+
+            copy_weights_net(net, &net_map);
+
+            // combine Training and Validation networks
+            //network net_combined = combine_train_valid_networks(net, net_map);
+
+            iter_map = iteration;
+            mean_average_precision = validate_detector_map(datacfg, cfgfile, weightfile, 0.25, 0.5, 0, net.letter_box, &net_map);// &net_combined);
+            printf("\n mean_average_precision (mAP@0.5) = %f \n", mean_average_precision);
+            if (mean_average_precision > best_map) {
+                best_map = mean_average_precision;
+                printf("New best mAP!\n");
+                char buff[256];
+                sprintf(buff, "%s/%s_best.weights", backup_directory, base);
+                save_weights(net, buff);
+            }
+
+            draw_precision = 1;
+        }
+        time_remaining = ((net.max_batches - iteration) / ngpus)*(what_time_is_it_now() - time + load_time) / 60 / 60;
+        // set initial value, even if resume training from 10000 iteration
+        if (avg_time < 0) avg_time = time_remaining;
+        else avg_time = alpha_time * time_remaining + (1 -  alpha_time) * avg_time;
+#ifdef OPENCV
+        if (net.contrastive) {
+            float cur_con_acc = -1;
+            for (k = 0; k < net.n; ++k)
+                if (net.layers[k].type == CONTRASTIVE) cur_con_acc = *net.layers[k].loss;
+            if (cur_con_acc >= 0) avg_contrastive_acc = avg_contrastive_acc*0.99 + cur_con_acc * 0.01;
+            printf("  avg_contrastive_acc = %f \n", avg_contrastive_acc);
+        }
+        draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, net.max_batches, mean_average_precision, draw_precision, "mAP%", avg_contrastive_acc / 100, dont_show, mjpeg_port, avg_time);
+#endif    // OPENCV
+
+        //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) {
+        //if (i % 100 == 0) {
+        if ((iteration >= (iter_save + 10000) || iteration % 10000 == 0) ||
+            (iteration >= (iter_save + 1000) || iteration % 1000 == 0) && net.max_batches < 10000)
+        {
+            iter_save = iteration;
+#ifdef GPU
+            if (ngpus != 1) sync_nets(nets, ngpus, 0);
+#endif
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, iteration);
+            save_weights(net, buff);
+        }
+
+        if (iteration >= (iter_save_last + 100) || (iteration % 100 == 0 && iteration > 1)) {
+            iter_save_last = iteration;
+#ifdef GPU
+            if (ngpus != 1) sync_nets(nets, ngpus, 0);
+#endif
+            char buff[256];
+            sprintf(buff, "%s/%s_last.weights", backup_directory, base);
+            save_weights(net, buff);
+
+            if (net.ema_alpha && is_ema_initialized(net)) {
+                sprintf(buff, "%s/%s_ema.weights", backup_directory, base);
+                save_weights_upto(net, buff, net.n, 1);
+                printf(" EMA weights are saved to the file: %s \n", buff);
+            }
+        }
+        free_data(train);
+    }
+#ifdef GPU
+    if (ngpus != 1) sync_nets(nets, ngpus, 0);
+#endif
+    char buff[256];
+    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
+    save_weights(net, buff);
+    printf("If you want to train from the beginning, then use flag in the end of training command: -clear \n");
+
+#ifdef OPENCV
+    release_mat(&img);
+    destroy_all_windows_cv();
+#endif
+
+    // free memory
+    pthread_join(load_thread, 0);
+    free_data(buffer);
+
+    free_load_threads(&args);
+
+    free(base);
+    free(paths);
+    free_list_contents(plist);
+    free_list(plist);
+
+    free_list_contents_kvp(options);
+    free_list(options);
+
+    for (k = 0; k < ngpus; ++k) free_network(nets[k]);
+    free(nets);
+    //free_network(net);
+
+    if (calc_map) {
+        net_map.n = 0;
+        free_network(net_map);
+    }
+}
+
+
+static int get_coco_image_id(char *filename)
+{
+    char *p = strrchr(filename, '/');
+    char *c = strrchr(filename, '_');
+    if (c) p = c;
+    return atoi(p + 1);
+}
+
+static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h)
+{
+    int i, j;
+    //int image_id = get_coco_image_id(image_path);
+    char *p = basecfg(image_path);
+    int image_id = atoi(p);
+    for (i = 0; i < num_boxes; ++i) {
+        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
+        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
+        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
+        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        float bx = xmin;
+        float by = ymin;
+        float bw = xmax - xmin;
+        float bh = ymax - ymin;
+
+        for (j = 0; j < classes; ++j) {
+            if (dets[i].prob[j] > 0) {
+                char buff[1024];
+                sprintf(buff, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
+                fprintf(fp, buff);
+                //printf("%s", buff);
+            }
+        }
+    }
+}
+
+void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h)
+{
+    int i, j;
+    for (i = 0; i < total; ++i) {
+        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1;
+        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1;
+        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1;
+        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1;
+
+        if (xmin < 1) xmin = 1;
+        if (ymin < 1) ymin = 1;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        for (j = 0; j < classes; ++j) {
+            if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
+                xmin, ymin, xmax, ymax);
+        }
+    }
+}
+
+void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h)
+{
+    int i, j;
+    for (i = 0; i < total; ++i) {
+        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
+        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
+        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
+        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        for (j = 0; j < classes; ++j) {
+            int myclass = j;
+            if (dets[i].prob[myclass] > 0) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[myclass],
+                xmin, ymin, xmax, ymax);
+        }
+    }
+}
+
+static void print_kitti_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h, char *outfile, char *prefix)
+{
+    char *kitti_ids[] = { "car", "pedestrian", "cyclist" };
+    FILE *fpd = 0;
+    char buffd[1024];
+    snprintf(buffd, 1024, "%s/%s/data/%s.txt", prefix, outfile, id);
+
+    fpd = fopen(buffd, "w");
+    int i, j;
+    for (i = 0; i < total; ++i)
+    {
+        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
+        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
+        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
+        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        for (j = 0; j < classes; ++j)
+        {
+            //if (dets[i].prob[j]) fprintf(fpd, "%s 0 0 0 %f %f %f %f -1 -1 -1 -1 0 0 0 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]);
+            if (dets[i].prob[j]) fprintf(fpd, "%s -1 -1 -10 %f %f %f %f -1 -1 -1 -1000 -1000 -1000 -10 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]);
+        }
+    }
+    fclose(fpd);
+}
+
+static void eliminate_bdd(char *buf, char *a)
+{
+    int n = 0;
+    int i, k;
+    for (i = 0; buf[i] != '\0'; i++)
+    {
+        if (buf[i] == a[n])
+        {
+            k = i;
+            while (buf[i] == a[n])
+            {
+                if (a[++n] == '\0')
+                {
+                    for (k; buf[k + n] != '\0'; k++)
+                    {
+                        buf[k] = buf[k + n];
+                    }
+                    buf[k] = '\0';
+                    break;
+                }
+                i++;
+            }
+            n = 0; i--;
+        }
+    }
+}
+
+static void get_bdd_image_id(char *filename)
+{
+    char *p = strrchr(filename, '/');
+    eliminate_bdd(p, ".jpg");
+    eliminate_bdd(p, "/");
+    strcpy(filename, p);
+}
+
+static void print_bdd_detections(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h)
+{
+    char *bdd_ids[] = { "bike" , "bus" , "car" , "motor" ,"person", "rider", "traffic light", "traffic sign", "train", "truck" };
+    get_bdd_image_id(image_path);
+    int i, j;
+
+    for (i = 0; i < num_boxes; ++i)
+    {
+        float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
+        float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
+        float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
+        float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        float bx1 = xmin;
+        float by1 = ymin;
+        float bx2 = xmax;
+        float by2 = ymax;
+
+        for (j = 0; j < classes; ++j)
+        {
+            if (dets[i].prob[j])
+            {
+                fprintf(fp, "\t{\n\t\t\"name\":\"%s\",\n\t\t\"category\":\"%s\",\n\t\t\"bbox\":[%f, %f, %f, %f],\n\t\t\"score\":%f\n\t},\n", image_path, bdd_ids[j], bx1, by1, bx2, by2, dets[i].prob[j]);
+            }
+        }
+    }
+}
+
+void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile)
+{
+    int j;
+    list *options = read_data_cfg(datacfg);
+    char *valid_images = option_find_str(options, "valid", "data/train.list");
+    char *name_list = option_find_str(options, "names", "data/names.list");
+    char *prefix = option_find_str(options, "results", "results");
+    char **names = get_labels(name_list);
+    char *mapf = option_find_str(options, "map", 0);
+    int *map = 0;
+    if (mapf) map = read_map(mapf);
+
+    network net = parse_network_cfg_custom(cfgfile, 1, 1);    // set batch=1
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    //set_batch_network(&net, 1);
+    fuse_conv_batchnorm(net);
+    calculate_binary_weights(net);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    list *plist = get_paths(valid_images);
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n - 1];
+    int k;
+    for (k = 0; k < net.n; ++k) {
+        layer lk = net.layers[k];
+        if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) {
+            l = lk;
+            printf(" Detection layer: %d - type = %d \n", k, l.type);
+        }
+    }
+    int classes = l.classes;
+
+    char buff[1024];
+    char *type = option_find_str(options, "eval", "voc");
+    FILE *fp = 0;
+    FILE **fps = 0;
+    int coco = 0;
+    int imagenet = 0;
+    int bdd = 0;
+    int kitti = 0;
+
+    if (0 == strcmp(type, "coco")) {
+        if (!outfile) outfile = "coco_results";
+        snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
+        fp = fopen(buff, "w");
+        fprintf(fp, "[\n");
+        coco = 1;
+    }
+    else if (0 == strcmp(type, "bdd")) {
+        if (!outfile) outfile = "bdd_results";
+        snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
+        fp = fopen(buff, "w");
+        fprintf(fp, "[\n");
+        bdd = 1;
+    }
+    else if (0 == strcmp(type, "kitti")) {
+        char buff2[1024];
+        if (!outfile) outfile = "kitti_results";
+        printf("%s\n", outfile);
+        snprintf(buff, 1024, "%s/%s", prefix, outfile);
+        int mkd = make_directory(buff, 0777);
+        snprintf(buff2, 1024, "%s/%s/data", prefix, outfile);
+        int mkd2 = make_directory(buff2, 0777);
+        kitti = 1;
+    }
+    else if (0 == strcmp(type, "imagenet")) {
+        if (!outfile) outfile = "imagenet-detection";
+        snprintf(buff, 1024, "%s/%s.txt", prefix, outfile);
+        fp = fopen(buff, "w");
+        imagenet = 1;
+        classes = 200;
+    }
+    else {
+        if (!outfile) outfile = "comp4_det_test_";
+        fps = (FILE**) xcalloc(classes, sizeof(FILE *));
+        for (j = 0; j < classes; ++j) {
+            snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]);
+            fps[j] = fopen(buff, "w");
+        }
+    }
+
+
+    int m = plist->size;
+    int i = 0;
+    int t;
+
+    float thresh = .001;
+    float nms = .6;
+
+    int nthreads = 4;
+    if (m < 4) nthreads = m;
+    image* val = (image*)xcalloc(nthreads, sizeof(image));
+    image* val_resized = (image*)xcalloc(nthreads, sizeof(image));
+    image* buf = (image*)xcalloc(nthreads, sizeof(image));
+    image* buf_resized = (image*)xcalloc(nthreads, sizeof(image));
+    pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t));
+
+    load_args args = { 0 };
+    args.w = net.w;
+    args.h = net.h;
+    args.c = net.c;
+    args.type = IMAGE_DATA;
+    const int letter_box = net.letter_box;
+    if (letter_box) args.type = LETTERBOX_DATA;
+
+    for (t = 0; t < nthreads; ++t) {
+        args.path = paths[i + t];
+        args.im = &buf[t];
+        args.resized = &buf_resized[t];
+        thr[t] = load_data_in_thread(args);
+    }
+    time_t start = time(0);
+    for (i = nthreads; i < m + nthreads; i += nthreads) {
+        fprintf(stderr, "%d\n", i);
+        for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+            pthread_join(thr[t], 0);
+            val[t] = buf[t];
+            val_resized[t] = buf_resized[t];
+        }
+        for (t = 0; t < nthreads && i + t < m; ++t) {
+            args.path = paths[i + t];
+            args.im = &buf[t];
+            args.resized = &buf_resized[t];
+            thr[t] = load_data_in_thread(args);
+        }
+        for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+            char *path = paths[i + t - nthreads];
+            char *id = basecfg(path);
+            float *X = val_resized[t].data;
+            network_predict(net, X);
+            int w = val[t].w;
+            int h = val[t].h;
+            int nboxes = 0;
+            detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letter_box);
+            if (nms) {
+                if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
+                else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
+            }
+
+            if (coco) {
+                print_cocos(fp, path, dets, nboxes, classes, w, h);
+            }
+            else if (imagenet) {
+                print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h);
+            }
+            else if (bdd) {
+                print_bdd_detections(fp, path, dets, nboxes, classes, w, h);
+            }
+            else if (kitti) {
+                print_kitti_detections(fps, id, dets, nboxes, classes, w, h, outfile, prefix);
+            }
+            else {
+                print_detector_detections(fps, id, dets, nboxes, classes, w, h);
+            }
+
+            free_detections(dets, nboxes);
+            free(id);
+            free_image(val[t]);
+            free_image(val_resized[t]);
+        }
+    }
+    if (fps) {
+        for (j = 0; j < classes; ++j) {
+            fclose(fps[j]);
+        }
+        free(fps);
+    }
+    if (coco) {
+#ifdef WIN32
+        fseek(fp, -3, SEEK_CUR);
+#else
+        fseek(fp, -2, SEEK_CUR);
+#endif
+        fprintf(fp, "\n]\n");
+    }
+
+    if (bdd) {
+#ifdef WIN32
+        fseek(fp, -3, SEEK_CUR);
+#else
+        fseek(fp, -2, SEEK_CUR);
+#endif
+        fprintf(fp, "\n]\n");
+        fclose(fp);
+    }
+
+    if (fp) fclose(fp);
+
+    if (val) free(val);
+    if (val_resized) free(val_resized);
+    if (thr) free(thr);
+    if (buf) free(buf);
+    if (buf_resized) free(buf_resized);
+
+    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)time(0) - start);
+}
+
+void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg_custom(cfgfile, 1, 1);    // set batch=1
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    //set_batch_network(&net, 1);
+    fuse_conv_batchnorm(net);
+    srand(time(0));
+
+    //list *plist = get_paths("data/coco_val_5k.list");
+    list *options = read_data_cfg(datacfg);
+    char *valid_images = option_find_str(options, "valid", "data/train.txt");
+    list *plist = get_paths(valid_images);
+    char **paths = (char **)list_to_array(plist);
+
+    //layer l = net.layers[net.n - 1];
+
+    int j, k;
+
+    int m = plist->size;
+    int i = 0;
+
+    float thresh = .001;
+    float iou_thresh = .5;
+    float nms = .4;
+
+    int total = 0;
+    int correct = 0;
+    int proposals = 0;
+    float avg_iou = 0;
+
+    for (i = 0; i < m; ++i) {
+        char *path = paths[i];
+        image orig = load_image(path, 0, 0, net.c);
+        image sized = resize_image(orig, net.w, net.h);
+        char *id = basecfg(path);
+        network_predict(net, sized.data);
+        int nboxes = 0;
+        int letterbox = 0;
+        detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox);
+        if (nms) do_nms_obj(dets, nboxes, 1, nms);
+
+        char labelpath[4096];
+        replace_image_to_label(path, labelpath);
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        for (k = 0; k < nboxes; ++k) {
+            if (dets[k].objectness > thresh) {
+                ++proposals;
+            }
+        }
+        for (j = 0; j < num_labels; ++j) {
+            ++total;
+            box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
+            float best_iou = 0;
+            for (k = 0; k < nboxes; ++k) {
+                float iou = box_iou(dets[k].bbox, t);
+                if (dets[k].objectness > thresh && iou > best_iou) {
+                    best_iou = iou;
+                }
+            }
+            avg_iou += best_iou;
+            if (best_iou > iou_thresh) {
+                ++correct;
+            }
+        }
+        //fprintf(stderr, " %s - %s - ", paths[i], labelpath);
+        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total);
+        free(id);
+        free_image(orig);
+        free_image(sized);
+    }
+}
+
+typedef struct {
+    box b;
+    float p;
+    int class_id;
+    int image_index;
+    int truth_flag;
+    int unique_truth_index;
+} box_prob;
+
+int detections_comparator(const void *pa, const void *pb)
+{
+    box_prob a = *(const box_prob *)pa;
+    box_prob b = *(const box_prob *)pb;
+    float diff = a.p - b.p;
+    if (diff < 0) return 1;
+    else if (diff > 0) return -1;
+    return 0;
+}
+
+float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, const int map_points, int letter_box, network *existing_net)
+{
+    int j;
+    list *options = read_data_cfg(datacfg);
+    char *valid_images = option_find_str(options, "valid", "data/train.txt");
+    char *difficult_valid_images = option_find_str(options, "difficult", NULL);
+    char *name_list = option_find_str(options, "names", "data/names.list");
+    int names_size = 0;
+    char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
+    //char *mapf = option_find_str(options, "map", 0);
+    //int *map = 0;
+    //if (mapf) map = read_map(mapf);
+    FILE* reinforcement_fd = NULL;
+
+    network net;
+    //int initial_batch;
+    if (existing_net) {
+        char *train_images = option_find_str(options, "train", "data/train.txt");
+        valid_images = option_find_str(options, "valid", train_images);
+        net = *existing_net;
+        remember_network_recurrent_state(*existing_net);
+        free_network_recurrent_state(*existing_net);
+    }
+    else {
+        net = parse_network_cfg_custom(cfgfile, 1, 1);    // set batch=1
+        if (weightfile) {
+            load_weights(&net, weightfile);
+        }
+        //set_batch_network(&net, 1);
+        fuse_conv_batchnorm(net);
+        calculate_binary_weights(net);
+    }
+    if (net.layers[net.n - 1].classes != names_size) {
+        printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
+            name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
+        getchar();
+    }
+    srand(time(0));
+    printf("\n calculation mAP (mean average precision)...\n");
+
+    list *plist = get_paths(valid_images);
+    char **paths = (char **)list_to_array(plist);
+
+    char **paths_dif = NULL;
+    if (difficult_valid_images) {
+        list *plist_dif = get_paths(difficult_valid_images);
+        paths_dif = (char **)list_to_array(plist_dif);
+    }
+
+
+    layer l = net.layers[net.n - 1];
+    int k;
+    for (k = 0; k < net.n; ++k) {
+        layer lk = net.layers[k];
+        if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) {
+            l = lk;
+            printf(" Detection layer: %d - type = %d \n", k, l.type);
+        }
+    }
+    int classes = l.classes;
+
+    int m = plist->size;
+    int i = 0;
+    int t;
+
+    const float thresh = .005;
+    const float nms = .45;
+    //const float iou_thresh = 0.5;
+
+    int nthreads = 4;
+    if (m < 4) nthreads = m;
+    image* val = (image*)xcalloc(nthreads, sizeof(image));
+    image* val_resized = (image*)xcalloc(nthreads, sizeof(image));
+    image* buf = (image*)xcalloc(nthreads, sizeof(image));
+    image* buf_resized = (image*)xcalloc(nthreads, sizeof(image));
+    pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t));
+
+    load_args args = { 0 };
+    args.w = net.w;
+    args.h = net.h;
+    args.c = net.c;
+    letter_box = net.letter_box;
+    if (letter_box) args.type = LETTERBOX_DATA;
+    else args.type = IMAGE_DATA;
+
+    //const float thresh_calc_avg_iou = 0.24;
+    float avg_iou = 0;
+    int tp_for_thresh = 0;
+    int fp_for_thresh = 0;
+
+    box_prob* detections = (box_prob*)xcalloc(1, sizeof(box_prob));
+    int detections_count = 0;
+    int unique_truth_count = 0;
+
+    int* truth_classes_count = (int*)xcalloc(classes, sizeof(int));
+
+    // For multi-class precision and recall computation
+    float *avg_iou_per_class = (float*)xcalloc(classes, sizeof(float));
+    int *tp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int));
+    int *fp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int));
+
+    for (t = 0; t < nthreads; ++t) {
+        args.path = paths[i + t];
+        args.im = &buf[t];
+        args.resized = &buf_resized[t];
+        thr[t] = load_data_in_thread(args);
+    }
+    time_t start = time(0);
+    for (i = nthreads; i < m + nthreads; i += nthreads) {
+        fprintf(stderr, "\r%d", i);
+        for (t = 0; t < nthreads && (i + t - nthreads) < m; ++t) {
+            pthread_join(thr[t], 0);
+            val[t] = buf[t];
+            val_resized[t] = buf_resized[t];
+        }
+        for (t = 0; t < nthreads && (i + t) < m; ++t) {
+            args.path = paths[i + t];
+            args.im = &buf[t];
+            args.resized = &buf_resized[t];
+            thr[t] = load_data_in_thread(args);
+        }
+        for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+            const int image_index = i + t - nthreads;
+            char *path = paths[image_index];
+            char *id = basecfg(path);
+            float *X = val_resized[t].data;
+            network_predict(net, X);
+
+            int nboxes = 0;
+            float hier_thresh = 0;
+            detection *dets;
+            if (args.type == LETTERBOX_DATA) {
+                dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box);
+            }
+            else {
+                dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letter_box);
+            }
+            //detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); // for letter_box=1
+            if (nms) {
+                if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
+                else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
+            }
+
+            //if (l.embedding_size) set_track_id(dets, nboxes, thresh, l.sim_thresh, l.track_ciou_norm, l.track_history_size, l.dets_for_track, l.dets_for_show);
+
+            char labelpath[4096];
+            replace_image_to_label(path, labelpath);
+            int num_labels = 0;
+            box_label *truth = read_boxes(labelpath, &num_labels);
+            int j;
+            for (j = 0; j < num_labels; ++j) {
+                truth_classes_count[truth[j].id]++;
+            }
+
+            // difficult
+            box_label *truth_dif = NULL;
+            int num_labels_dif = 0;
+            if (paths_dif)
+            {
+                char *path_dif = paths_dif[image_index];
+
+                char labelpath_dif[4096];
+                replace_image_to_label(path_dif, labelpath_dif);
+
+                truth_dif = read_boxes(labelpath_dif, &num_labels_dif);
+            }
+
+            const int checkpoint_detections_count = detections_count;
+
+            int i;
+            for (i = 0; i < nboxes; ++i) {
+
+                int class_id;
+                for (class_id = 0; class_id < classes; ++class_id) {
+                    float prob = dets[i].prob[class_id];
+                    if (prob > 0) {
+                        detections_count++;
+                        detections = (box_prob*)xrealloc(detections, detections_count * sizeof(box_prob));
+                        detections[detections_count - 1].b = dets[i].bbox;
+                        detections[detections_count - 1].p = prob;
+                        detections[detections_count - 1].image_index = image_index;
+                        detections[detections_count - 1].class_id = class_id;
+                        detections[detections_count - 1].truth_flag = 0;
+                        detections[detections_count - 1].unique_truth_index = -1;
+
+                        int truth_index = -1;
+                        float max_iou = 0;
+                        for (j = 0; j < num_labels; ++j)
+                        {
+                            box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
+                            //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n",
+                            //    box_iou(dets[i].bbox, t), prob, class_id, truth[j].id);
+                            float current_iou = box_iou(dets[i].bbox, t);
+                            if (current_iou > iou_thresh && class_id == truth[j].id) {
+                                if (current_iou > max_iou) {
+                                    max_iou = current_iou;
+                                    truth_index = unique_truth_count + j;
+                                }
+                            }
+                        }
+
+                        // best IoU
+                        if (truth_index > -1) {
+                            detections[detections_count - 1].truth_flag = 1;
+                            detections[detections_count - 1].unique_truth_index = truth_index;
+                        }
+                        else {
+                            // if object is difficult then remove detection
+                            for (j = 0; j < num_labels_dif; ++j) {
+                                box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h };
+                                float current_iou = box_iou(dets[i].bbox, t);
+                                if (current_iou > iou_thresh && class_id == truth_dif[j].id) {
+                                    --detections_count;
+                                    break;
+                                }
+                            }
+                        }
+
+                        // calc avg IoU, true-positives, false-positives for required Threshold
+                        if (prob > thresh_calc_avg_iou) {
+                            int z, found = 0;
+                            for (z = checkpoint_detections_count; z < detections_count - 1; ++z) {
+                                if (detections[z].unique_truth_index == truth_index) {
+                                    found = 1; break;
+                                }
+                            }
+
+                            if (truth_index > -1 && found == 0) {
+                                avg_iou += max_iou;
+                                ++tp_for_thresh;
+                                avg_iou_per_class[class_id] += max_iou;
+                                tp_for_thresh_per_class[class_id]++;
+                            }
+                            else{
+                                fp_for_thresh++;
+                                fp_for_thresh_per_class[class_id]++;
+                            }
+                        }
+                    }
+                }
+            }
+
+            unique_truth_count += num_labels;
+
+            //static int previous_errors = 0;
+            //int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh);
+            //int errors_in_this_image = total_errors - previous_errors;
+            //previous_errors = total_errors;
+            //if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb");
+            //char buff[1000];
+            //sprintf(buff, "%s\n", path);
+            //if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd);
+
+            free_detections(dets, nboxes);
+            free(id);
+            free_image(val[t]);
+            free_image(val_resized[t]);
+        }
+    }
+
+    //for (t = 0; t < nthreads; ++t) {
+    //    pthread_join(thr[t], 0);
+    //}
+
+    if ((tp_for_thresh + fp_for_thresh) > 0)
+        avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh);
+
+    int class_id;
+    for(class_id = 0; class_id < classes; class_id++){
+        if ((tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]) > 0)
+            avg_iou_per_class[class_id] = avg_iou_per_class[class_id] / (tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]);
+    }
+
+    // SORT(detections)
+    qsort(detections, detections_count, sizeof(box_prob), detections_comparator);
+
+    typedef struct {
+        double precision;
+        double recall;
+        int tp, fp, fn;
+    } pr_t;
+
+    // for PR-curve
+    pr_t** pr = (pr_t**)xcalloc(classes, sizeof(pr_t*));
+    for (i = 0; i < classes; ++i) {
+        pr[i] = (pr_t*)xcalloc(detections_count, sizeof(pr_t));
+    }
+    printf("\n detections_count = %d, unique_truth_count = %d  \n", detections_count, unique_truth_count);
+
+
+    int* detection_per_class_count = (int*)xcalloc(classes, sizeof(int));
+    for (j = 0; j < detections_count; ++j) {
+        detection_per_class_count[detections[j].class_id]++;
+    }
+
+    int* truth_flags = (int*)xcalloc(unique_truth_count, sizeof(int));
+
+    int rank;
+    for (rank = 0; rank < detections_count; ++rank) {
+        if (rank % 100 == 0)
+            printf(" rank = %d of ranks = %d \r", rank, detections_count);
+
+        if (rank > 0) {
+            int class_id;
+            for (class_id = 0; class_id < classes; ++class_id) {
+                pr[class_id][rank].tp = pr[class_id][rank - 1].tp;
+                pr[class_id][rank].fp = pr[class_id][rank - 1].fp;
+            }
+        }
+
+        box_prob d = detections[rank];
+        // if (detected && isn't detected before)
+        if (d.truth_flag == 1) {
+            if (truth_flags[d.unique_truth_index] == 0)
+            {
+                truth_flags[d.unique_truth_index] = 1;
+                pr[d.class_id][rank].tp++;    // true-positive
+            } else
+                pr[d.class_id][rank].fp++;
+        }
+        else {
+            pr[d.class_id][rank].fp++;    // false-positive
+        }
+
+        for (i = 0; i < classes; ++i)
+        {
+            const int tp = pr[i][rank].tp;
+            const int fp = pr[i][rank].fp;
+            const int fn = truth_classes_count[i] - tp;    // false-negative = objects - true-positive
+            pr[i][rank].fn = fn;
+
+            if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp);
+            else pr[i][rank].precision = 0;
+
+            if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn);
+            else pr[i][rank].recall = 0;
+
+            if (rank == (detections_count - 1) && detection_per_class_count[i] != (tp + fp)) {    // check for last rank
+                    printf(" class_id: %d - detections = %d, tp+fp = %d, tp = %d, fp = %d \n", i, detection_per_class_count[i], tp+fp, tp, fp);
+            }
+        }
+    }
+
+    free(truth_flags);
+
+
+    double mean_average_precision = 0;
+
+    for (i = 0; i < classes; ++i) {
+        double avg_precision = 0;
+
+        // MS COCO - uses 101-Recall-points on PR-chart.
+        // PascalVOC2007 - uses 11-Recall-points on PR-chart.
+        // PascalVOC2010-2012 - uses Area-Under-Curve on PR-chart.
+        // ImageNet - uses Area-Under-Curve on PR-chart.
+
+        // correct mAP calculation: ImageNet, PascalVOC 2010-2012
+        if (map_points == 0)
+        {
+            double last_recall = pr[i][detections_count - 1].recall;
+            double last_precision = pr[i][detections_count - 1].precision;
+            for (rank = detections_count - 2; rank >= 0; --rank)
+            {
+                double delta_recall = last_recall - pr[i][rank].recall;
+                last_recall = pr[i][rank].recall;
+
+                if (pr[i][rank].precision > last_precision) {
+                    last_precision = pr[i][rank].precision;
+                }
+
+                avg_precision += delta_recall * last_precision;
+            }
+            //add remaining area of PR curve when recall isn't 0 at rank-1
+            double delta_recall = last_recall - 0;
+            avg_precision += delta_recall * last_precision;
+        }
+        // MSCOCO - 101 Recall-points, PascalVOC - 11 Recall-points
+        else
+        {
+            int point;
+            for (point = 0; point < map_points; ++point) {
+                double cur_recall = point * 1.0 / (map_points-1);
+                double cur_precision = 0;
+                for (rank = 0; rank < detections_count; ++rank)
+                {
+                    if (pr[i][rank].recall >= cur_recall) {    // > or >=
+                        if (pr[i][rank].precision > cur_precision) {
+                            cur_precision = pr[i][rank].precision;
+                        }
+                    }
+                }
+                //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision);
+
+                avg_precision += cur_precision;
+            }
+            avg_precision = avg_precision / map_points;
+        }
+
+        printf("class_id = %d, name = %s, ap = %2.2f%%   \t (TP = %d, FP = %d) \n",
+            i, names[i], avg_precision * 100, tp_for_thresh_per_class[i], fp_for_thresh_per_class[i]);
+
+        float class_precision = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)fp_for_thresh_per_class[i]);
+        float class_recall = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)(truth_classes_count[i] - tp_for_thresh_per_class[i]));
+        //printf("Precision = %1.2f, Recall = %1.2f, avg IOU = %2.2f%% \n\n", class_precision, class_recall, avg_iou_per_class[i]);
+
+        mean_average_precision += avg_precision;
+    }
+
+    const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh);
+    const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh));
+    const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall);
+    printf("\n for conf_thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n",
+        thresh_calc_avg_iou, cur_precision, cur_recall, f1_score);
+
+    printf(" for conf_thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n",
+        thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100);
+
+    mean_average_precision = mean_average_precision / classes;
+    printf("\n IoU threshold = %2.0f %%, ", iou_thresh * 100);
+    if (map_points) printf("used %d Recall-points \n", map_points);
+    else printf("used Area-Under-Curve for each unique Recall \n");
+
+    printf(" mean average precision (mAP@%0.2f) = %f, or %2.2f %% \n", iou_thresh, mean_average_precision, mean_average_precision * 100);
+
+    for (i = 0; i < classes; ++i) {
+        free(pr[i]);
+    }
+    free(pr);
+    free(detections);
+    free(truth_classes_count);
+    free(detection_per_class_count);
+
+    free(avg_iou_per_class);
+    free(tp_for_thresh_per_class);
+    free(fp_for_thresh_per_class);
+
+    fprintf(stderr, "Total Detection Time: %d Seconds\n", (int)(time(0) - start));
+    printf("\nSet -points flag:\n");
+    printf(" `-points 101` for MS COCO \n");
+    printf(" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n");
+    printf(" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n");
+    if (reinforcement_fd != NULL) fclose(reinforcement_fd);
+
+    // free memory
+    free_ptrs((void**)names, net.layers[net.n - 1].classes);
+    free_list_contents_kvp(options);
+    free_list(options);
+
+    if (existing_net) {
+        //set_batch_network(&net, initial_batch);
+        //free_network_recurrent_state(*existing_net);
+        restore_network_recurrent_state(*existing_net);
+        //randomize_network_recurrent_state(*existing_net);
+    }
+    else {
+        free_network(net);
+    }
+    if (val) free(val);
+    if (val_resized) free(val_resized);
+    if (thr) free(thr);
+    if (buf) free(buf);
+    if (buf_resized) free(buf_resized);
+
+    return mean_average_precision;
+}
+
+typedef struct {
+    float w, h;
+} anchors_t;
+
+int anchors_comparator(const void *pa, const void *pb)
+{
+    anchors_t a = *(const anchors_t *)pa;
+    anchors_t b = *(const anchors_t *)pb;
+    float diff = b.w*b.h - a.w*a.h;
+    if (diff < 0) return 1;
+    else if (diff > 0) return -1;
+    return 0;
+}
+
+int anchors_data_comparator(const float **pa, const float **pb)
+{
+    float *a = (float *)*pa;
+    float *b = (float *)*pb;
+    float diff = b[0] * b[1] - a[0] * a[1];
+    if (diff < 0) return 1;
+    else if (diff > 0) return -1;
+    return 0;
+}
+
+
+void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show)
+{
+    printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height);
+    if (width < 0 || height < 0) {
+        printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 \n");
+        printf("Error: set width and height \n");
+        return;
+    }
+
+    //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
+    float* rel_width_height_array = (float*)xcalloc(1000, sizeof(float));
+
+
+    list *options = read_data_cfg(datacfg);
+    char *train_images = option_find_str(options, "train", "data/train.list");
+    list *plist = get_paths(train_images);
+    int number_of_images = plist->size;
+    char **paths = (char **)list_to_array(plist);
+
+    int classes = option_find_int(options, "classes", 1);
+    int* counter_per_class = (int*)xcalloc(classes, sizeof(int));
+
+    srand(time(0));
+    int number_of_boxes = 0;
+    printf(" read labels from %d images \n", number_of_images);
+
+    int i, j;
+    for (i = 0; i < number_of_images; ++i) {
+        char *path = paths[i];
+        char labelpath[4096];
+        replace_image_to_label(path, labelpath);
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        //printf(" new path: %s \n", labelpath);
+        char *buff = (char*)xcalloc(6144, sizeof(char));
+        for (j = 0; j < num_labels; ++j)
+        {
+            if (truth[j].x > 1 || truth[j].x <= 0 || truth[j].y > 1 || truth[j].y <= 0 ||
+                truth[j].w > 1 || truth[j].w <= 0 || truth[j].h > 1 || truth[j].h <= 0)
+            {
+                printf("\n\nWrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f \n",
+                    labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h);
+                sprintf(buff, "echo \"Wrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f\" >> bad_label.list",
+                    labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h);
+                system(buff);
+                if (check_mistakes) getchar();
+            }
+            if (truth[j].id >= classes) {
+                classes = truth[j].id + 1;
+                counter_per_class = (int*)xrealloc(counter_per_class, classes * sizeof(int));
+            }
+            counter_per_class[truth[j].id]++;
+
+            number_of_boxes++;
+            rel_width_height_array = (float*)xrealloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float));
+
+            rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width;
+            rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height;
+            printf("\r loaded \t image: %d \t box: %d", i + 1, number_of_boxes);
+        }
+        free(buff);
+    }
+    printf("\n all loaded. \n");
+    printf("\n calculating k-means++ ...");
+
+    matrix boxes_data;
+    model anchors_data;
+    boxes_data = make_matrix(number_of_boxes, 2);
+
+    printf("\n");
+    for (i = 0; i < number_of_boxes; ++i) {
+        boxes_data.vals[i][0] = rel_width_height_array[i * 2];
+        boxes_data.vals[i][1] = rel_width_height_array[i * 2 + 1];
+        //if (w > 410 || h > 410) printf("i:%d,  w = %f, h = %f \n", i, w, h);
+    }
+
+    // Is used: distance(box, centroid) = 1 - IoU(box, centroid)
+
+    // K-means
+    anchors_data = do_kmeans(boxes_data, num_of_clusters);
+
+    qsort((void*)anchors_data.centers.vals, num_of_clusters, 2 * sizeof(float), (__compar_fn_t)anchors_data_comparator);
+
+    //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66
+    //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 };
+
+    printf("\n");
+    float avg_iou = 0;
+    for (i = 0; i < number_of_boxes; ++i) {
+        float box_w = rel_width_height_array[i * 2]; //points->data.fl[i * 2];
+        float box_h = rel_width_height_array[i * 2 + 1]; //points->data.fl[i * 2 + 1];
+                                                         //int cluster_idx = labels->data.i[i];
+        int cluster_idx = 0;
+        float min_dist = FLT_MAX;
+        float best_iou = 0;
+        for (j = 0; j < num_of_clusters; ++j) {
+            float anchor_w = anchors_data.centers.vals[j][0];   // centers->data.fl[j * 2];
+            float anchor_h = anchors_data.centers.vals[j][1];   // centers->data.fl[j * 2 + 1];
+            float min_w = (box_w < anchor_w) ? box_w : anchor_w;
+            float min_h = (box_h < anchor_h) ? box_h : anchor_h;
+            float box_intersect = min_w*min_h;
+            float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect;
+            float iou = box_intersect / box_union;
+            float distance = 1 - iou;
+            if (distance < min_dist) {
+              min_dist = distance;
+              cluster_idx = j;
+              best_iou = iou;
+            }
+        }
+
+        float anchor_w = anchors_data.centers.vals[cluster_idx][0]; //centers->data.fl[cluster_idx * 2];
+        float anchor_h = anchors_data.centers.vals[cluster_idx][1]; //centers->data.fl[cluster_idx * 2 + 1];
+        if (best_iou > 1 || best_iou < 0) { // || box_w > width || box_h > height) {
+            printf(" Wrong label: i = %d, box_w = %f, box_h = %f, anchor_w = %f, anchor_h = %f, iou = %f \n",
+                i, box_w, box_h, anchor_w, anchor_h, best_iou);
+        }
+        else avg_iou += best_iou;
+    }
+
+    char buff[1024];
+    FILE* fwc = fopen("counters_per_class.txt", "wb");
+    if (fwc) {
+        sprintf(buff, "counters_per_class = ");
+        printf("\n%s", buff);
+        fwrite(buff, sizeof(char), strlen(buff), fwc);
+        for (i = 0; i < classes; ++i) {
+            sprintf(buff, "%d", counter_per_class[i]);
+            printf("%s", buff);
+            fwrite(buff, sizeof(char), strlen(buff), fwc);
+            if (i < classes - 1) {
+                fwrite(", ", sizeof(char), 2, fwc);
+                printf(", ");
+            }
+        }
+        printf("\n");
+        fclose(fwc);
+    }
+    else {
+        printf(" Error: file counters_per_class.txt can't be open \n");
+    }
+
+    avg_iou = 100 * avg_iou / number_of_boxes;
+    printf("\n avg IoU = %2.2f %% \n", avg_iou);
+
+
+    FILE* fw = fopen("anchors.txt", "wb");
+    if (fw) {
+        printf("\nSaving anchors to the file: anchors.txt \n");
+        printf("anchors = ");
+        for (i = 0; i < num_of_clusters; ++i) {
+            float anchor_w = anchors_data.centers.vals[i][0]; //centers->data.fl[i * 2];
+            float anchor_h = anchors_data.centers.vals[i][1]; //centers->data.fl[i * 2 + 1];
+            if (width > 32) sprintf(buff, "%3.0f,%3.0f", anchor_w, anchor_h);
+            else sprintf(buff, "%2.4f,%2.4f", anchor_w, anchor_h);
+            printf("%s", buff);
+            fwrite(buff, sizeof(char), strlen(buff), fw);
+            if (i + 1 < num_of_clusters) {
+                fwrite(", ", sizeof(char), 2, fw);
+                printf(", ");
+            }
+        }
+        printf("\n");
+        fclose(fw);
+    }
+    else {
+        printf(" Error: file anchors.txt can't be open \n");
+    }
+
+    if (show) {
+#ifdef OPENCV
+        show_acnhors(number_of_boxes, num_of_clusters, rel_width_height_array, anchors_data, width, height);
+#endif // OPENCV
+    }
+    free(rel_width_height_array);
+    free(counter_per_class);
+
+    getchar();
+}
+
+
+void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
+    float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers)
+{
+    list *options = read_data_cfg(datacfg);
+    char *name_list = option_find_str(options, "names", "data/names.list");
+    int names_size = 0;
+    char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
+
+    image **alphabet = load_alphabet();
+    network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    if (net.letter_box) letter_box = 1;
+    net.benchmark_layers = benchmark_layers;
+    fuse_conv_batchnorm(net);
+    calculate_binary_weights(net);
+    if (net.layers[net.n - 1].classes != names_size) {
+        printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
+            name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
+        if (net.layers[net.n - 1].classes > names_size) getchar();
+    }
+    srand(2222222);
+    char buff[256];
+    char *input = buff;
+    char *json_buf = NULL;
+    int json_image_id = 0;
+    FILE* json_file = NULL;
+    if (outfile) {
+        json_file = fopen(outfile, "wb");
+        if(!json_file) {
+          error("fopen failed");
+        }
+        char *tmp = "[\n";
+        fwrite(tmp, sizeof(char), strlen(tmp), json_file);
+    }
+    int j;
+    float nms = .45;    // 0.4F
+    while (1) {
+        if (filename) {
+            strncpy(input, filename, 256);
+            if (strlen(input) > 0)
+                if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0;
+        }
+        else {
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            input = fgets(input, 256, stdin);
+            if (!input) break;
+            strtok(input, "\n");
+        }
+        //image im;
+        //image sized = load_image_resize(input, net.w, net.h, net.c, &im);
+        image im = load_image(input, 0, 0, net.c);
+        image sized;
+        if(letter_box) sized = letterbox_image(im, net.w, net.h);
+        else sized = resize_image(im, net.w, net.h);
+
+        layer l = net.layers[net.n - 1];
+        int k;
+        for (k = 0; k < net.n; ++k) {
+            layer lk = net.layers[k];
+            if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) {
+                l = lk;
+                printf(" Detection layer: %d - type = %d \n", k, l.type);
+            }
+        }
+
+        //box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+        //float **probs = calloc(l.w*l.h*l.n, sizeof(float*));
+        //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)xcalloc(l.classes, sizeof(float));
+
+        float *X = sized.data;
+
+        //time= what_time_is_it_now();
+        double time = get_time_point();
+        network_predict(net, X);
+        //network_predict_image(&net, im); letterbox = 1;
+        printf("%s: Predicted in %lf milli-seconds.\n", input, ((double)get_time_point() - time) / 1000);
+        //printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time));
+
+        int nboxes = 0;
+        detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter_box);
+        if (nms) {
+            if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
+            else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
+        }
+        draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output);
+        save_image(im, "predictions");
+        if (!dont_show) {
+            show_image(im, "predictions");
+        }
+
+        if (json_file) {
+            if (json_buf) {
+                char *tmp = ", \n";
+                fwrite(tmp, sizeof(char), strlen(tmp), json_file);
+            }
+            ++json_image_id;
+            json_buf = detection_to_json(dets, nboxes, l.classes, names, json_image_id, input);
+
+            fwrite(json_buf, sizeof(char), strlen(json_buf), json_file);
+            free(json_buf);
+        }
+
+        // pseudo labeling concept - fast.ai
+        if (save_labels)
+        {
+            char labelpath[4096];
+            replace_image_to_label(input, labelpath);
+
+            FILE* fw = fopen(labelpath, "wb");
+            int i;
+            for (i = 0; i < nboxes; ++i) {
+                char buff[1024];
+                int class_id = -1;
+                float prob = 0;
+                for (j = 0; j < l.classes; ++j) {
+                    if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) {
+                        prob = dets[i].prob[j];
+                        class_id = j;
+                    }
+                }
+                if (class_id >= 0) {
+                    sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h);
+                    fwrite(buff, sizeof(char), strlen(buff), fw);
+                }
+            }
+            fclose(fw);
+        }
+
+        free_detections(dets, nboxes);
+        free_image(im);
+        free_image(sized);
+
+        if (!dont_show) {
+            wait_until_press_key_cv();
+            destroy_all_windows_cv();
+        }
+
+        if (filename) break;
+    }
+
+    if (json_file) {
+        char *tmp = "\n]";
+        fwrite(tmp, sizeof(char), strlen(tmp), json_file);
+        fclose(json_file);
+    }
+
+    // free memory
+    free_ptrs((void**)names, net.layers[net.n - 1].classes);
+    free_list_contents_kvp(options);
+    free_list(options);
+
+    int i;
+    const int nsize = 8;
+    for (j = 0; j < nsize; ++j) {
+        for (i = 32; i < 127; ++i) {
+            free_image(alphabet[j][i]);
+        }
+        free(alphabet[j]);
+    }
+    free(alphabet);
+
+    free_network(net);
+}
+
+#if defined(OPENCV) && defined(GPU)
+
+// adversarial attack dnn
+void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num,
+    int letter_box, int benchmark_layers)
+{
+    list *options = read_data_cfg(datacfg);
+    char *name_list = option_find_str(options, "names", "data/names.list");
+    int names_size = 0;
+    char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
+
+    image **alphabet = load_alphabet();
+    network net = parse_network_cfg(cfgfile);// parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
+    net.adversarial = 1;
+    set_batch_network(&net, 1);
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    net.benchmark_layers = benchmark_layers;
+    //fuse_conv_batchnorm(net);
+    //calculate_binary_weights(net);
+    if (net.layers[net.n - 1].classes != names_size) {
+        printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
+            name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
+        if (net.layers[net.n - 1].classes > names_size) getchar();
+    }
+
+    srand(2222222);
+    char buff[256];
+    char *input = buff;
+
+    int j;
+    float nms = .45;    // 0.4F
+    while (1) {
+        if (filename) {
+            strncpy(input, filename, 256);
+            if (strlen(input) > 0)
+                if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0;
+        }
+        else {
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            input = fgets(input, 256, stdin);
+            if (!input) break;
+            strtok(input, "\n");
+        }
+        //image im;
+        //image sized = load_image_resize(input, net.w, net.h, net.c, &im);
+        image im = load_image(input, 0, 0, net.c);
+        image sized;
+        if (letter_box) sized = letterbox_image(im, net.w, net.h);
+        else sized = resize_image(im, net.w, net.h);
+
+        image src_sized = copy_image(sized);
+
+        layer l = net.layers[net.n - 1];
+        int k;
+        for (k = 0; k < net.n; ++k) {
+            layer lk = net.layers[k];
+            if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) {
+                l = lk;
+                printf(" Detection layer: %d - type = %d \n", k, l.type);
+            }
+        }
+
+        net.num_boxes = l.max_boxes;
+        int num_truth = l.truths;
+        float *truth_cpu = (float *)xcalloc(num_truth, sizeof(float));
+
+        int *it_num_set = (int *)xcalloc(1, sizeof(int));
+        float *lr_set = (float *)xcalloc(1, sizeof(float));
+        int *boxonly = (int *)xcalloc(1, sizeof(int));
+
+        cv_draw_object(sized, truth_cpu, net.num_boxes, num_truth, it_num_set, lr_set, boxonly, l.classes, names);
+
+        net.learning_rate = *lr_set;
+        it_num = *it_num_set;
+
+        float *X = sized.data;
+
+        mat_cv* img = NULL;
+        float max_img_loss = 5;
+        int number_of_lines = 100;
+        int img_size = 1000;
+        char windows_name[100];
+        char *base = basecfg(cfgfile);
+        sprintf(windows_name, "chart_%s.png", base);
+        img = draw_train_chart(windows_name, max_img_loss, it_num, number_of_lines, img_size, dont_show, NULL);
+
+        int iteration;
+        for (iteration = 0; iteration < it_num; ++iteration)
+        {
+            forward_backward_network_gpu(net, X, truth_cpu);
+
+            float avg_loss = get_network_cost(net);
+            draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, it_num, 0, 0, "mAP%", 0, dont_show, 0, 0);
+
+            float inv_loss = 1.0 / max_val_cmp(0.01, avg_loss);
+            //net.learning_rate = *lr_set * inv_loss;
+
+            if (*boxonly) {
+                int dw = truth_cpu[2] * sized.w, dh = truth_cpu[3] * sized.h;
+                int dx = truth_cpu[0] * sized.w - dw / 2, dy = truth_cpu[1] * sized.h - dh / 2;
+                image crop = crop_image(sized, dx, dy, dw, dh);
+                copy_image_inplace(src_sized, sized);
+                embed_image(crop, sized, dx, dy);
+            }
+
+            show_image_cv(sized, "image_optimization");
+            wait_key_cv(20);
+        }
+
+        net.train = 0;
+        quantize_image(sized);
+        network_predict(net, X);
+
+        save_image_png(sized, "drawn");
+        //sized = load_image("drawn.png", 0, 0, net.c);
+
+        int nboxes = 0;
+        detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, 0, 0, 1, &nboxes, letter_box);
+        if (nms) {
+            if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
+            else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
+        }
+        draw_detections_v3(sized, dets, nboxes, thresh, names, alphabet, l.classes, 1);
+        save_image(sized, "pre_predictions");
+        if (!dont_show) {
+            show_image(sized, "pre_predictions");
+        }
+
+        free_detections(dets, nboxes);
+        free_image(im);
+        free_image(sized);
+        free_image(src_sized);
+
+        if (!dont_show) {
+            wait_until_press_key_cv();
+            destroy_all_windows_cv();
+        }
+
+        free(lr_set);
+        free(it_num_set);
+
+        if (filename) break;
+    }
+
+    // free memory
+    free_ptrs((void**)names, net.layers[net.n - 1].classes);
+    free_list_contents_kvp(options);
+    free_list(options);
+
+    int i;
+    const int nsize = 8;
+    for (j = 0; j < nsize; ++j) {
+        for (i = 32; i < 127; ++i) {
+            free_image(alphabet[j][i]);
+        }
+        free(alphabet[j]);
+    }
+    free(alphabet);
+
+    free_network(net);
+}
+#else // defined(OPENCV) && defined(GPU)
+void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num,
+    int letter_box, int benchmark_layers)
+{
+    printf(" ./darknet detector draw ... can't be used without OpenCV and CUDA! \n");
+    getchar();
+}
+#endif // defined(OPENCV) && defined(GPU)
+
+void run_detector(int argc, char **argv)
+{
+    int dont_show = find_arg(argc, argv, "-dont_show");
+    int benchmark = find_arg(argc, argv, "-benchmark");
+    int benchmark_layers = find_arg(argc, argv, "-benchmark_layers");
+    //if (benchmark_layers) benchmark = 1;
+    if (benchmark) dont_show = 1;
+    int show = find_arg(argc, argv, "-show");
+    int letter_box = find_arg(argc, argv, "-letter_box");
+    int calc_map = find_arg(argc, argv, "-map");
+    int map_points = find_int_arg(argc, argv, "-points", 0);
+    check_mistakes = find_arg(argc, argv, "-check_mistakes");
+    int show_imgs = find_arg(argc, argv, "-show_imgs");
+    int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1);
+    int avgframes = find_int_arg(argc, argv, "-avgframes", 3);
+    int dontdraw_bbox = find_arg(argc, argv, "-dontdraw_bbox");
+    int json_port = find_int_arg(argc, argv, "-json_port", -1);
+    char *http_post_host = find_char_arg(argc, argv, "-http_post_host", 0);
+    int time_limit_sec = find_int_arg(argc, argv, "-time_limit_sec", 0);
+    char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
+    char *outfile = find_char_arg(argc, argv, "-out", 0);
+    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
+    float thresh = find_float_arg(argc, argv, "-thresh", .25);    // 0.24
+    float iou_thresh = find_float_arg(argc, argv, "-iou_thresh", .5);    // 0.5 for mAP
+    float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
+    int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int frame_skip = find_int_arg(argc, argv, "-s", 0);
+    int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
+    int width = find_int_arg(argc, argv, "-width", -1);
+    int height = find_int_arg(argc, argv, "-height", -1);
+    // extended output in test mode (output of rect bound coords)
+    // and for recall mode (extended output table-like format with results for best_class fit)
+    int ext_output = find_arg(argc, argv, "-ext_output");
+    int save_labels = find_arg(argc, argv, "-save_labels");
+    char* chart_path = find_char_arg(argc, argv, "-chart", 0);
+    if (argc < 4) {
+        fprintf(stderr, "usage: %s %s [train/test/valid/demo/map] [data] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+        return;
+    }
+    char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
+    int *gpus = 0;
+    int gpu = 0;
+    int ngpus = 0;
+    if (gpu_list) {
+        printf("%s\n", gpu_list);
+        int len = (int)strlen(gpu_list);
+        ngpus = 1;
+        int i;
+        for (i = 0; i < len; ++i) {
+            if (gpu_list[i] == ',') ++ngpus;
+        }
+        gpus = (int*)xcalloc(ngpus, sizeof(int));
+        for (i = 0; i < ngpus; ++i) {
+            gpus[i] = atoi(gpu_list);
+            gpu_list = strchr(gpu_list, ',') + 1;
+        }
+    }
+    else {
+        gpu = gpu_index;
+        gpus = &gpu;
+        ngpus = 1;
+    }
+
+    int clear = find_arg(argc, argv, "-clear");
+
+    char *datacfg = argv[3];
+    char *cfg = argv[4];
+    char *weights = (argc > 5) ? argv[5] : 0;
+    if (weights)
+        if (strlen(weights) > 0)
+            if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0;
+    char *filename = (argc > 6) ? argv[6] : 0;
+    if (0 == strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels, outfile, letter_box, benchmark_layers);
+    else if (0 == strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show, calc_map, mjpeg_port, show_imgs, benchmark_layers, chart_path);
+    else if (0 == strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);
+    else if (0 == strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
+    else if (0 == strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh, iou_thresh, map_points, letter_box, NULL);
+    else if (0 == strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show);
+    else if (0 == strcmp(argv[2], "draw")) {
+        int it_num = 100;
+        draw_object(datacfg, cfg, weights, filename, thresh, dont_show, it_num, letter_box, benchmark_layers);
+    }
+    else if (0 == strcmp(argv[2], "demo")) {
+        list *options = read_data_cfg(datacfg);
+        int classes = option_find_int(options, "classes", 20);
+        char *name_list = option_find_str(options, "names", "data/names.list");
+        char **names = get_labels(name_list);
+        if (filename)
+            if (strlen(filename) > 0)
+                if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0;
+        demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, avgframes, frame_skip, prefix, out_filename,
+            mjpeg_port, dontdraw_bbox, json_port, dont_show, ext_output, letter_box, time_limit_sec, http_post_host, benchmark, benchmark_layers);
+
+        free_list_contents_kvp(options);
+        free_list(options);
+    }
+    else printf(" There isn't such command: %s", argv[2]);
+
+    if (gpus && gpu_list && ngpus > 1) free(gpus);
+}

--
Gitblit v1.8.0