From 0126e953b3f293b111179e4777103c64f778870c Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 17 六月 2021 09:57:28 +0800 Subject: [PATCH] bug --- lib/detecter_tools/darknet/detector.c | 4012 ++++++++++++++++++++++++++++++----------------------------- 1 files changed, 2,042 insertions(+), 1,970 deletions(-) diff --git a/lib/detecter_tools/darknet/detector.c b/lib/detecter_tools/darknet/detector.c index 4977e9d..a2fdf0b 100644 --- a/lib/detecter_tools/darknet/detector.c +++ b/lib/detecter_tools/darknet/detector.c @@ -1,1970 +1,2042 @@ -#include <stdlib.h> -#include "darknet.h" -#include "network.h" -#include "region_layer.h" -#include "cost_layer.h" -#include "utils.h" -#include "parser.h" -#include "box.h" -#include "demo.h" -#include "option_list.h" - -#ifndef __COMPAR_FN_T -#define __COMPAR_FN_T -typedef int (*__compar_fn_t)(const void*, const void*); -#ifdef __USE_GNU -typedef __compar_fn_t comparison_fn_t; -#endif -#endif - -#include "http_stream.h" - -int check_mistakes = 0; - -static int coco_ids[] = { 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90 }; - -void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port, int show_imgs, int benchmark_layers, char* chart_path) -{ - list *options = read_data_cfg(datacfg); - char *train_images = option_find_str(options, "train", "data/train.txt"); - char *valid_images = option_find_str(options, "valid", train_images); - char *backup_directory = option_find_str(options, "backup", "/backup/"); - - network net_map; - if (calc_map) { - FILE* valid_file = fopen(valid_images, "r"); - if (!valid_file) { - printf("\n Error: There is no %s file for mAP calculation!\n Don't use -map flag.\n Or set valid=%s in your %s file. \n", valid_images, train_images, datacfg); - getchar(); - exit(-1); - } - else fclose(valid_file); - - cuda_set_device(gpus[0]); - printf(" Prepare additional network for mAP calculation...\n"); - net_map = parse_network_cfg_custom(cfgfile, 1, 1); - net_map.benchmark_layers = benchmark_layers; - const int net_classes = net_map.layers[net_map.n - 1].classes; - - int k; // free memory unnecessary arrays - for (k = 0; k < net_map.n - 1; ++k) free_layer_custom(net_map.layers[k], 1); - - char *name_list = option_find_str(options, "names", "data/names.list"); - int names_size = 0; - char **names = get_labels_custom(name_list, &names_size); - if (net_classes != names_size) { - printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", - name_list, names_size, net_classes, cfgfile); - if (net_classes > names_size) getchar(); - } - free_ptrs((void**)names, net_map.layers[net_map.n - 1].classes); - } - - srand(time(0)); - char *base = basecfg(cfgfile); - printf("%s\n", base); - float avg_loss = -1; - network* nets = (network*)xcalloc(ngpus, sizeof(network)); - - srand(time(0)); - int seed = rand(); - int k; - for (k = 0; k < ngpus; ++k) { - srand(seed); -#ifdef GPU - cuda_set_device(gpus[k]); -#endif - nets[k] = parse_network_cfg(cfgfile); - nets[k].benchmark_layers = benchmark_layers; - if (weightfile) { - load_weights(&nets[k], weightfile); - } - if (clear) { - *nets[k].seen = 0; - *nets[k].cur_iteration = 0; - } - nets[k].learning_rate *= ngpus; - } - srand(time(0)); - network net = nets[0]; - - const int actual_batch_size = net.batch * net.subdivisions; - if (actual_batch_size == 1) { - printf("\n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 \n"); - getchar(); - } - else if (actual_batch_size < 8) { - printf("\n Warning: You set batch=%d lower than 64! It is recommended to set batch=64 subdivision=64 \n", actual_batch_size); - } - - int imgs = net.batch * net.subdivisions * ngpus; - printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); - data train, buffer; - - layer l = net.layers[net.n - 1]; - - int classes = l.classes; - - list *plist = get_paths(train_images); - int train_images_num = plist->size; - char **paths = (char **)list_to_array(plist); - - const int init_w = net.w; - const int init_h = net.h; - const int init_b = net.batch; - int iter_save, iter_save_last, iter_map; - iter_save = get_current_iteration(net); - iter_save_last = get_current_iteration(net); - iter_map = get_current_iteration(net); - float mean_average_precision = -1; - float best_map = mean_average_precision; - - load_args args = { 0 }; - args.w = net.w; - args.h = net.h; - args.c = net.c; - args.paths = paths; - args.n = imgs; - args.m = plist->size; - args.classes = classes; - args.flip = net.flip; - args.jitter = l.jitter; - args.resize = l.resize; - args.num_boxes = l.max_boxes; - net.num_boxes = args.num_boxes; - net.train_images_num = train_images_num; - args.d = &buffer; - args.type = DETECTION_DATA; - args.threads = 64; // 16 or 64 - - args.angle = net.angle; - args.gaussian_noise = net.gaussian_noise; - args.blur = net.blur; - args.mixup = net.mixup; - args.exposure = net.exposure; - args.saturation = net.saturation; - args.hue = net.hue; - args.letter_box = net.letter_box; - if (dont_show && show_imgs) show_imgs = 2; - args.show_imgs = show_imgs; - -#ifdef OPENCV - //int num_threads = get_num_threads(); - //if(num_threads > 2) args.threads = get_num_threads() - 2; - args.threads = 6 * ngpus; // 3 for - Amazon EC2 Tesla V100: p3.2xlarge (8 logical cores) - p3.16xlarge - //args.threads = 12 * ngpus; // Ryzen 7 2700X (16 logical cores) - mat_cv* img = NULL; - float max_img_loss = 5; - int number_of_lines = 100; - int img_size = 1000; - char windows_name[100]; - sprintf(windows_name, "chart_%s.png", base); - img = draw_train_chart(windows_name, max_img_loss, net.max_batches, number_of_lines, img_size, dont_show, chart_path); -#endif //OPENCV - if (net.track) { - args.track = net.track; - args.augment_speed = net.augment_speed; - if (net.sequential_subdivisions) args.threads = net.sequential_subdivisions * ngpus; - else args.threads = net.subdivisions * ngpus; - args.mini_batch = net.batch / net.time_steps; - printf("\n Tracking! batch = %d, subdiv = %d, time_steps = %d, mini_batch = %d \n", net.batch, net.subdivisions, net.time_steps, args.mini_batch); - } - //printf(" imgs = %d \n", imgs); - - pthread_t load_thread = load_data(args); - - int count = 0; - double time_remaining, avg_time = -1, alpha_time = 0.01; - - //while(i*imgs < N*120){ - while (get_current_iteration(net) < net.max_batches) { - if (l.random && count++ % 10 == 0) { - float rand_coef = 1.4; - if (l.random != 1.0) rand_coef = l.random; - printf("Resizing, random_coef = %.2f \n", rand_coef); - float random_val = rand_scale(rand_coef); // *x or /x - int dim_w = roundl(random_val*init_w / net.resize_step + 1) * net.resize_step; - int dim_h = roundl(random_val*init_h / net.resize_step + 1) * net.resize_step; - if (random_val < 1 && (dim_w > init_w || dim_h > init_h)) dim_w = init_w, dim_h = init_h; - - int max_dim_w = roundl(rand_coef*init_w / net.resize_step + 1) * net.resize_step; - int max_dim_h = roundl(rand_coef*init_h / net.resize_step + 1) * net.resize_step; - - // at the beginning (check if enough memory) and at the end (calc rolling mean/variance) - if (avg_loss < 0 || get_current_iteration(net) > net.max_batches - 100) { - dim_w = max_dim_w; - dim_h = max_dim_h; - } - - if (dim_w < net.resize_step) dim_w = net.resize_step; - if (dim_h < net.resize_step) dim_h = net.resize_step; - int dim_b = (init_b * max_dim_w * max_dim_h) / (dim_w * dim_h); - int new_dim_b = (int)(dim_b * 0.8); - if (new_dim_b > init_b) dim_b = new_dim_b; - - args.w = dim_w; - args.h = dim_h; - - int k; - if (net.dynamic_minibatch) { - for (k = 0; k < ngpus; ++k) { - (*nets[k].seen) = init_b * net.subdivisions * get_current_iteration(net); // remove this line, when you will save to weights-file both: seen & cur_iteration - nets[k].batch = dim_b; - int j; - for (j = 0; j < nets[k].n; ++j) - nets[k].layers[j].batch = dim_b; - } - net.batch = dim_b; - imgs = net.batch * net.subdivisions * ngpus; - args.n = imgs; - printf("\n %d x %d (batch = %d) \n", dim_w, dim_h, net.batch); - } - else - printf("\n %d x %d \n", dim_w, dim_h); - - pthread_join(load_thread, 0); - train = buffer; - free_data(train); - load_thread = load_data(args); - - for (k = 0; k < ngpus; ++k) { - resize_network(nets + k, dim_w, dim_h); - } - net = nets[0]; - } - double time = what_time_is_it_now(); - pthread_join(load_thread, 0); - train = buffer; - if (net.track) { - net.sequential_subdivisions = get_current_seq_subdivisions(net); - args.threads = net.sequential_subdivisions * ngpus; - printf(" sequential_subdivisions = %d, sequence = %d \n", net.sequential_subdivisions, get_sequence_value(net)); - } - load_thread = load_data(args); - - /* - int k; - for(k = 0; k < l.max_boxes; ++k){ - box b = float_to_box(train.y.vals[10] + 1 + k*5); - if(!b.x) break; - printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); - } - image im = float_to_image(448, 448, 3, train.X.vals[10]); - int k; - for(k = 0; k < l.max_boxes; ++k){ - box b = float_to_box(train.y.vals[10] + 1 + k*5); - printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h); - draw_bbox(im, b, 8, 1,0,0); - } - save_image(im, "truth11"); - */ - - const double load_time = (what_time_is_it_now() - time); - printf("Loaded: %lf seconds", load_time); - if (load_time > 0.1 && avg_loss > 0) printf(" - performance bottleneck on CPU or Disk HDD/SSD"); - printf("\n"); - - time = what_time_is_it_now(); - float loss = 0; -#ifdef GPU - if (ngpus == 1) { - int wait_key = (dont_show) ? 0 : 1; - loss = train_network_waitkey(net, train, wait_key); - } - else { - loss = train_networks(nets, ngpus, train, 4); - } -#else - loss = train_network(net, train); -#endif - if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss; // if(-inf or nan) - avg_loss = avg_loss*.9 + loss*.1; - - const int iteration = get_current_iteration(net); - //i = get_current_batch(net); - - int calc_map_for_each = 4 * train_images_num / (net.batch * net.subdivisions); // calculate mAP for each 4 Epochs - calc_map_for_each = fmax(calc_map_for_each, 100); - int next_map_calc = iter_map + calc_map_for_each; - next_map_calc = fmax(next_map_calc, net.burn_in); - //next_map_calc = fmax(next_map_calc, 400); - if (calc_map) { - printf("\n (next mAP calculation at %d iterations) ", next_map_calc); - if (mean_average_precision > 0) printf("\n Last accuracy mAP@0.5 = %2.2f %%, best = %2.2f %% ", mean_average_precision * 100, best_map * 100); - } - - if (net.cudnn_half) { - if (iteration < net.burn_in * 3) fprintf(stderr, "\n Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in); - else fprintf(stderr, "\n Tensor Cores are used.\n"); - fflush(stderr); - } - printf("\n %d: %f, %f avg loss, %f rate, %lf seconds, %d images, %f hours left\n", iteration, loss, avg_loss, get_current_rate(net), (what_time_is_it_now() - time), iteration*imgs, avg_time); - fflush(stdout); - - int draw_precision = 0; - if (calc_map && (iteration >= next_map_calc || iteration == net.max_batches)) { - if (l.random) { - printf("Resizing to initial size: %d x %d ", init_w, init_h); - args.w = init_w; - args.h = init_h; - int k; - if (net.dynamic_minibatch) { - for (k = 0; k < ngpus; ++k) { - for (k = 0; k < ngpus; ++k) { - nets[k].batch = init_b; - int j; - for (j = 0; j < nets[k].n; ++j) - nets[k].layers[j].batch = init_b; - } - } - net.batch = init_b; - imgs = init_b * net.subdivisions * ngpus; - args.n = imgs; - printf("\n %d x %d (batch = %d) \n", init_w, init_h, init_b); - } - pthread_join(load_thread, 0); - free_data(train); - train = buffer; - load_thread = load_data(args); - for (k = 0; k < ngpus; ++k) { - resize_network(nets + k, init_w, init_h); - } - net = nets[0]; - } - - copy_weights_net(net, &net_map); - - // combine Training and Validation networks - //network net_combined = combine_train_valid_networks(net, net_map); - - iter_map = iteration; - mean_average_precision = validate_detector_map(datacfg, cfgfile, weightfile, 0.25, 0.5, 0, net.letter_box, &net_map);// &net_combined); - printf("\n mean_average_precision (mAP@0.5) = %f \n", mean_average_precision); - if (mean_average_precision > best_map) { - best_map = mean_average_precision; - printf("New best mAP!\n"); - char buff[256]; - sprintf(buff, "%s/%s_best.weights", backup_directory, base); - save_weights(net, buff); - } - - draw_precision = 1; - } - time_remaining = ((net.max_batches - iteration) / ngpus)*(what_time_is_it_now() - time + load_time) / 60 / 60; - // set initial value, even if resume training from 10000 iteration - if (avg_time < 0) avg_time = time_remaining; - else avg_time = alpha_time * time_remaining + (1 - alpha_time) * avg_time; -#ifdef OPENCV - draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, net.max_batches, mean_average_precision, draw_precision, "mAP%", dont_show, mjpeg_port, avg_time); -#endif // OPENCV - - //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) { - //if (i % 100 == 0) { - if (iteration >= (iter_save + 1000) || iteration % 1000 == 0) { - iter_save = iteration; -#ifdef GPU - if (ngpus != 1) sync_nets(nets, ngpus, 0); -#endif - char buff[256]; - sprintf(buff, "%s/%s_%d.weights", backup_directory, base, iteration); - save_weights(net, buff); - } - - if (iteration >= (iter_save_last + 100) || (iteration % 100 == 0 && iteration > 1)) { - iter_save_last = iteration; -#ifdef GPU - if (ngpus != 1) sync_nets(nets, ngpus, 0); -#endif - char buff[256]; - sprintf(buff, "%s/%s_last.weights", backup_directory, base); - save_weights(net, buff); - } - free_data(train); - } -#ifdef GPU - if (ngpus != 1) sync_nets(nets, ngpus, 0); -#endif - char buff[256]; - sprintf(buff, "%s/%s_final.weights", backup_directory, base); - save_weights(net, buff); - -#ifdef OPENCV - release_mat(&img); - destroy_all_windows_cv(); -#endif - - // free memory - pthread_join(load_thread, 0); - free_data(buffer); - - free_load_threads(&args); - - free(base); - free(paths); - free_list_contents(plist); - free_list(plist); - - free_list_contents_kvp(options); - free_list(options); - - for (k = 0; k < ngpus; ++k) free_network(nets[k]); - free(nets); - //free_network(net); - - if (calc_map) { - net_map.n = 0; - free_network(net_map); - } -} - - -static int get_coco_image_id(char *filename) -{ - char *p = strrchr(filename, '/'); - char *c = strrchr(filename, '_'); - if (c) p = c; - return atoi(p + 1); -} - -static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h) -{ - int i, j; - //int image_id = get_coco_image_id(image_path); - char *p = basecfg(image_path); - int image_id = atoi(p); - for (i = 0; i < num_boxes; ++i) { - float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; - float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; - float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; - float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; - - if (xmin < 0) xmin = 0; - if (ymin < 0) ymin = 0; - if (xmax > w) xmax = w; - if (ymax > h) ymax = h; - - float bx = xmin; - float by = ymin; - float bw = xmax - xmin; - float bh = ymax - ymin; - - for (j = 0; j < classes; ++j) { - if (dets[i].prob[j] > 0) { - char buff[1024]; - sprintf(buff, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]); - fprintf(fp, buff); - //printf("%s", buff); - } - } - } -} - -void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h) -{ - int i, j; - for (i = 0; i < total; ++i) { - float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1; - float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1; - float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1; - float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1; - - if (xmin < 1) xmin = 1; - if (ymin < 1) ymin = 1; - if (xmax > w) xmax = w; - if (ymax > h) ymax = h; - - for (j = 0; j < classes; ++j) { - if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j], - xmin, ymin, xmax, ymax); - } - } -} - -void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h) -{ - int i, j; - for (i = 0; i < total; ++i) { - float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; - float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; - float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; - float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; - - if (xmin < 0) xmin = 0; - if (ymin < 0) ymin = 0; - if (xmax > w) xmax = w; - if (ymax > h) ymax = h; - - for (j = 0; j < classes; ++j) { - int myclass = j; - if (dets[i].prob[myclass] > 0) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[myclass], - xmin, ymin, xmax, ymax); - } - } -} - -static void print_kitti_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h, char *outfile, char *prefix) -{ - char *kitti_ids[] = { "car", "pedestrian", "cyclist" }; - FILE *fpd = 0; - char buffd[1024]; - snprintf(buffd, 1024, "%s/%s/data/%s.txt", prefix, outfile, id); - - fpd = fopen(buffd, "w"); - int i, j; - for (i = 0; i < total; ++i) - { - float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; - float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; - float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; - float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; - - if (xmin < 0) xmin = 0; - if (ymin < 0) ymin = 0; - if (xmax > w) xmax = w; - if (ymax > h) ymax = h; - - for (j = 0; j < classes; ++j) - { - //if (dets[i].prob[j]) fprintf(fpd, "%s 0 0 0 %f %f %f %f -1 -1 -1 -1 0 0 0 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]); - if (dets[i].prob[j]) fprintf(fpd, "%s -1 -1 -10 %f %f %f %f -1 -1 -1 -1000 -1000 -1000 -10 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]); - } - } - fclose(fpd); -} - -static void eliminate_bdd(char *buf, char *a) -{ - int n = 0; - int i, k; - for (i = 0; buf[i] != '\0'; i++) - { - if (buf[i] == a[n]) - { - k = i; - while (buf[i] == a[n]) - { - if (a[++n] == '\0') - { - for (k; buf[k + n] != '\0'; k++) - { - buf[k] = buf[k + n]; - } - buf[k] = '\0'; - break; - } - i++; - } - n = 0; i--; - } - } -} - -static void get_bdd_image_id(char *filename) -{ - char *p = strrchr(filename, '/'); - eliminate_bdd(p, ".jpg"); - eliminate_bdd(p, "/"); - strcpy(filename, p); -} - -static void print_bdd_detections(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h) -{ - char *bdd_ids[] = { "bike" , "bus" , "car" , "motor" ,"person", "rider", "traffic light", "traffic sign", "train", "truck" }; - get_bdd_image_id(image_path); - int i, j; - - for (i = 0; i < num_boxes; ++i) - { - float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; - float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; - float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; - float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; - - if (xmin < 0) xmin = 0; - if (ymin < 0) ymin = 0; - if (xmax > w) xmax = w; - if (ymax > h) ymax = h; - - float bx1 = xmin; - float by1 = ymin; - float bx2 = xmax; - float by2 = ymax; - - for (j = 0; j < classes; ++j) - { - if (dets[i].prob[j]) - { - fprintf(fp, "\t{\n\t\t\"name\":\"%s\",\n\t\t\"category\":\"%s\",\n\t\t\"bbox\":[%f, %f, %f, %f],\n\t\t\"score\":%f\n\t},\n", image_path, bdd_ids[j], bx1, by1, bx2, by2, dets[i].prob[j]); - } - } - } -} - -void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile) -{ - int j; - list *options = read_data_cfg(datacfg); - char *valid_images = option_find_str(options, "valid", "data/train.list"); - char *name_list = option_find_str(options, "names", "data/names.list"); - char *prefix = option_find_str(options, "results", "results"); - char **names = get_labels(name_list); - char *mapf = option_find_str(options, "map", 0); - int *map = 0; - if (mapf) map = read_map(mapf); - - network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 - if (weightfile) { - load_weights(&net, weightfile); - } - //set_batch_network(&net, 1); - fuse_conv_batchnorm(net); - calculate_binary_weights(net); - fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); - srand(time(0)); - - list *plist = get_paths(valid_images); - char **paths = (char **)list_to_array(plist); - - layer l = net.layers[net.n - 1]; - int classes = l.classes; - - char buff[1024]; - char *type = option_find_str(options, "eval", "voc"); - FILE *fp = 0; - FILE **fps = 0; - int coco = 0; - int imagenet = 0; - int bdd = 0; - int kitti = 0; - - if (0 == strcmp(type, "coco")) { - if (!outfile) outfile = "coco_results"; - snprintf(buff, 1024, "%s/%s.json", prefix, outfile); - fp = fopen(buff, "w"); - fprintf(fp, "[\n"); - coco = 1; - } - else if (0 == strcmp(type, "bdd")) { - if (!outfile) outfile = "bdd_results"; - snprintf(buff, 1024, "%s/%s.json", prefix, outfile); - fp = fopen(buff, "w"); - fprintf(fp, "[\n"); - bdd = 1; - } - else if (0 == strcmp(type, "kitti")) { - char buff2[1024]; - if (!outfile) outfile = "kitti_results"; - printf("%s\n", outfile); - snprintf(buff, 1024, "%s/%s", prefix, outfile); - int mkd = make_directory(buff, 0777); - snprintf(buff2, 1024, "%s/%s/data", prefix, outfile); - int mkd2 = make_directory(buff2, 0777); - kitti = 1; - } - else if (0 == strcmp(type, "imagenet")) { - if (!outfile) outfile = "imagenet-detection"; - snprintf(buff, 1024, "%s/%s.txt", prefix, outfile); - fp = fopen(buff, "w"); - imagenet = 1; - classes = 200; - } - else { - if (!outfile) outfile = "comp4_det_test_"; - fps = (FILE**) xcalloc(classes, sizeof(FILE *)); - for (j = 0; j < classes; ++j) { - snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]); - fps[j] = fopen(buff, "w"); - } - } - - - int m = plist->size; - int i = 0; - int t; - - float thresh = .001; - float nms = .45; - - int nthreads = 4; - if (m < 4) nthreads = m; - image* val = (image*)xcalloc(nthreads, sizeof(image)); - image* val_resized = (image*)xcalloc(nthreads, sizeof(image)); - image* buf = (image*)xcalloc(nthreads, sizeof(image)); - image* buf_resized = (image*)xcalloc(nthreads, sizeof(image)); - pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t)); - - load_args args = { 0 }; - args.w = net.w; - args.h = net.h; - args.c = net.c; - args.type = IMAGE_DATA; - const int letter_box = net.letter_box; - if (letter_box) args.type = LETTERBOX_DATA; - - for (t = 0; t < nthreads; ++t) { - args.path = paths[i + t]; - args.im = &buf[t]; - args.resized = &buf_resized[t]; - thr[t] = load_data_in_thread(args); - } - time_t start = time(0); - for (i = nthreads; i < m + nthreads; i += nthreads) { - fprintf(stderr, "%d\n", i); - for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { - pthread_join(thr[t], 0); - val[t] = buf[t]; - val_resized[t] = buf_resized[t]; - } - for (t = 0; t < nthreads && i + t < m; ++t) { - args.path = paths[i + t]; - args.im = &buf[t]; - args.resized = &buf_resized[t]; - thr[t] = load_data_in_thread(args); - } - for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { - char *path = paths[i + t - nthreads]; - char *id = basecfg(path); - float *X = val_resized[t].data; - network_predict(net, X); - int w = val[t].w; - int h = val[t].h; - int nboxes = 0; - detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letter_box); - if (nms) { - if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); - else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); - } - - if (coco) { - print_cocos(fp, path, dets, nboxes, classes, w, h); - } - else if (imagenet) { - print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h); - } - else if (bdd) { - print_bdd_detections(fp, path, dets, nboxes, classes, w, h); - } - else if (kitti) { - print_kitti_detections(fps, id, dets, nboxes, classes, w, h, outfile, prefix); - } - else { - print_detector_detections(fps, id, dets, nboxes, classes, w, h); - } - - free_detections(dets, nboxes); - free(id); - free_image(val[t]); - free_image(val_resized[t]); - } - } - if (fps) { - for (j = 0; j < classes; ++j) { - fclose(fps[j]); - } - free(fps); - } - if (coco) { -#ifdef WIN32 - fseek(fp, -3, SEEK_CUR); -#else - fseek(fp, -2, SEEK_CUR); -#endif - fprintf(fp, "\n]\n"); - } - - if (bdd) { -#ifdef WIN32 - fseek(fp, -3, SEEK_CUR); -#else - fseek(fp, -2, SEEK_CUR); -#endif - fprintf(fp, "\n]\n"); - fclose(fp); - } - - if (fp) fclose(fp); - - if (val) free(val); - if (val_resized) free(val_resized); - if (thr) free(thr); - if (buf) free(buf); - if (buf_resized) free(buf_resized); - - fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)time(0) - start); -} - -void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) -{ - network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 - if (weightfile) { - load_weights(&net, weightfile); - } - //set_batch_network(&net, 1); - fuse_conv_batchnorm(net); - srand(time(0)); - - //list *plist = get_paths("data/coco_val_5k.list"); - list *options = read_data_cfg(datacfg); - char *valid_images = option_find_str(options, "valid", "data/train.txt"); - list *plist = get_paths(valid_images); - char **paths = (char **)list_to_array(plist); - - //layer l = net.layers[net.n - 1]; - - int j, k; - - int m = plist->size; - int i = 0; - - float thresh = .001; - float iou_thresh = .5; - float nms = .4; - - int total = 0; - int correct = 0; - int proposals = 0; - float avg_iou = 0; - - for (i = 0; i < m; ++i) { - char *path = paths[i]; - image orig = load_image(path, 0, 0, net.c); - image sized = resize_image(orig, net.w, net.h); - char *id = basecfg(path); - network_predict(net, sized.data); - int nboxes = 0; - int letterbox = 0; - detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox); - if (nms) do_nms_obj(dets, nboxes, 1, nms); - - char labelpath[4096]; - replace_image_to_label(path, labelpath); - - int num_labels = 0; - box_label *truth = read_boxes(labelpath, &num_labels); - for (k = 0; k < nboxes; ++k) { - if (dets[k].objectness > thresh) { - ++proposals; - } - } - for (j = 0; j < num_labels; ++j) { - ++total; - box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; - float best_iou = 0; - for (k = 0; k < nboxes; ++k) { - float iou = box_iou(dets[k].bbox, t); - if (dets[k].objectness > thresh && iou > best_iou) { - best_iou = iou; - } - } - avg_iou += best_iou; - if (best_iou > iou_thresh) { - ++correct; - } - } - //fprintf(stderr, " %s - %s - ", paths[i], labelpath); - fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total); - free(id); - free_image(orig); - free_image(sized); - } -} - -typedef struct { - box b; - float p; - int class_id; - int image_index; - int truth_flag; - int unique_truth_index; -} box_prob; - -int detections_comparator(const void *pa, const void *pb) -{ - box_prob a = *(const box_prob *)pa; - box_prob b = *(const box_prob *)pb; - float diff = a.p - b.p; - if (diff < 0) return 1; - else if (diff > 0) return -1; - return 0; -} - -float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, const int map_points, int letter_box, network *existing_net) -{ - int j; - list *options = read_data_cfg(datacfg); - char *valid_images = option_find_str(options, "valid", "data/train.txt"); - char *difficult_valid_images = option_find_str(options, "difficult", NULL); - char *name_list = option_find_str(options, "names", "data/names.list"); - int names_size = 0; - char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); - //char *mapf = option_find_str(options, "map", 0); - //int *map = 0; - //if (mapf) map = read_map(mapf); - FILE* reinforcement_fd = NULL; - - network net; - //int initial_batch; - if (existing_net) { - char *train_images = option_find_str(options, "train", "data/train.txt"); - valid_images = option_find_str(options, "valid", train_images); - net = *existing_net; - remember_network_recurrent_state(*existing_net); - free_network_recurrent_state(*existing_net); - } - else { - net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 - if (weightfile) { - load_weights(&net, weightfile); - } - //set_batch_network(&net, 1); - fuse_conv_batchnorm(net); - calculate_binary_weights(net); - } - if (net.layers[net.n - 1].classes != names_size) { - printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", - name_list, names_size, net.layers[net.n - 1].classes, cfgfile); - getchar(); - } - srand(time(0)); - printf("\n calculation mAP (mean average precision)...\n"); - - list *plist = get_paths(valid_images); - char **paths = (char **)list_to_array(plist); - - char **paths_dif = NULL; - if (difficult_valid_images) { - list *plist_dif = get_paths(difficult_valid_images); - paths_dif = (char **)list_to_array(plist_dif); - } - - - layer l = net.layers[net.n - 1]; - int classes = l.classes; - - int m = plist->size; - int i = 0; - int t; - - const float thresh = .005; - const float nms = .45; - //const float iou_thresh = 0.5; - - int nthreads = 4; - if (m < 4) nthreads = m; - image* val = (image*)xcalloc(nthreads, sizeof(image)); - image* val_resized = (image*)xcalloc(nthreads, sizeof(image)); - image* buf = (image*)xcalloc(nthreads, sizeof(image)); - image* buf_resized = (image*)xcalloc(nthreads, sizeof(image)); - pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t)); - - load_args args = { 0 }; - args.w = net.w; - args.h = net.h; - args.c = net.c; - if (letter_box) args.type = LETTERBOX_DATA; - else args.type = IMAGE_DATA; - - //const float thresh_calc_avg_iou = 0.24; - float avg_iou = 0; - int tp_for_thresh = 0; - int fp_for_thresh = 0; - - box_prob* detections = (box_prob*)xcalloc(1, sizeof(box_prob)); - int detections_count = 0; - int unique_truth_count = 0; - - int* truth_classes_count = (int*)xcalloc(classes, sizeof(int)); - - // For multi-class precision and recall computation - float *avg_iou_per_class = (float*)xcalloc(classes, sizeof(float)); - int *tp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int)); - int *fp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int)); - - for (t = 0; t < nthreads; ++t) { - args.path = paths[i + t]; - args.im = &buf[t]; - args.resized = &buf_resized[t]; - thr[t] = load_data_in_thread(args); - } - time_t start = time(0); - for (i = nthreads; i < m + nthreads; i += nthreads) { - fprintf(stderr, "\r%d", i); - for (t = 0; t < nthreads && (i + t - nthreads) < m; ++t) { - pthread_join(thr[t], 0); - val[t] = buf[t]; - val_resized[t] = buf_resized[t]; - } - for (t = 0; t < nthreads && (i + t) < m; ++t) { - args.path = paths[i + t]; - args.im = &buf[t]; - args.resized = &buf_resized[t]; - thr[t] = load_data_in_thread(args); - } - for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { - const int image_index = i + t - nthreads; - char *path = paths[image_index]; - char *id = basecfg(path); - float *X = val_resized[t].data; - network_predict(net, X); - - int nboxes = 0; - float hier_thresh = 0; - detection *dets; - if (args.type == LETTERBOX_DATA) { - dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); - } - else { - dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letter_box); - } - //detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); // for letter_box=1 - if (nms) { - if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); - else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); - } - //if (nms) do_nms_obj(dets, nboxes, l.classes, nms); - - char labelpath[4096]; - replace_image_to_label(path, labelpath); - int num_labels = 0; - box_label *truth = read_boxes(labelpath, &num_labels); - int j; - for (j = 0; j < num_labels; ++j) { - truth_classes_count[truth[j].id]++; - } - - // difficult - box_label *truth_dif = NULL; - int num_labels_dif = 0; - if (paths_dif) - { - char *path_dif = paths_dif[image_index]; - - char labelpath_dif[4096]; - replace_image_to_label(path_dif, labelpath_dif); - - truth_dif = read_boxes(labelpath_dif, &num_labels_dif); - } - - const int checkpoint_detections_count = detections_count; - - int i; - for (i = 0; i < nboxes; ++i) { - - int class_id; - for (class_id = 0; class_id < classes; ++class_id) { - float prob = dets[i].prob[class_id]; - if (prob > 0) { - detections_count++; - detections = (box_prob*)xrealloc(detections, detections_count * sizeof(box_prob)); - detections[detections_count - 1].b = dets[i].bbox; - detections[detections_count - 1].p = prob; - detections[detections_count - 1].image_index = image_index; - detections[detections_count - 1].class_id = class_id; - detections[detections_count - 1].truth_flag = 0; - detections[detections_count - 1].unique_truth_index = -1; - - int truth_index = -1; - float max_iou = 0; - for (j = 0; j < num_labels; ++j) - { - box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; - //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n", - // box_iou(dets[i].bbox, t), prob, class_id, truth[j].id); - float current_iou = box_iou(dets[i].bbox, t); - if (current_iou > iou_thresh && class_id == truth[j].id) { - if (current_iou > max_iou) { - max_iou = current_iou; - truth_index = unique_truth_count + j; - } - } - } - - // best IoU - if (truth_index > -1) { - detections[detections_count - 1].truth_flag = 1; - detections[detections_count - 1].unique_truth_index = truth_index; - } - else { - // if object is difficult then remove detection - for (j = 0; j < num_labels_dif; ++j) { - box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h }; - float current_iou = box_iou(dets[i].bbox, t); - if (current_iou > iou_thresh && class_id == truth_dif[j].id) { - --detections_count; - break; - } - } - } - - // calc avg IoU, true-positives, false-positives for required Threshold - if (prob > thresh_calc_avg_iou) { - int z, found = 0; - for (z = checkpoint_detections_count; z < detections_count - 1; ++z) { - if (detections[z].unique_truth_index == truth_index) { - found = 1; break; - } - } - - if (truth_index > -1 && found == 0) { - avg_iou += max_iou; - ++tp_for_thresh; - avg_iou_per_class[class_id] += max_iou; - tp_for_thresh_per_class[class_id]++; - } - else{ - fp_for_thresh++; - fp_for_thresh_per_class[class_id]++; - } - } - } - } - } - - unique_truth_count += num_labels; - - //static int previous_errors = 0; - //int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh); - //int errors_in_this_image = total_errors - previous_errors; - //previous_errors = total_errors; - //if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb"); - //char buff[1000]; - //sprintf(buff, "%s\n", path); - //if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd); - - free_detections(dets, nboxes); - free(id); - free_image(val[t]); - free_image(val_resized[t]); - } - } - - //for (t = 0; t < nthreads; ++t) { - // pthread_join(thr[t], 0); - //} - - if ((tp_for_thresh + fp_for_thresh) > 0) - avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); - - int class_id; - for(class_id = 0; class_id < classes; class_id++){ - if ((tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]) > 0) - avg_iou_per_class[class_id] = avg_iou_per_class[class_id] / (tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]); - } - - // SORT(detections) - qsort(detections, detections_count, sizeof(box_prob), detections_comparator); - - typedef struct { - double precision; - double recall; - int tp, fp, fn; - } pr_t; - - // for PR-curve - pr_t** pr = (pr_t**)xcalloc(classes, sizeof(pr_t*)); - for (i = 0; i < classes; ++i) { - pr[i] = (pr_t*)xcalloc(detections_count, sizeof(pr_t)); - } - printf("\n detections_count = %d, unique_truth_count = %d \n", detections_count, unique_truth_count); - - - int* detection_per_class_count = (int*)xcalloc(classes, sizeof(int)); - for (j = 0; j < detections_count; ++j) { - detection_per_class_count[detections[j].class_id]++; - } - - int* truth_flags = (int*)xcalloc(unique_truth_count, sizeof(int)); - - int rank; - for (rank = 0; rank < detections_count; ++rank) { - if (rank % 100 == 0) - printf(" rank = %d of ranks = %d \r", rank, detections_count); - - if (rank > 0) { - int class_id; - for (class_id = 0; class_id < classes; ++class_id) { - pr[class_id][rank].tp = pr[class_id][rank - 1].tp; - pr[class_id][rank].fp = pr[class_id][rank - 1].fp; - } - } - - box_prob d = detections[rank]; - // if (detected && isn't detected before) - if (d.truth_flag == 1) { - if (truth_flags[d.unique_truth_index] == 0) - { - truth_flags[d.unique_truth_index] = 1; - pr[d.class_id][rank].tp++; // true-positive - } else - pr[d.class_id][rank].fp++; - } - else { - pr[d.class_id][rank].fp++; // false-positive - } - - for (i = 0; i < classes; ++i) - { - const int tp = pr[i][rank].tp; - const int fp = pr[i][rank].fp; - const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive - pr[i][rank].fn = fn; - - if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp); - else pr[i][rank].precision = 0; - - if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn); - else pr[i][rank].recall = 0; - - if (rank == (detections_count - 1) && detection_per_class_count[i] != (tp + fp)) { // check for last rank - printf(" class_id: %d - detections = %d, tp+fp = %d, tp = %d, fp = %d \n", i, detection_per_class_count[i], tp+fp, tp, fp); - } - } - } - - free(truth_flags); - - - double mean_average_precision = 0; - - for (i = 0; i < classes; ++i) { - double avg_precision = 0; - - // MS COCO - uses 101-Recall-points on PR-chart. - // PascalVOC2007 - uses 11-Recall-points on PR-chart. - // PascalVOC2010-2012 - uses Area-Under-Curve on PR-chart. - // ImageNet - uses Area-Under-Curve on PR-chart. - - // correct mAP calculation: ImageNet, PascalVOC 2010-2012 - if (map_points == 0) - { - double last_recall = pr[i][detections_count - 1].recall; - double last_precision = pr[i][detections_count - 1].precision; - for (rank = detections_count - 2; rank >= 0; --rank) - { - double delta_recall = last_recall - pr[i][rank].recall; - last_recall = pr[i][rank].recall; - - if (pr[i][rank].precision > last_precision) { - last_precision = pr[i][rank].precision; - } - - avg_precision += delta_recall * last_precision; - } - } - // MSCOCO - 101 Recall-points, PascalVOC - 11 Recall-points - else - { - int point; - for (point = 0; point < map_points; ++point) { - double cur_recall = point * 1.0 / (map_points-1); - double cur_precision = 0; - for (rank = 0; rank < detections_count; ++rank) - { - if (pr[i][rank].recall >= cur_recall) { // > or >= - if (pr[i][rank].precision > cur_precision) { - cur_precision = pr[i][rank].precision; - } - } - } - //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision); - - avg_precision += cur_precision; - } - avg_precision = avg_precision / map_points; - } - - printf("class_id = %d, name = %s, ap = %2.2f%% \t (TP = %d, FP = %d) \n", - i, names[i], avg_precision * 100, tp_for_thresh_per_class[i], fp_for_thresh_per_class[i]); - - float class_precision = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)fp_for_thresh_per_class[i]); - float class_recall = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)(truth_classes_count[i] - tp_for_thresh_per_class[i])); - //printf("Precision = %1.2f, Recall = %1.2f, avg IOU = %2.2f%% \n\n", class_precision, class_recall, avg_iou_per_class[i]); - - mean_average_precision += avg_precision; - } - - const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh); - const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh)); - const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall); - printf("\n for conf_thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n", - thresh_calc_avg_iou, cur_precision, cur_recall, f1_score); - - printf(" for conf_thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", - thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100); - - mean_average_precision = mean_average_precision / classes; - printf("\n IoU threshold = %2.0f %%, ", iou_thresh * 100); - if (map_points) printf("used %d Recall-points \n", map_points); - else printf("used Area-Under-Curve for each unique Recall \n"); - - printf(" mean average precision (mAP@%0.2f) = %f, or %2.2f %% \n", iou_thresh, mean_average_precision, mean_average_precision * 100); - - for (i = 0; i < classes; ++i) { - free(pr[i]); - } - free(pr); - free(detections); - free(truth_classes_count); - free(detection_per_class_count); - - free(avg_iou_per_class); - free(tp_for_thresh_per_class); - free(fp_for_thresh_per_class); - - fprintf(stderr, "Total Detection Time: %d Seconds\n", (int)(time(0) - start)); - printf("\nSet -points flag:\n"); - printf(" `-points 101` for MS COCO \n"); - printf(" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n"); - printf(" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n"); - if (reinforcement_fd != NULL) fclose(reinforcement_fd); - - // free memory - free_ptrs((void**)names, net.layers[net.n - 1].classes); - free_list_contents_kvp(options); - free_list(options); - - if (existing_net) { - //set_batch_network(&net, initial_batch); - //free_network_recurrent_state(*existing_net); - restore_network_recurrent_state(*existing_net); - //randomize_network_recurrent_state(*existing_net); - } - else { - free_network(net); - } - if (val) free(val); - if (val_resized) free(val_resized); - if (thr) free(thr); - if (buf) free(buf); - if (buf_resized) free(buf_resized); - - return mean_average_precision; -} - -typedef struct { - float w, h; -} anchors_t; - -int anchors_comparator(const void *pa, const void *pb) -{ - anchors_t a = *(const anchors_t *)pa; - anchors_t b = *(const anchors_t *)pb; - float diff = b.w*b.h - a.w*a.h; - if (diff < 0) return 1; - else if (diff > 0) return -1; - return 0; -} - -int anchors_data_comparator(const float **pa, const float **pb) -{ - float *a = (float *)*pa; - float *b = (float *)*pb; - float diff = b[0] * b[1] - a[0] * a[1]; - if (diff < 0) return 1; - else if (diff > 0) return -1; - return 0; -} - - -void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) -{ - printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height); - if (width < 0 || height < 0) { - printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 \n"); - printf("Error: set width and height \n"); - return; - } - - //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 }; - float* rel_width_height_array = (float*)xcalloc(1000, sizeof(float)); - - - list *options = read_data_cfg(datacfg); - char *train_images = option_find_str(options, "train", "data/train.list"); - list *plist = get_paths(train_images); - int number_of_images = plist->size; - char **paths = (char **)list_to_array(plist); - - int classes = option_find_int(options, "classes", 1); - int* counter_per_class = (int*)xcalloc(classes, sizeof(int)); - - srand(time(0)); - int number_of_boxes = 0; - printf(" read labels from %d images \n", number_of_images); - - int i, j; - for (i = 0; i < number_of_images; ++i) { - char *path = paths[i]; - char labelpath[4096]; - replace_image_to_label(path, labelpath); - - int num_labels = 0; - box_label *truth = read_boxes(labelpath, &num_labels); - //printf(" new path: %s \n", labelpath); - char *buff = (char*)xcalloc(6144, sizeof(char)); - for (j = 0; j < num_labels; ++j) - { - if (truth[j].x > 1 || truth[j].x <= 0 || truth[j].y > 1 || truth[j].y <= 0 || - truth[j].w > 1 || truth[j].w <= 0 || truth[j].h > 1 || truth[j].h <= 0) - { - printf("\n\nWrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f \n", - labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h); - sprintf(buff, "echo \"Wrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f\" >> bad_label.list", - labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h); - system(buff); - if (check_mistakes) getchar(); - } - if (truth[j].id >= classes) { - classes = truth[j].id + 1; - counter_per_class = (int*)xrealloc(counter_per_class, classes * sizeof(int)); - } - counter_per_class[truth[j].id]++; - - number_of_boxes++; - rel_width_height_array = (float*)xrealloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float)); - - rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width; - rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height; - printf("\r loaded \t image: %d \t box: %d", i + 1, number_of_boxes); - } - free(buff); - } - printf("\n all loaded. \n"); - printf("\n calculating k-means++ ..."); - - matrix boxes_data; - model anchors_data; - boxes_data = make_matrix(number_of_boxes, 2); - - printf("\n"); - for (i = 0; i < number_of_boxes; ++i) { - boxes_data.vals[i][0] = rel_width_height_array[i * 2]; - boxes_data.vals[i][1] = rel_width_height_array[i * 2 + 1]; - //if (w > 410 || h > 410) printf("i:%d, w = %f, h = %f \n", i, w, h); - } - - // Is used: distance(box, centroid) = 1 - IoU(box, centroid) - - // K-means - anchors_data = do_kmeans(boxes_data, num_of_clusters); - - qsort((void*)anchors_data.centers.vals, num_of_clusters, 2 * sizeof(float), (__compar_fn_t)anchors_data_comparator); - - //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 - //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 }; - - printf("\n"); - float avg_iou = 0; - for (i = 0; i < number_of_boxes; ++i) { - float box_w = rel_width_height_array[i * 2]; //points->data.fl[i * 2]; - float box_h = rel_width_height_array[i * 2 + 1]; //points->data.fl[i * 2 + 1]; - //int cluster_idx = labels->data.i[i]; - int cluster_idx = 0; - float min_dist = FLT_MAX; - float best_iou = 0; - for (j = 0; j < num_of_clusters; ++j) { - float anchor_w = anchors_data.centers.vals[j][0]; // centers->data.fl[j * 2]; - float anchor_h = anchors_data.centers.vals[j][1]; // centers->data.fl[j * 2 + 1]; - float min_w = (box_w < anchor_w) ? box_w : anchor_w; - float min_h = (box_h < anchor_h) ? box_h : anchor_h; - float box_intersect = min_w*min_h; - float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect; - float iou = box_intersect / box_union; - float distance = 1 - iou; - if (distance < min_dist) { - min_dist = distance; - cluster_idx = j; - best_iou = iou; - } - } - - float anchor_w = anchors_data.centers.vals[cluster_idx][0]; //centers->data.fl[cluster_idx * 2]; - float anchor_h = anchors_data.centers.vals[cluster_idx][1]; //centers->data.fl[cluster_idx * 2 + 1]; - if (best_iou > 1 || best_iou < 0) { // || box_w > width || box_h > height) { - printf(" Wrong label: i = %d, box_w = %f, box_h = %f, anchor_w = %f, anchor_h = %f, iou = %f \n", - i, box_w, box_h, anchor_w, anchor_h, best_iou); - } - else avg_iou += best_iou; - } - - char buff[1024]; - FILE* fwc = fopen("counters_per_class.txt", "wb"); - if (fwc) { - sprintf(buff, "counters_per_class = "); - printf("\n%s", buff); - fwrite(buff, sizeof(char), strlen(buff), fwc); - for (i = 0; i < classes; ++i) { - sprintf(buff, "%d", counter_per_class[i]); - printf("%s", buff); - fwrite(buff, sizeof(char), strlen(buff), fwc); - if (i < classes - 1) { - fwrite(", ", sizeof(char), 2, fwc); - printf(", "); - } - } - printf("\n"); - fclose(fwc); - } - else { - printf(" Error: file counters_per_class.txt can't be open \n"); - } - - avg_iou = 100 * avg_iou / number_of_boxes; - printf("\n avg IoU = %2.2f %% \n", avg_iou); - - - FILE* fw = fopen("anchors.txt", "wb"); - if (fw) { - printf("\nSaving anchors to the file: anchors.txt \n"); - printf("anchors = "); - for (i = 0; i < num_of_clusters; ++i) { - float anchor_w = anchors_data.centers.vals[i][0]; //centers->data.fl[i * 2]; - float anchor_h = anchors_data.centers.vals[i][1]; //centers->data.fl[i * 2 + 1]; - if (width > 32) sprintf(buff, "%3.0f,%3.0f", anchor_w, anchor_h); - else sprintf(buff, "%2.4f,%2.4f", anchor_w, anchor_h); - printf("%s", buff); - fwrite(buff, sizeof(char), strlen(buff), fw); - if (i + 1 < num_of_clusters) { - fwrite(", ", sizeof(char), 2, fw); - printf(", "); - } - } - printf("\n"); - fclose(fw); - } - else { - printf(" Error: file anchors.txt can't be open \n"); - } - - if (show) { -#ifdef OPENCV - show_acnhors(number_of_boxes, num_of_clusters, rel_width_height_array, anchors_data, width, height); -#endif // OPENCV - } - free(rel_width_height_array); - free(counter_per_class); - - getchar(); -} - - -void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, - float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers) -{ - list *options = read_data_cfg(datacfg); - char *name_list = option_find_str(options, "names", "data/names.list"); - int names_size = 0; - char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); - - image **alphabet = load_alphabet(); - network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 - if (weightfile) { - load_weights(&net, weightfile); - } - net.benchmark_layers = benchmark_layers; - fuse_conv_batchnorm(net); - calculate_binary_weights(net); - if (net.layers[net.n - 1].classes != names_size) { - printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", - name_list, names_size, net.layers[net.n - 1].classes, cfgfile); - if (net.layers[net.n - 1].classes > names_size) getchar(); - } - srand(2222222); - char buff[256]; - char *input = buff; - char *json_buf = NULL; - int json_image_id = 0; - FILE* json_file = NULL; - if (outfile) { - json_file = fopen(outfile, "wb"); - if(!json_file) { - error("fopen failed"); - } - char *tmp = "[\n"; - fwrite(tmp, sizeof(char), strlen(tmp), json_file); - } - int j; - float nms = .45; // 0.4F - while (1) { - if (filename) { - strncpy(input, filename, 256); - if (strlen(input) > 0) - if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; - } - else { - printf("Enter Image Path: "); - fflush(stdout); - input = fgets(input, 256, stdin); - if (!input) break; - strtok(input, "\n"); - } - //image im; - //image sized = load_image_resize(input, net.w, net.h, net.c, &im); - image im = load_image(input, 0, 0, net.c); - image sized; - if(letter_box) sized = letterbox_image(im, net.w, net.h); - else sized = resize_image(im, net.w, net.h); - layer l = net.layers[net.n - 1]; - - //box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); - //float **probs = calloc(l.w*l.h*l.n, sizeof(float*)); - //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)xcalloc(l.classes, sizeof(float)); - - float *X = sized.data; - - //time= what_time_is_it_now(); - double time = get_time_point(); - network_predict(net, X); - //network_predict_image(&net, im); letterbox = 1; - printf("%s: Predicted in %lf milli-seconds.\n", input, ((double)get_time_point() - time) / 1000); - //printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time)); - - int nboxes = 0; - detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); - if (nms) { - if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); - else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); - } - draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output); - save_image(im, "predictions"); - if (!dont_show) { - show_image(im, "predictions"); - } - - if (json_file) { - if (json_buf) { - char *tmp = ", \n"; - fwrite(tmp, sizeof(char), strlen(tmp), json_file); - } - ++json_image_id; - json_buf = detection_to_json(dets, nboxes, l.classes, names, json_image_id, input); - - fwrite(json_buf, sizeof(char), strlen(json_buf), json_file); - free(json_buf); - } - - // pseudo labeling concept - fast.ai - if (save_labels) - { - char labelpath[4096]; - replace_image_to_label(input, labelpath); - - FILE* fw = fopen(labelpath, "wb"); - int i; - for (i = 0; i < nboxes; ++i) { - char buff[1024]; - int class_id = -1; - float prob = 0; - for (j = 0; j < l.classes; ++j) { - if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) { - prob = dets[i].prob[j]; - class_id = j; - } - } - if (class_id >= 0) { - sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h); - fwrite(buff, sizeof(char), strlen(buff), fw); - } - } - fclose(fw); - } - - free_detections(dets, nboxes); - free_image(im); - free_image(sized); - - if (!dont_show) { - wait_until_press_key_cv(); - destroy_all_windows_cv(); - } - - if (filename) break; - } - - if (json_file) { - char *tmp = "\n]"; - fwrite(tmp, sizeof(char), strlen(tmp), json_file); - fclose(json_file); - } - - // free memory - free_ptrs((void**)names, net.layers[net.n - 1].classes); - free_list_contents_kvp(options); - free_list(options); - - int i; - const int nsize = 8; - for (j = 0; j < nsize; ++j) { - for (i = 32; i < 127; ++i) { - free_image(alphabet[j][i]); - } - free(alphabet[j]); - } - free(alphabet); - - free_network(net); -} - -#if defined(OPENCV) && defined(GPU) - -// adversarial attack dnn -void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num, - int letter_box, int benchmark_layers) -{ - list *options = read_data_cfg(datacfg); - char *name_list = option_find_str(options, "names", "data/names.list"); - int names_size = 0; - char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); - - image **alphabet = load_alphabet(); - network net = parse_network_cfg(cfgfile);// parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 - net.adversarial = 1; - set_batch_network(&net, 1); - if (weightfile) { - load_weights(&net, weightfile); - } - net.benchmark_layers = benchmark_layers; - //fuse_conv_batchnorm(net); - //calculate_binary_weights(net); - if (net.layers[net.n - 1].classes != names_size) { - printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", - name_list, names_size, net.layers[net.n - 1].classes, cfgfile); - if (net.layers[net.n - 1].classes > names_size) getchar(); - } - - srand(2222222); - char buff[256]; - char *input = buff; - - int j; - float nms = .45; // 0.4F - while (1) { - if (filename) { - strncpy(input, filename, 256); - if (strlen(input) > 0) - if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; - } - else { - printf("Enter Image Path: "); - fflush(stdout); - input = fgets(input, 256, stdin); - if (!input) break; - strtok(input, "\n"); - } - //image im; - //image sized = load_image_resize(input, net.w, net.h, net.c, &im); - image im = load_image(input, 0, 0, net.c); - image sized; - if (letter_box) sized = letterbox_image(im, net.w, net.h); - else sized = resize_image(im, net.w, net.h); - - image src_sized = copy_image(sized); - - layer l = net.layers[net.n - 1]; - net.num_boxes = l.max_boxes; - int num_truth = l.truths; - float *truth_cpu = (float *)xcalloc(num_truth, sizeof(float)); - - int *it_num_set = (int *)xcalloc(1, sizeof(int)); - float *lr_set = (float *)xcalloc(1, sizeof(float)); - int *boxonly = (int *)xcalloc(1, sizeof(int)); - - cv_draw_object(sized, truth_cpu, net.num_boxes, num_truth, it_num_set, lr_set, boxonly, l.classes, names); - - net.learning_rate = *lr_set; - it_num = *it_num_set; - - float *X = sized.data; - - mat_cv* img = NULL; - float max_img_loss = 5; - int number_of_lines = 100; - int img_size = 1000; - char windows_name[100]; - char *base = basecfg(cfgfile); - sprintf(windows_name, "chart_%s.png", base); - img = draw_train_chart(windows_name, max_img_loss, it_num, number_of_lines, img_size, dont_show, NULL); - - int iteration; - for (iteration = 0; iteration < it_num; ++iteration) - { - forward_backward_network_gpu(net, X, truth_cpu); - - float avg_loss = get_network_cost(net); - draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, it_num, 0, 0, "mAP%", dont_show, 0, 0); - - float inv_loss = 1.0 / max_val_cmp(0.01, avg_loss); - //net.learning_rate = *lr_set * inv_loss; - - if (*boxonly) { - int dw = truth_cpu[2] * sized.w, dh = truth_cpu[3] * sized.h; - int dx = truth_cpu[0] * sized.w - dw / 2, dy = truth_cpu[1] * sized.h - dh / 2; - image crop = crop_image(sized, dx, dy, dw, dh); - copy_image_inplace(src_sized, sized); - embed_image(crop, sized, dx, dy); - } - - show_image_cv(sized, "image_optimization"); - wait_key_cv(20); - } - - net.train = 0; - quantize_image(sized); - network_predict(net, X); - - save_image_png(sized, "drawn"); - //sized = load_image("drawn.png", 0, 0, net.c); - - int nboxes = 0; - detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, 0, 0, 1, &nboxes, letter_box); - if (nms) { - if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); - else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); - } - draw_detections_v3(sized, dets, nboxes, thresh, names, alphabet, l.classes, 1); - save_image(sized, "pre_predictions"); - if (!dont_show) { - show_image(sized, "pre_predictions"); - } - - free_detections(dets, nboxes); - free_image(im); - free_image(sized); - free_image(src_sized); - - if (!dont_show) { - wait_until_press_key_cv(); - destroy_all_windows_cv(); - } - - free(lr_set); - free(it_num_set); - - if (filename) break; - } - - // free memory - free_ptrs((void**)names, net.layers[net.n - 1].classes); - free_list_contents_kvp(options); - free_list(options); - - int i; - const int nsize = 8; - for (j = 0; j < nsize; ++j) { - for (i = 32; i < 127; ++i) { - free_image(alphabet[j][i]); - } - free(alphabet[j]); - } - free(alphabet); - - free_network(net); -} -#else // defined(OPENCV) && defined(GPU) -void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num, - int letter_box, int benchmark_layers) -{ - printf(" ./darknet detector draw ... can't be used without OpenCV and CUDA! \n"); - getchar(); -} -#endif // defined(OPENCV) && defined(GPU) - -void run_detector(int argc, char **argv) -{ - int dont_show = find_arg(argc, argv, "-dont_show"); - int benchmark = find_arg(argc, argv, "-benchmark"); - int benchmark_layers = find_arg(argc, argv, "-benchmark_layers"); - //if (benchmark_layers) benchmark = 1; - if (benchmark) dont_show = 1; - int show = find_arg(argc, argv, "-show"); - int letter_box = find_arg(argc, argv, "-letter_box"); - int calc_map = find_arg(argc, argv, "-map"); - int map_points = find_int_arg(argc, argv, "-points", 0); - check_mistakes = find_arg(argc, argv, "-check_mistakes"); - int show_imgs = find_arg(argc, argv, "-show_imgs"); - int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1); - int dontdraw_bbox = find_arg(argc, argv, "-dontdraw_bbox"); - int json_port = find_int_arg(argc, argv, "-json_port", -1); - char *http_post_host = find_char_arg(argc, argv, "-http_post_host", 0); - int time_limit_sec = find_int_arg(argc, argv, "-time_limit_sec", 0); - char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); - char *outfile = find_char_arg(argc, argv, "-out", 0); - char *prefix = find_char_arg(argc, argv, "-prefix", 0); - float thresh = find_float_arg(argc, argv, "-thresh", .25); // 0.24 - float iou_thresh = find_float_arg(argc, argv, "-iou_thresh", .5); // 0.5 for mAP - float hier_thresh = find_float_arg(argc, argv, "-hier", .5); - int cam_index = find_int_arg(argc, argv, "-c", 0); - int frame_skip = find_int_arg(argc, argv, "-s", 0); - int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); - int width = find_int_arg(argc, argv, "-width", -1); - int height = find_int_arg(argc, argv, "-height", -1); - // extended output in test mode (output of rect bound coords) - // and for recall mode (extended output table-like format with results for best_class fit) - int ext_output = find_arg(argc, argv, "-ext_output"); - int save_labels = find_arg(argc, argv, "-save_labels"); - char* chart_path = find_char_arg(argc, argv, "-chart", 0); - if (argc < 4) { - fprintf(stderr, "usage: %s %s [train/test/valid/demo/map] [data] [cfg] [weights (optional)]\n", argv[0], argv[1]); - return; - } - char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); - int *gpus = 0; - int gpu = 0; - int ngpus = 0; - if (gpu_list) { - printf("%s\n", gpu_list); - int len = (int)strlen(gpu_list); - ngpus = 1; - int i; - for (i = 0; i < len; ++i) { - if (gpu_list[i] == ',') ++ngpus; - } - gpus = (int*)xcalloc(ngpus, sizeof(int)); - for (i = 0; i < ngpus; ++i) { - gpus[i] = atoi(gpu_list); - gpu_list = strchr(gpu_list, ',') + 1; - } - } - else { - gpu = gpu_index; - gpus = &gpu; - ngpus = 1; - } - - int clear = find_arg(argc, argv, "-clear"); - - char *datacfg = argv[3]; - char *cfg = argv[4]; - char *weights = (argc > 5) ? argv[5] : 0; - if (weights) - if (strlen(weights) > 0) - if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; - char *filename = (argc > 6) ? argv[6] : 0; - if (0 == strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels, outfile, letter_box, benchmark_layers); - else if (0 == strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show, calc_map, mjpeg_port, show_imgs, benchmark_layers, chart_path); - else if (0 == strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile); - else if (0 == strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); - else if (0 == strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh, iou_thresh, map_points, letter_box, NULL); - else if (0 == strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show); - else if (0 == strcmp(argv[2], "draw")) { - int it_num = 100; - draw_object(datacfg, cfg, weights, filename, thresh, dont_show, it_num, letter_box, benchmark_layers); - } - else if (0 == strcmp(argv[2], "demo")) { - list *options = read_data_cfg(datacfg); - int classes = option_find_int(options, "classes", 20); - char *name_list = option_find_str(options, "names", "data/names.list"); - char **names = get_labels(name_list); - if (filename) - if (strlen(filename) > 0) - if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; - demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, - mjpeg_port, dontdraw_bbox, json_port, dont_show, ext_output, letter_box, time_limit_sec, http_post_host, benchmark, benchmark_layers); - - free_list_contents_kvp(options); - free_list(options); - } - else printf(" There isn't such command: %s", argv[2]); - - if (gpus && gpu_list && ngpus > 1) free(gpus); -} +#include <stdlib.h> +#include "darknet.h" +#include "network.h" +#include "region_layer.h" +#include "cost_layer.h" +#include "utils.h" +#include "parser.h" +#include "box.h" +#include "demo.h" +#include "option_list.h" + +#ifndef __COMPAR_FN_T +#define __COMPAR_FN_T +typedef int (*__compar_fn_t)(const void*, const void*); +#ifdef __USE_GNU +typedef __compar_fn_t comparison_fn_t; +#endif +#endif + +#include "http_stream.h" + +int check_mistakes = 0; + +static int coco_ids[] = { 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90 }; + +void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port, int show_imgs, int benchmark_layers, char* chart_path) +{ + list *options = read_data_cfg(datacfg); + char *train_images = option_find_str(options, "train", "data/train.txt"); + char *valid_images = option_find_str(options, "valid", train_images); + char *backup_directory = option_find_str(options, "backup", "/backup/"); + + network net_map; + if (calc_map) { + FILE* valid_file = fopen(valid_images, "r"); + if (!valid_file) { + printf("\n Error: There is no %s file for mAP calculation!\n Don't use -map flag.\n Or set valid=%s in your %s file. \n", valid_images, train_images, datacfg); + getchar(); + exit(-1); + } + else fclose(valid_file); + + cuda_set_device(gpus[0]); + printf(" Prepare additional network for mAP calculation...\n"); + net_map = parse_network_cfg_custom(cfgfile, 1, 1); + net_map.benchmark_layers = benchmark_layers; + const int net_classes = net_map.layers[net_map.n - 1].classes; + + int k; // free memory unnecessary arrays + for (k = 0; k < net_map.n - 1; ++k) free_layer_custom(net_map.layers[k], 1); + + char *name_list = option_find_str(options, "names", "data/names.list"); + int names_size = 0; + char **names = get_labels_custom(name_list, &names_size); + if (net_classes != names_size) { + printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", + name_list, names_size, net_classes, cfgfile); + if (net_classes > names_size) getchar(); + } + free_ptrs((void**)names, net_map.layers[net_map.n - 1].classes); + } + + srand(time(0)); + char *base = basecfg(cfgfile); + printf("%s\n", base); + float avg_loss = -1; + float avg_contrastive_acc = 0; + network* nets = (network*)xcalloc(ngpus, sizeof(network)); + + srand(time(0)); + int seed = rand(); + int k; + for (k = 0; k < ngpus; ++k) { + srand(seed); +#ifdef GPU + cuda_set_device(gpus[k]); +#endif + nets[k] = parse_network_cfg(cfgfile); + nets[k].benchmark_layers = benchmark_layers; + if (weightfile) { + load_weights(&nets[k], weightfile); + } + if (clear) { + *nets[k].seen = 0; + *nets[k].cur_iteration = 0; + } + nets[k].learning_rate *= ngpus; + } + srand(time(0)); + network net = nets[0]; + + const int actual_batch_size = net.batch * net.subdivisions; + if (actual_batch_size == 1) { + printf("\n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 \n"); + getchar(); + } + else if (actual_batch_size < 8) { + printf("\n Warning: You set batch=%d lower than 64! It is recommended to set batch=64 subdivision=64 \n", actual_batch_size); + } + + int imgs = net.batch * net.subdivisions * ngpus; + printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); + data train, buffer; + + layer l = net.layers[net.n - 1]; + for (k = 0; k < net.n; ++k) { + layer lk = net.layers[k]; + if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) { + l = lk; + printf(" Detection layer: %d - type = %d \n", k, l.type); + } + } + + int classes = l.classes; + + list *plist = get_paths(train_images); + int train_images_num = plist->size; + char **paths = (char **)list_to_array(plist); + + const int init_w = net.w; + const int init_h = net.h; + const int init_b = net.batch; + int iter_save, iter_save_last, iter_map; + iter_save = get_current_iteration(net); + iter_save_last = get_current_iteration(net); + iter_map = get_current_iteration(net); + float mean_average_precision = -1; + float best_map = mean_average_precision; + + load_args args = { 0 }; + args.w = net.w; + args.h = net.h; + args.c = net.c; + args.paths = paths; + args.n = imgs; + args.m = plist->size; + args.classes = classes; + args.flip = net.flip; + args.jitter = l.jitter; + args.resize = l.resize; + args.num_boxes = l.max_boxes; + args.truth_size = l.truth_size; + net.num_boxes = args.num_boxes; + net.train_images_num = train_images_num; + args.d = &buffer; + args.type = DETECTION_DATA; + args.threads = 64; // 16 or 64 + + args.angle = net.angle; + args.gaussian_noise = net.gaussian_noise; + args.blur = net.blur; + args.mixup = net.mixup; + args.exposure = net.exposure; + args.saturation = net.saturation; + args.hue = net.hue; + args.letter_box = net.letter_box; + args.mosaic_bound = net.mosaic_bound; + args.contrastive = net.contrastive; + args.contrastive_jit_flip = net.contrastive_jit_flip; + args.contrastive_color = net.contrastive_color; + if (dont_show && show_imgs) show_imgs = 2; + args.show_imgs = show_imgs; + +#ifdef OPENCV + //int num_threads = get_num_threads(); + //if(num_threads > 2) args.threads = get_num_threads() - 2; + args.threads = 6 * ngpus; // 3 for - Amazon EC2 Tesla V100: p3.2xlarge (8 logical cores) - p3.16xlarge + //args.threads = 12 * ngpus; // Ryzen 7 2700X (16 logical cores) + mat_cv* img = NULL; + float max_img_loss = net.max_chart_loss; + int number_of_lines = 100; + int img_size = 1000; + char windows_name[100]; + sprintf(windows_name, "chart_%s.png", base); + img = draw_train_chart(windows_name, max_img_loss, net.max_batches, number_of_lines, img_size, dont_show, chart_path); +#endif //OPENCV + if (net.contrastive && args.threads > net.batch/2) args.threads = net.batch / 2; + if (net.track) { + args.track = net.track; + args.augment_speed = net.augment_speed; + if (net.sequential_subdivisions) args.threads = net.sequential_subdivisions * ngpus; + else args.threads = net.subdivisions * ngpus; + args.mini_batch = net.batch / net.time_steps; + printf("\n Tracking! batch = %d, subdiv = %d, time_steps = %d, mini_batch = %d \n", net.batch, net.subdivisions, net.time_steps, args.mini_batch); + } + //printf(" imgs = %d \n", imgs); + + pthread_t load_thread = load_data(args); + + int count = 0; + double time_remaining, avg_time = -1, alpha_time = 0.01; + + //while(i*imgs < N*120){ + while (get_current_iteration(net) < net.max_batches) { + if (l.random && count++ % 10 == 0) { + float rand_coef = 1.4; + if (l.random != 1.0) rand_coef = l.random; + printf("Resizing, random_coef = %.2f \n", rand_coef); + float random_val = rand_scale(rand_coef); // *x or /x + int dim_w = roundl(random_val*init_w / net.resize_step + 1) * net.resize_step; + int dim_h = roundl(random_val*init_h / net.resize_step + 1) * net.resize_step; + if (random_val < 1 && (dim_w > init_w || dim_h > init_h)) dim_w = init_w, dim_h = init_h; + + int max_dim_w = roundl(rand_coef*init_w / net.resize_step + 1) * net.resize_step; + int max_dim_h = roundl(rand_coef*init_h / net.resize_step + 1) * net.resize_step; + + // at the beginning (check if enough memory) and at the end (calc rolling mean/variance) + if (avg_loss < 0 || get_current_iteration(net) > net.max_batches - 100) { + dim_w = max_dim_w; + dim_h = max_dim_h; + } + + if (dim_w < net.resize_step) dim_w = net.resize_step; + if (dim_h < net.resize_step) dim_h = net.resize_step; + int dim_b = (init_b * max_dim_w * max_dim_h) / (dim_w * dim_h); + int new_dim_b = (int)(dim_b * 0.8); + if (new_dim_b > init_b) dim_b = new_dim_b; + + args.w = dim_w; + args.h = dim_h; + + int k; + if (net.dynamic_minibatch) { + for (k = 0; k < ngpus; ++k) { + (*nets[k].seen) = init_b * net.subdivisions * get_current_iteration(net); // remove this line, when you will save to weights-file both: seen & cur_iteration + nets[k].batch = dim_b; + int j; + for (j = 0; j < nets[k].n; ++j) + nets[k].layers[j].batch = dim_b; + } + net.batch = dim_b; + imgs = net.batch * net.subdivisions * ngpus; + args.n = imgs; + printf("\n %d x %d (batch = %d) \n", dim_w, dim_h, net.batch); + } + else + printf("\n %d x %d \n", dim_w, dim_h); + + pthread_join(load_thread, 0); + train = buffer; + free_data(train); + load_thread = load_data(args); + + for (k = 0; k < ngpus; ++k) { + resize_network(nets + k, dim_w, dim_h); + } + net = nets[0]; + } + double time = what_time_is_it_now(); + pthread_join(load_thread, 0); + train = buffer; + if (net.track) { + net.sequential_subdivisions = get_current_seq_subdivisions(net); + args.threads = net.sequential_subdivisions * ngpus; + printf(" sequential_subdivisions = %d, sequence = %d \n", net.sequential_subdivisions, get_sequence_value(net)); + } + load_thread = load_data(args); + //wait_key_cv(500); + + /* + int k; + for(k = 0; k < l.max_boxes; ++k){ + box b = float_to_box(train.y.vals[10] + 1 + k*5); + if(!b.x) break; + printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); + } + image im = float_to_image(448, 448, 3, train.X.vals[10]); + int k; + for(k = 0; k < l.max_boxes; ++k){ + box b = float_to_box(train.y.vals[10] + 1 + k*5); + printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h); + draw_bbox(im, b, 8, 1,0,0); + } + save_image(im, "truth11"); + */ + + const double load_time = (what_time_is_it_now() - time); + printf("Loaded: %lf seconds", load_time); + if (load_time > 0.1 && avg_loss > 0) printf(" - performance bottleneck on CPU or Disk HDD/SSD"); + printf("\n"); + + time = what_time_is_it_now(); + float loss = 0; +#ifdef GPU + if (ngpus == 1) { + int wait_key = (dont_show) ? 0 : 1; + loss = train_network_waitkey(net, train, wait_key); + } + else { + loss = train_networks(nets, ngpus, train, 4); + } +#else + loss = train_network(net, train); +#endif + if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss; // if(-inf or nan) + avg_loss = avg_loss*.9 + loss*.1; + + const int iteration = get_current_iteration(net); + //i = get_current_batch(net); + + int calc_map_for_each = 4 * train_images_num / (net.batch * net.subdivisions); // calculate mAP for each 4 Epochs + calc_map_for_each = fmax(calc_map_for_each, 100); + int next_map_calc = iter_map + calc_map_for_each; + next_map_calc = fmax(next_map_calc, net.burn_in); + //next_map_calc = fmax(next_map_calc, 400); + if (calc_map) { + printf("\n (next mAP calculation at %d iterations) ", next_map_calc); + if (mean_average_precision > 0) printf("\n Last accuracy mAP@0.5 = %2.2f %%, best = %2.2f %% ", mean_average_precision * 100, best_map * 100); + } + + if (net.cudnn_half) { + if (iteration < net.burn_in * 3) fprintf(stderr, "\n Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in); + else fprintf(stderr, "\n Tensor Cores are used.\n"); + fflush(stderr); + } + printf("\n %d: %f, %f avg loss, %f rate, %lf seconds, %d images, %f hours left\n", iteration, loss, avg_loss, get_current_rate(net), (what_time_is_it_now() - time), iteration*imgs, avg_time); + fflush(stdout); + + int draw_precision = 0; + if (calc_map && (iteration >= next_map_calc || iteration == net.max_batches)) { + if (l.random) { + printf("Resizing to initial size: %d x %d ", init_w, init_h); + args.w = init_w; + args.h = init_h; + int k; + if (net.dynamic_minibatch) { + for (k = 0; k < ngpus; ++k) { + for (k = 0; k < ngpus; ++k) { + nets[k].batch = init_b; + int j; + for (j = 0; j < nets[k].n; ++j) + nets[k].layers[j].batch = init_b; + } + } + net.batch = init_b; + imgs = init_b * net.subdivisions * ngpus; + args.n = imgs; + printf("\n %d x %d (batch = %d) \n", init_w, init_h, init_b); + } + pthread_join(load_thread, 0); + free_data(train); + train = buffer; + load_thread = load_data(args); + for (k = 0; k < ngpus; ++k) { + resize_network(nets + k, init_w, init_h); + } + net = nets[0]; + } + + copy_weights_net(net, &net_map); + + // combine Training and Validation networks + //network net_combined = combine_train_valid_networks(net, net_map); + + iter_map = iteration; + mean_average_precision = validate_detector_map(datacfg, cfgfile, weightfile, 0.25, 0.5, 0, net.letter_box, &net_map);// &net_combined); + printf("\n mean_average_precision (mAP@0.5) = %f \n", mean_average_precision); + if (mean_average_precision > best_map) { + best_map = mean_average_precision; + printf("New best mAP!\n"); + char buff[256]; + sprintf(buff, "%s/%s_best.weights", backup_directory, base); + save_weights(net, buff); + } + + draw_precision = 1; + } + time_remaining = ((net.max_batches - iteration) / ngpus)*(what_time_is_it_now() - time + load_time) / 60 / 60; + // set initial value, even if resume training from 10000 iteration + if (avg_time < 0) avg_time = time_remaining; + else avg_time = alpha_time * time_remaining + (1 - alpha_time) * avg_time; +#ifdef OPENCV + if (net.contrastive) { + float cur_con_acc = -1; + for (k = 0; k < net.n; ++k) + if (net.layers[k].type == CONTRASTIVE) cur_con_acc = *net.layers[k].loss; + if (cur_con_acc >= 0) avg_contrastive_acc = avg_contrastive_acc*0.99 + cur_con_acc * 0.01; + printf(" avg_contrastive_acc = %f \n", avg_contrastive_acc); + } + draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, net.max_batches, mean_average_precision, draw_precision, "mAP%", avg_contrastive_acc / 100, dont_show, mjpeg_port, avg_time); +#endif // OPENCV + + //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) { + //if (i % 100 == 0) { + if ((iteration >= (iter_save + 10000) || iteration % 10000 == 0) || + (iteration >= (iter_save + 1000) || iteration % 1000 == 0) && net.max_batches < 10000) + { + iter_save = iteration; +#ifdef GPU + if (ngpus != 1) sync_nets(nets, ngpus, 0); +#endif + char buff[256]; + sprintf(buff, "%s/%s_%d.weights", backup_directory, base, iteration); + save_weights(net, buff); + } + + if (iteration >= (iter_save_last + 100) || (iteration % 100 == 0 && iteration > 1)) { + iter_save_last = iteration; +#ifdef GPU + if (ngpus != 1) sync_nets(nets, ngpus, 0); +#endif + char buff[256]; + sprintf(buff, "%s/%s_last.weights", backup_directory, base); + save_weights(net, buff); + + if (net.ema_alpha && is_ema_initialized(net)) { + sprintf(buff, "%s/%s_ema.weights", backup_directory, base); + save_weights_upto(net, buff, net.n, 1); + printf(" EMA weights are saved to the file: %s \n", buff); + } + } + free_data(train); + } +#ifdef GPU + if (ngpus != 1) sync_nets(nets, ngpus, 0); +#endif + char buff[256]; + sprintf(buff, "%s/%s_final.weights", backup_directory, base); + save_weights(net, buff); + printf("If you want to train from the beginning, then use flag in the end of training command: -clear \n"); + +#ifdef OPENCV + release_mat(&img); + destroy_all_windows_cv(); +#endif + + // free memory + pthread_join(load_thread, 0); + free_data(buffer); + + free_load_threads(&args); + + free(base); + free(paths); + free_list_contents(plist); + free_list(plist); + + free_list_contents_kvp(options); + free_list(options); + + for (k = 0; k < ngpus; ++k) free_network(nets[k]); + free(nets); + //free_network(net); + + if (calc_map) { + net_map.n = 0; + free_network(net_map); + } +} + + +static int get_coco_image_id(char *filename) +{ + char *p = strrchr(filename, '/'); + char *c = strrchr(filename, '_'); + if (c) p = c; + return atoi(p + 1); +} + +static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h) +{ + int i, j; + //int image_id = get_coco_image_id(image_path); + char *p = basecfg(image_path); + int image_id = atoi(p); + for (i = 0; i < num_boxes; ++i) { + float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; + float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; + float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; + float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; + + if (xmin < 0) xmin = 0; + if (ymin < 0) ymin = 0; + if (xmax > w) xmax = w; + if (ymax > h) ymax = h; + + float bx = xmin; + float by = ymin; + float bw = xmax - xmin; + float bh = ymax - ymin; + + for (j = 0; j < classes; ++j) { + if (dets[i].prob[j] > 0) { + char buff[1024]; + sprintf(buff, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]); + fprintf(fp, buff); + //printf("%s", buff); + } + } + } +} + +void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h) +{ + int i, j; + for (i = 0; i < total; ++i) { + float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1; + float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1; + float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1; + float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1; + + if (xmin < 1) xmin = 1; + if (ymin < 1) ymin = 1; + if (xmax > w) xmax = w; + if (ymax > h) ymax = h; + + for (j = 0; j < classes; ++j) { + if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j], + xmin, ymin, xmax, ymax); + } + } +} + +void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h) +{ + int i, j; + for (i = 0; i < total; ++i) { + float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; + float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; + float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; + float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; + + if (xmin < 0) xmin = 0; + if (ymin < 0) ymin = 0; + if (xmax > w) xmax = w; + if (ymax > h) ymax = h; + + for (j = 0; j < classes; ++j) { + int myclass = j; + if (dets[i].prob[myclass] > 0) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[myclass], + xmin, ymin, xmax, ymax); + } + } +} + +static void print_kitti_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h, char *outfile, char *prefix) +{ + char *kitti_ids[] = { "car", "pedestrian", "cyclist" }; + FILE *fpd = 0; + char buffd[1024]; + snprintf(buffd, 1024, "%s/%s/data/%s.txt", prefix, outfile, id); + + fpd = fopen(buffd, "w"); + int i, j; + for (i = 0; i < total; ++i) + { + float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; + float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; + float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; + float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; + + if (xmin < 0) xmin = 0; + if (ymin < 0) ymin = 0; + if (xmax > w) xmax = w; + if (ymax > h) ymax = h; + + for (j = 0; j < classes; ++j) + { + //if (dets[i].prob[j]) fprintf(fpd, "%s 0 0 0 %f %f %f %f -1 -1 -1 -1 0 0 0 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]); + if (dets[i].prob[j]) fprintf(fpd, "%s -1 -1 -10 %f %f %f %f -1 -1 -1 -1000 -1000 -1000 -10 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]); + } + } + fclose(fpd); +} + +static void eliminate_bdd(char *buf, char *a) +{ + int n = 0; + int i, k; + for (i = 0; buf[i] != '\0'; i++) + { + if (buf[i] == a[n]) + { + k = i; + while (buf[i] == a[n]) + { + if (a[++n] == '\0') + { + for (k; buf[k + n] != '\0'; k++) + { + buf[k] = buf[k + n]; + } + buf[k] = '\0'; + break; + } + i++; + } + n = 0; i--; + } + } +} + +static void get_bdd_image_id(char *filename) +{ + char *p = strrchr(filename, '/'); + eliminate_bdd(p, ".jpg"); + eliminate_bdd(p, "/"); + strcpy(filename, p); +} + +static void print_bdd_detections(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h) +{ + char *bdd_ids[] = { "bike" , "bus" , "car" , "motor" ,"person", "rider", "traffic light", "traffic sign", "train", "truck" }; + get_bdd_image_id(image_path); + int i, j; + + for (i = 0; i < num_boxes; ++i) + { + float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; + float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; + float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; + float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; + + if (xmin < 0) xmin = 0; + if (ymin < 0) ymin = 0; + if (xmax > w) xmax = w; + if (ymax > h) ymax = h; + + float bx1 = xmin; + float by1 = ymin; + float bx2 = xmax; + float by2 = ymax; + + for (j = 0; j < classes; ++j) + { + if (dets[i].prob[j]) + { + fprintf(fp, "\t{\n\t\t\"name\":\"%s\",\n\t\t\"category\":\"%s\",\n\t\t\"bbox\":[%f, %f, %f, %f],\n\t\t\"score\":%f\n\t},\n", image_path, bdd_ids[j], bx1, by1, bx2, by2, dets[i].prob[j]); + } + } + } +} + +void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile) +{ + int j; + list *options = read_data_cfg(datacfg); + char *valid_images = option_find_str(options, "valid", "data/train.list"); + char *name_list = option_find_str(options, "names", "data/names.list"); + char *prefix = option_find_str(options, "results", "results"); + char **names = get_labels(name_list); + char *mapf = option_find_str(options, "map", 0); + int *map = 0; + if (mapf) map = read_map(mapf); + + network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 + if (weightfile) { + load_weights(&net, weightfile); + } + //set_batch_network(&net, 1); + fuse_conv_batchnorm(net); + calculate_binary_weights(net); + fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); + srand(time(0)); + + list *plist = get_paths(valid_images); + char **paths = (char **)list_to_array(plist); + + layer l = net.layers[net.n - 1]; + int k; + for (k = 0; k < net.n; ++k) { + layer lk = net.layers[k]; + if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) { + l = lk; + printf(" Detection layer: %d - type = %d \n", k, l.type); + } + } + int classes = l.classes; + + char buff[1024]; + char *type = option_find_str(options, "eval", "voc"); + FILE *fp = 0; + FILE **fps = 0; + int coco = 0; + int imagenet = 0; + int bdd = 0; + int kitti = 0; + + if (0 == strcmp(type, "coco")) { + if (!outfile) outfile = "coco_results"; + snprintf(buff, 1024, "%s/%s.json", prefix, outfile); + fp = fopen(buff, "w"); + fprintf(fp, "[\n"); + coco = 1; + } + else if (0 == strcmp(type, "bdd")) { + if (!outfile) outfile = "bdd_results"; + snprintf(buff, 1024, "%s/%s.json", prefix, outfile); + fp = fopen(buff, "w"); + fprintf(fp, "[\n"); + bdd = 1; + } + else if (0 == strcmp(type, "kitti")) { + char buff2[1024]; + if (!outfile) outfile = "kitti_results"; + printf("%s\n", outfile); + snprintf(buff, 1024, "%s/%s", prefix, outfile); + int mkd = make_directory(buff, 0777); + snprintf(buff2, 1024, "%s/%s/data", prefix, outfile); + int mkd2 = make_directory(buff2, 0777); + kitti = 1; + } + else if (0 == strcmp(type, "imagenet")) { + if (!outfile) outfile = "imagenet-detection"; + snprintf(buff, 1024, "%s/%s.txt", prefix, outfile); + fp = fopen(buff, "w"); + imagenet = 1; + classes = 200; + } + else { + if (!outfile) outfile = "comp4_det_test_"; + fps = (FILE**) xcalloc(classes, sizeof(FILE *)); + for (j = 0; j < classes; ++j) { + snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]); + fps[j] = fopen(buff, "w"); + } + } + + + int m = plist->size; + int i = 0; + int t; + + float thresh = .001; + float nms = .6; + + int nthreads = 4; + if (m < 4) nthreads = m; + image* val = (image*)xcalloc(nthreads, sizeof(image)); + image* val_resized = (image*)xcalloc(nthreads, sizeof(image)); + image* buf = (image*)xcalloc(nthreads, sizeof(image)); + image* buf_resized = (image*)xcalloc(nthreads, sizeof(image)); + pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t)); + + load_args args = { 0 }; + args.w = net.w; + args.h = net.h; + args.c = net.c; + args.type = IMAGE_DATA; + const int letter_box = net.letter_box; + if (letter_box) args.type = LETTERBOX_DATA; + + for (t = 0; t < nthreads; ++t) { + args.path = paths[i + t]; + args.im = &buf[t]; + args.resized = &buf_resized[t]; + thr[t] = load_data_in_thread(args); + } + time_t start = time(0); + for (i = nthreads; i < m + nthreads; i += nthreads) { + fprintf(stderr, "%d\n", i); + for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { + pthread_join(thr[t], 0); + val[t] = buf[t]; + val_resized[t] = buf_resized[t]; + } + for (t = 0; t < nthreads && i + t < m; ++t) { + args.path = paths[i + t]; + args.im = &buf[t]; + args.resized = &buf_resized[t]; + thr[t] = load_data_in_thread(args); + } + for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { + char *path = paths[i + t - nthreads]; + char *id = basecfg(path); + float *X = val_resized[t].data; + network_predict(net, X); + int w = val[t].w; + int h = val[t].h; + int nboxes = 0; + detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letter_box); + if (nms) { + if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); + else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); + } + + if (coco) { + print_cocos(fp, path, dets, nboxes, classes, w, h); + } + else if (imagenet) { + print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h); + } + else if (bdd) { + print_bdd_detections(fp, path, dets, nboxes, classes, w, h); + } + else if (kitti) { + print_kitti_detections(fps, id, dets, nboxes, classes, w, h, outfile, prefix); + } + else { + print_detector_detections(fps, id, dets, nboxes, classes, w, h); + } + + free_detections(dets, nboxes); + free(id); + free_image(val[t]); + free_image(val_resized[t]); + } + } + if (fps) { + for (j = 0; j < classes; ++j) { + fclose(fps[j]); + } + free(fps); + } + if (coco) { +#ifdef WIN32 + fseek(fp, -3, SEEK_CUR); +#else + fseek(fp, -2, SEEK_CUR); +#endif + fprintf(fp, "\n]\n"); + } + + if (bdd) { +#ifdef WIN32 + fseek(fp, -3, SEEK_CUR); +#else + fseek(fp, -2, SEEK_CUR); +#endif + fprintf(fp, "\n]\n"); + fclose(fp); + } + + if (fp) fclose(fp); + + if (val) free(val); + if (val_resized) free(val_resized); + if (thr) free(thr); + if (buf) free(buf); + if (buf_resized) free(buf_resized); + + fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)time(0) - start); +} + +void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) +{ + network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 + if (weightfile) { + load_weights(&net, weightfile); + } + //set_batch_network(&net, 1); + fuse_conv_batchnorm(net); + srand(time(0)); + + //list *plist = get_paths("data/coco_val_5k.list"); + list *options = read_data_cfg(datacfg); + char *valid_images = option_find_str(options, "valid", "data/train.txt"); + list *plist = get_paths(valid_images); + char **paths = (char **)list_to_array(plist); + + //layer l = net.layers[net.n - 1]; + + int j, k; + + int m = plist->size; + int i = 0; + + float thresh = .001; + float iou_thresh = .5; + float nms = .4; + + int total = 0; + int correct = 0; + int proposals = 0; + float avg_iou = 0; + + for (i = 0; i < m; ++i) { + char *path = paths[i]; + image orig = load_image(path, 0, 0, net.c); + image sized = resize_image(orig, net.w, net.h); + char *id = basecfg(path); + network_predict(net, sized.data); + int nboxes = 0; + int letterbox = 0; + detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox); + if (nms) do_nms_obj(dets, nboxes, 1, nms); + + char labelpath[4096]; + replace_image_to_label(path, labelpath); + + int num_labels = 0; + box_label *truth = read_boxes(labelpath, &num_labels); + for (k = 0; k < nboxes; ++k) { + if (dets[k].objectness > thresh) { + ++proposals; + } + } + for (j = 0; j < num_labels; ++j) { + ++total; + box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; + float best_iou = 0; + for (k = 0; k < nboxes; ++k) { + float iou = box_iou(dets[k].bbox, t); + if (dets[k].objectness > thresh && iou > best_iou) { + best_iou = iou; + } + } + avg_iou += best_iou; + if (best_iou > iou_thresh) { + ++correct; + } + } + //fprintf(stderr, " %s - %s - ", paths[i], labelpath); + fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total); + free(id); + free_image(orig); + free_image(sized); + } +} + +typedef struct { + box b; + float p; + int class_id; + int image_index; + int truth_flag; + int unique_truth_index; +} box_prob; + +int detections_comparator(const void *pa, const void *pb) +{ + box_prob a = *(const box_prob *)pa; + box_prob b = *(const box_prob *)pb; + float diff = a.p - b.p; + if (diff < 0) return 1; + else if (diff > 0) return -1; + return 0; +} + +float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, const int map_points, int letter_box, network *existing_net) +{ + int j; + list *options = read_data_cfg(datacfg); + char *valid_images = option_find_str(options, "valid", "data/train.txt"); + char *difficult_valid_images = option_find_str(options, "difficult", NULL); + char *name_list = option_find_str(options, "names", "data/names.list"); + int names_size = 0; + char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); + //char *mapf = option_find_str(options, "map", 0); + //int *map = 0; + //if (mapf) map = read_map(mapf); + FILE* reinforcement_fd = NULL; + + network net; + //int initial_batch; + if (existing_net) { + char *train_images = option_find_str(options, "train", "data/train.txt"); + valid_images = option_find_str(options, "valid", train_images); + net = *existing_net; + remember_network_recurrent_state(*existing_net); + free_network_recurrent_state(*existing_net); + } + else { + net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 + if (weightfile) { + load_weights(&net, weightfile); + } + //set_batch_network(&net, 1); + fuse_conv_batchnorm(net); + calculate_binary_weights(net); + } + if (net.layers[net.n - 1].classes != names_size) { + printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", + name_list, names_size, net.layers[net.n - 1].classes, cfgfile); + getchar(); + } + srand(time(0)); + printf("\n calculation mAP (mean average precision)...\n"); + + list *plist = get_paths(valid_images); + char **paths = (char **)list_to_array(plist); + + char **paths_dif = NULL; + if (difficult_valid_images) { + list *plist_dif = get_paths(difficult_valid_images); + paths_dif = (char **)list_to_array(plist_dif); + } + + + layer l = net.layers[net.n - 1]; + int k; + for (k = 0; k < net.n; ++k) { + layer lk = net.layers[k]; + if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) { + l = lk; + printf(" Detection layer: %d - type = %d \n", k, l.type); + } + } + int classes = l.classes; + + int m = plist->size; + int i = 0; + int t; + + const float thresh = .005; + const float nms = .45; + //const float iou_thresh = 0.5; + + int nthreads = 4; + if (m < 4) nthreads = m; + image* val = (image*)xcalloc(nthreads, sizeof(image)); + image* val_resized = (image*)xcalloc(nthreads, sizeof(image)); + image* buf = (image*)xcalloc(nthreads, sizeof(image)); + image* buf_resized = (image*)xcalloc(nthreads, sizeof(image)); + pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t)); + + load_args args = { 0 }; + args.w = net.w; + args.h = net.h; + args.c = net.c; + letter_box = net.letter_box; + if (letter_box) args.type = LETTERBOX_DATA; + else args.type = IMAGE_DATA; + + //const float thresh_calc_avg_iou = 0.24; + float avg_iou = 0; + int tp_for_thresh = 0; + int fp_for_thresh = 0; + + box_prob* detections = (box_prob*)xcalloc(1, sizeof(box_prob)); + int detections_count = 0; + int unique_truth_count = 0; + + int* truth_classes_count = (int*)xcalloc(classes, sizeof(int)); + + // For multi-class precision and recall computation + float *avg_iou_per_class = (float*)xcalloc(classes, sizeof(float)); + int *tp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int)); + int *fp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int)); + + for (t = 0; t < nthreads; ++t) { + args.path = paths[i + t]; + args.im = &buf[t]; + args.resized = &buf_resized[t]; + thr[t] = load_data_in_thread(args); + } + time_t start = time(0); + for (i = nthreads; i < m + nthreads; i += nthreads) { + fprintf(stderr, "\r%d", i); + for (t = 0; t < nthreads && (i + t - nthreads) < m; ++t) { + pthread_join(thr[t], 0); + val[t] = buf[t]; + val_resized[t] = buf_resized[t]; + } + for (t = 0; t < nthreads && (i + t) < m; ++t) { + args.path = paths[i + t]; + args.im = &buf[t]; + args.resized = &buf_resized[t]; + thr[t] = load_data_in_thread(args); + } + for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { + const int image_index = i + t - nthreads; + char *path = paths[image_index]; + char *id = basecfg(path); + float *X = val_resized[t].data; + network_predict(net, X); + + int nboxes = 0; + float hier_thresh = 0; + detection *dets; + if (args.type == LETTERBOX_DATA) { + dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); + } + else { + dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letter_box); + } + //detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); // for letter_box=1 + if (nms) { + if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); + else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); + } + + //if (l.embedding_size) set_track_id(dets, nboxes, thresh, l.sim_thresh, l.track_ciou_norm, l.track_history_size, l.dets_for_track, l.dets_for_show); + + char labelpath[4096]; + replace_image_to_label(path, labelpath); + int num_labels = 0; + box_label *truth = read_boxes(labelpath, &num_labels); + int j; + for (j = 0; j < num_labels; ++j) { + truth_classes_count[truth[j].id]++; + } + + // difficult + box_label *truth_dif = NULL; + int num_labels_dif = 0; + if (paths_dif) + { + char *path_dif = paths_dif[image_index]; + + char labelpath_dif[4096]; + replace_image_to_label(path_dif, labelpath_dif); + + truth_dif = read_boxes(labelpath_dif, &num_labels_dif); + } + + const int checkpoint_detections_count = detections_count; + + int i; + for (i = 0; i < nboxes; ++i) { + + int class_id; + for (class_id = 0; class_id < classes; ++class_id) { + float prob = dets[i].prob[class_id]; + if (prob > 0) { + detections_count++; + detections = (box_prob*)xrealloc(detections, detections_count * sizeof(box_prob)); + detections[detections_count - 1].b = dets[i].bbox; + detections[detections_count - 1].p = prob; + detections[detections_count - 1].image_index = image_index; + detections[detections_count - 1].class_id = class_id; + detections[detections_count - 1].truth_flag = 0; + detections[detections_count - 1].unique_truth_index = -1; + + int truth_index = -1; + float max_iou = 0; + for (j = 0; j < num_labels; ++j) + { + box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; + //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n", + // box_iou(dets[i].bbox, t), prob, class_id, truth[j].id); + float current_iou = box_iou(dets[i].bbox, t); + if (current_iou > iou_thresh && class_id == truth[j].id) { + if (current_iou > max_iou) { + max_iou = current_iou; + truth_index = unique_truth_count + j; + } + } + } + + // best IoU + if (truth_index > -1) { + detections[detections_count - 1].truth_flag = 1; + detections[detections_count - 1].unique_truth_index = truth_index; + } + else { + // if object is difficult then remove detection + for (j = 0; j < num_labels_dif; ++j) { + box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h }; + float current_iou = box_iou(dets[i].bbox, t); + if (current_iou > iou_thresh && class_id == truth_dif[j].id) { + --detections_count; + break; + } + } + } + + // calc avg IoU, true-positives, false-positives for required Threshold + if (prob > thresh_calc_avg_iou) { + int z, found = 0; + for (z = checkpoint_detections_count; z < detections_count - 1; ++z) { + if (detections[z].unique_truth_index == truth_index) { + found = 1; break; + } + } + + if (truth_index > -1 && found == 0) { + avg_iou += max_iou; + ++tp_for_thresh; + avg_iou_per_class[class_id] += max_iou; + tp_for_thresh_per_class[class_id]++; + } + else{ + fp_for_thresh++; + fp_for_thresh_per_class[class_id]++; + } + } + } + } + } + + unique_truth_count += num_labels; + + //static int previous_errors = 0; + //int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh); + //int errors_in_this_image = total_errors - previous_errors; + //previous_errors = total_errors; + //if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb"); + //char buff[1000]; + //sprintf(buff, "%s\n", path); + //if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd); + + free_detections(dets, nboxes); + free(id); + free_image(val[t]); + free_image(val_resized[t]); + } + } + + //for (t = 0; t < nthreads; ++t) { + // pthread_join(thr[t], 0); + //} + + if ((tp_for_thresh + fp_for_thresh) > 0) + avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); + + int class_id; + for(class_id = 0; class_id < classes; class_id++){ + if ((tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]) > 0) + avg_iou_per_class[class_id] = avg_iou_per_class[class_id] / (tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]); + } + + // SORT(detections) + qsort(detections, detections_count, sizeof(box_prob), detections_comparator); + + typedef struct { + double precision; + double recall; + int tp, fp, fn; + } pr_t; + + // for PR-curve + pr_t** pr = (pr_t**)xcalloc(classes, sizeof(pr_t*)); + for (i = 0; i < classes; ++i) { + pr[i] = (pr_t*)xcalloc(detections_count, sizeof(pr_t)); + } + printf("\n detections_count = %d, unique_truth_count = %d \n", detections_count, unique_truth_count); + + + int* detection_per_class_count = (int*)xcalloc(classes, sizeof(int)); + for (j = 0; j < detections_count; ++j) { + detection_per_class_count[detections[j].class_id]++; + } + + int* truth_flags = (int*)xcalloc(unique_truth_count, sizeof(int)); + + int rank; + for (rank = 0; rank < detections_count; ++rank) { + if (rank % 100 == 0) + printf(" rank = %d of ranks = %d \r", rank, detections_count); + + if (rank > 0) { + int class_id; + for (class_id = 0; class_id < classes; ++class_id) { + pr[class_id][rank].tp = pr[class_id][rank - 1].tp; + pr[class_id][rank].fp = pr[class_id][rank - 1].fp; + } + } + + box_prob d = detections[rank]; + // if (detected && isn't detected before) + if (d.truth_flag == 1) { + if (truth_flags[d.unique_truth_index] == 0) + { + truth_flags[d.unique_truth_index] = 1; + pr[d.class_id][rank].tp++; // true-positive + } else + pr[d.class_id][rank].fp++; + } + else { + pr[d.class_id][rank].fp++; // false-positive + } + + for (i = 0; i < classes; ++i) + { + const int tp = pr[i][rank].tp; + const int fp = pr[i][rank].fp; + const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive + pr[i][rank].fn = fn; + + if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp); + else pr[i][rank].precision = 0; + + if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn); + else pr[i][rank].recall = 0; + + if (rank == (detections_count - 1) && detection_per_class_count[i] != (tp + fp)) { // check for last rank + printf(" class_id: %d - detections = %d, tp+fp = %d, tp = %d, fp = %d \n", i, detection_per_class_count[i], tp+fp, tp, fp); + } + } + } + + free(truth_flags); + + + double mean_average_precision = 0; + + for (i = 0; i < classes; ++i) { + double avg_precision = 0; + + // MS COCO - uses 101-Recall-points on PR-chart. + // PascalVOC2007 - uses 11-Recall-points on PR-chart. + // PascalVOC2010-2012 - uses Area-Under-Curve on PR-chart. + // ImageNet - uses Area-Under-Curve on PR-chart. + + // correct mAP calculation: ImageNet, PascalVOC 2010-2012 + if (map_points == 0) + { + double last_recall = pr[i][detections_count - 1].recall; + double last_precision = pr[i][detections_count - 1].precision; + for (rank = detections_count - 2; rank >= 0; --rank) + { + double delta_recall = last_recall - pr[i][rank].recall; + last_recall = pr[i][rank].recall; + + if (pr[i][rank].precision > last_precision) { + last_precision = pr[i][rank].precision; + } + + avg_precision += delta_recall * last_precision; + } + //add remaining area of PR curve when recall isn't 0 at rank-1 + double delta_recall = last_recall - 0; + avg_precision += delta_recall * last_precision; + } + // MSCOCO - 101 Recall-points, PascalVOC - 11 Recall-points + else + { + int point; + for (point = 0; point < map_points; ++point) { + double cur_recall = point * 1.0 / (map_points-1); + double cur_precision = 0; + for (rank = 0; rank < detections_count; ++rank) + { + if (pr[i][rank].recall >= cur_recall) { // > or >= + if (pr[i][rank].precision > cur_precision) { + cur_precision = pr[i][rank].precision; + } + } + } + //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision); + + avg_precision += cur_precision; + } + avg_precision = avg_precision / map_points; + } + + printf("class_id = %d, name = %s, ap = %2.2f%% \t (TP = %d, FP = %d) \n", + i, names[i], avg_precision * 100, tp_for_thresh_per_class[i], fp_for_thresh_per_class[i]); + + float class_precision = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)fp_for_thresh_per_class[i]); + float class_recall = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)(truth_classes_count[i] - tp_for_thresh_per_class[i])); + //printf("Precision = %1.2f, Recall = %1.2f, avg IOU = %2.2f%% \n\n", class_precision, class_recall, avg_iou_per_class[i]); + + mean_average_precision += avg_precision; + } + + const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh); + const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh)); + const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall); + printf("\n for conf_thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n", + thresh_calc_avg_iou, cur_precision, cur_recall, f1_score); + + printf(" for conf_thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", + thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100); + + mean_average_precision = mean_average_precision / classes; + printf("\n IoU threshold = %2.0f %%, ", iou_thresh * 100); + if (map_points) printf("used %d Recall-points \n", map_points); + else printf("used Area-Under-Curve for each unique Recall \n"); + + printf(" mean average precision (mAP@%0.2f) = %f, or %2.2f %% \n", iou_thresh, mean_average_precision, mean_average_precision * 100); + + for (i = 0; i < classes; ++i) { + free(pr[i]); + } + free(pr); + free(detections); + free(truth_classes_count); + free(detection_per_class_count); + + free(avg_iou_per_class); + free(tp_for_thresh_per_class); + free(fp_for_thresh_per_class); + + fprintf(stderr, "Total Detection Time: %d Seconds\n", (int)(time(0) - start)); + printf("\nSet -points flag:\n"); + printf(" `-points 101` for MS COCO \n"); + printf(" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n"); + printf(" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n"); + if (reinforcement_fd != NULL) fclose(reinforcement_fd); + + // free memory + free_ptrs((void**)names, net.layers[net.n - 1].classes); + free_list_contents_kvp(options); + free_list(options); + + if (existing_net) { + //set_batch_network(&net, initial_batch); + //free_network_recurrent_state(*existing_net); + restore_network_recurrent_state(*existing_net); + //randomize_network_recurrent_state(*existing_net); + } + else { + free_network(net); + } + if (val) free(val); + if (val_resized) free(val_resized); + if (thr) free(thr); + if (buf) free(buf); + if (buf_resized) free(buf_resized); + + return mean_average_precision; +} + +typedef struct { + float w, h; +} anchors_t; + +int anchors_comparator(const void *pa, const void *pb) +{ + anchors_t a = *(const anchors_t *)pa; + anchors_t b = *(const anchors_t *)pb; + float diff = b.w*b.h - a.w*a.h; + if (diff < 0) return 1; + else if (diff > 0) return -1; + return 0; +} + +int anchors_data_comparator(const float **pa, const float **pb) +{ + float *a = (float *)*pa; + float *b = (float *)*pb; + float diff = b[0] * b[1] - a[0] * a[1]; + if (diff < 0) return 1; + else if (diff > 0) return -1; + return 0; +} + + +void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) +{ + printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height); + if (width < 0 || height < 0) { + printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 \n"); + printf("Error: set width and height \n"); + return; + } + + //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 }; + float* rel_width_height_array = (float*)xcalloc(1000, sizeof(float)); + + + list *options = read_data_cfg(datacfg); + char *train_images = option_find_str(options, "train", "data/train.list"); + list *plist = get_paths(train_images); + int number_of_images = plist->size; + char **paths = (char **)list_to_array(plist); + + int classes = option_find_int(options, "classes", 1); + int* counter_per_class = (int*)xcalloc(classes, sizeof(int)); + + srand(time(0)); + int number_of_boxes = 0; + printf(" read labels from %d images \n", number_of_images); + + int i, j; + for (i = 0; i < number_of_images; ++i) { + char *path = paths[i]; + char labelpath[4096]; + replace_image_to_label(path, labelpath); + + int num_labels = 0; + box_label *truth = read_boxes(labelpath, &num_labels); + //printf(" new path: %s \n", labelpath); + char *buff = (char*)xcalloc(6144, sizeof(char)); + for (j = 0; j < num_labels; ++j) + { + if (truth[j].x > 1 || truth[j].x <= 0 || truth[j].y > 1 || truth[j].y <= 0 || + truth[j].w > 1 || truth[j].w <= 0 || truth[j].h > 1 || truth[j].h <= 0) + { + printf("\n\nWrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f \n", + labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h); + sprintf(buff, "echo \"Wrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f\" >> bad_label.list", + labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h); + system(buff); + if (check_mistakes) getchar(); + } + if (truth[j].id >= classes) { + classes = truth[j].id + 1; + counter_per_class = (int*)xrealloc(counter_per_class, classes * sizeof(int)); + } + counter_per_class[truth[j].id]++; + + number_of_boxes++; + rel_width_height_array = (float*)xrealloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float)); + + rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width; + rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height; + printf("\r loaded \t image: %d \t box: %d", i + 1, number_of_boxes); + } + free(buff); + } + printf("\n all loaded. \n"); + printf("\n calculating k-means++ ..."); + + matrix boxes_data; + model anchors_data; + boxes_data = make_matrix(number_of_boxes, 2); + + printf("\n"); + for (i = 0; i < number_of_boxes; ++i) { + boxes_data.vals[i][0] = rel_width_height_array[i * 2]; + boxes_data.vals[i][1] = rel_width_height_array[i * 2 + 1]; + //if (w > 410 || h > 410) printf("i:%d, w = %f, h = %f \n", i, w, h); + } + + // Is used: distance(box, centroid) = 1 - IoU(box, centroid) + + // K-means + anchors_data = do_kmeans(boxes_data, num_of_clusters); + + qsort((void*)anchors_data.centers.vals, num_of_clusters, 2 * sizeof(float), (__compar_fn_t)anchors_data_comparator); + + //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 + //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 }; + + printf("\n"); + float avg_iou = 0; + for (i = 0; i < number_of_boxes; ++i) { + float box_w = rel_width_height_array[i * 2]; //points->data.fl[i * 2]; + float box_h = rel_width_height_array[i * 2 + 1]; //points->data.fl[i * 2 + 1]; + //int cluster_idx = labels->data.i[i]; + int cluster_idx = 0; + float min_dist = FLT_MAX; + float best_iou = 0; + for (j = 0; j < num_of_clusters; ++j) { + float anchor_w = anchors_data.centers.vals[j][0]; // centers->data.fl[j * 2]; + float anchor_h = anchors_data.centers.vals[j][1]; // centers->data.fl[j * 2 + 1]; + float min_w = (box_w < anchor_w) ? box_w : anchor_w; + float min_h = (box_h < anchor_h) ? box_h : anchor_h; + float box_intersect = min_w*min_h; + float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect; + float iou = box_intersect / box_union; + float distance = 1 - iou; + if (distance < min_dist) { + min_dist = distance; + cluster_idx = j; + best_iou = iou; + } + } + + float anchor_w = anchors_data.centers.vals[cluster_idx][0]; //centers->data.fl[cluster_idx * 2]; + float anchor_h = anchors_data.centers.vals[cluster_idx][1]; //centers->data.fl[cluster_idx * 2 + 1]; + if (best_iou > 1 || best_iou < 0) { // || box_w > width || box_h > height) { + printf(" Wrong label: i = %d, box_w = %f, box_h = %f, anchor_w = %f, anchor_h = %f, iou = %f \n", + i, box_w, box_h, anchor_w, anchor_h, best_iou); + } + else avg_iou += best_iou; + } + + char buff[1024]; + FILE* fwc = fopen("counters_per_class.txt", "wb"); + if (fwc) { + sprintf(buff, "counters_per_class = "); + printf("\n%s", buff); + fwrite(buff, sizeof(char), strlen(buff), fwc); + for (i = 0; i < classes; ++i) { + sprintf(buff, "%d", counter_per_class[i]); + printf("%s", buff); + fwrite(buff, sizeof(char), strlen(buff), fwc); + if (i < classes - 1) { + fwrite(", ", sizeof(char), 2, fwc); + printf(", "); + } + } + printf("\n"); + fclose(fwc); + } + else { + printf(" Error: file counters_per_class.txt can't be open \n"); + } + + avg_iou = 100 * avg_iou / number_of_boxes; + printf("\n avg IoU = %2.2f %% \n", avg_iou); + + + FILE* fw = fopen("anchors.txt", "wb"); + if (fw) { + printf("\nSaving anchors to the file: anchors.txt \n"); + printf("anchors = "); + for (i = 0; i < num_of_clusters; ++i) { + float anchor_w = anchors_data.centers.vals[i][0]; //centers->data.fl[i * 2]; + float anchor_h = anchors_data.centers.vals[i][1]; //centers->data.fl[i * 2 + 1]; + if (width > 32) sprintf(buff, "%3.0f,%3.0f", anchor_w, anchor_h); + else sprintf(buff, "%2.4f,%2.4f", anchor_w, anchor_h); + printf("%s", buff); + fwrite(buff, sizeof(char), strlen(buff), fw); + if (i + 1 < num_of_clusters) { + fwrite(", ", sizeof(char), 2, fw); + printf(", "); + } + } + printf("\n"); + fclose(fw); + } + else { + printf(" Error: file anchors.txt can't be open \n"); + } + + if (show) { +#ifdef OPENCV + show_acnhors(number_of_boxes, num_of_clusters, rel_width_height_array, anchors_data, width, height); +#endif // OPENCV + } + free(rel_width_height_array); + free(counter_per_class); + + getchar(); +} + + +void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, + float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers) +{ + list *options = read_data_cfg(datacfg); + char *name_list = option_find_str(options, "names", "data/names.list"); + int names_size = 0; + char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); + + image **alphabet = load_alphabet(); + network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 + if (weightfile) { + load_weights(&net, weightfile); + } + if (net.letter_box) letter_box = 1; + net.benchmark_layers = benchmark_layers; + fuse_conv_batchnorm(net); + calculate_binary_weights(net); + if (net.layers[net.n - 1].classes != names_size) { + printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", + name_list, names_size, net.layers[net.n - 1].classes, cfgfile); + if (net.layers[net.n - 1].classes > names_size) getchar(); + } + srand(2222222); + char buff[256]; + char *input = buff; + char *json_buf = NULL; + int json_image_id = 0; + FILE* json_file = NULL; + if (outfile) { + json_file = fopen(outfile, "wb"); + if(!json_file) { + error("fopen failed"); + } + char *tmp = "[\n"; + fwrite(tmp, sizeof(char), strlen(tmp), json_file); + } + int j; + float nms = .45; // 0.4F + while (1) { + if (filename) { + strncpy(input, filename, 256); + if (strlen(input) > 0) + if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; + } + else { + printf("Enter Image Path: "); + fflush(stdout); + input = fgets(input, 256, stdin); + if (!input) break; + strtok(input, "\n"); + } + //image im; + //image sized = load_image_resize(input, net.w, net.h, net.c, &im); + image im = load_image(input, 0, 0, net.c); + image sized; + if(letter_box) sized = letterbox_image(im, net.w, net.h); + else sized = resize_image(im, net.w, net.h); + + layer l = net.layers[net.n - 1]; + int k; + for (k = 0; k < net.n; ++k) { + layer lk = net.layers[k]; + if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) { + l = lk; + printf(" Detection layer: %d - type = %d \n", k, l.type); + } + } + + //box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); + //float **probs = calloc(l.w*l.h*l.n, sizeof(float*)); + //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)xcalloc(l.classes, sizeof(float)); + + float *X = sized.data; + + //time= what_time_is_it_now(); + double time = get_time_point(); + network_predict(net, X); + //network_predict_image(&net, im); letterbox = 1; + printf("%s: Predicted in %lf milli-seconds.\n", input, ((double)get_time_point() - time) / 1000); + //printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time)); + + int nboxes = 0; + detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); + if (nms) { + if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); + else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); + } + draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output); + save_image(im, "predictions"); + if (!dont_show) { + show_image(im, "predictions"); + } + + if (json_file) { + if (json_buf) { + char *tmp = ", \n"; + fwrite(tmp, sizeof(char), strlen(tmp), json_file); + } + ++json_image_id; + json_buf = detection_to_json(dets, nboxes, l.classes, names, json_image_id, input); + + fwrite(json_buf, sizeof(char), strlen(json_buf), json_file); + free(json_buf); + } + + // pseudo labeling concept - fast.ai + if (save_labels) + { + char labelpath[4096]; + replace_image_to_label(input, labelpath); + + FILE* fw = fopen(labelpath, "wb"); + int i; + for (i = 0; i < nboxes; ++i) { + char buff[1024]; + int class_id = -1; + float prob = 0; + for (j = 0; j < l.classes; ++j) { + if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) { + prob = dets[i].prob[j]; + class_id = j; + } + } + if (class_id >= 0) { + sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h); + fwrite(buff, sizeof(char), strlen(buff), fw); + } + } + fclose(fw); + } + + free_detections(dets, nboxes); + free_image(im); + free_image(sized); + + if (!dont_show) { + wait_until_press_key_cv(); + destroy_all_windows_cv(); + } + + if (filename) break; + } + + if (json_file) { + char *tmp = "\n]"; + fwrite(tmp, sizeof(char), strlen(tmp), json_file); + fclose(json_file); + } + + // free memory + free_ptrs((void**)names, net.layers[net.n - 1].classes); + free_list_contents_kvp(options); + free_list(options); + + int i; + const int nsize = 8; + for (j = 0; j < nsize; ++j) { + for (i = 32; i < 127; ++i) { + free_image(alphabet[j][i]); + } + free(alphabet[j]); + } + free(alphabet); + + free_network(net); +} + +#if defined(OPENCV) && defined(GPU) + +// adversarial attack dnn +void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num, + int letter_box, int benchmark_layers) +{ + list *options = read_data_cfg(datacfg); + char *name_list = option_find_str(options, "names", "data/names.list"); + int names_size = 0; + char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); + + image **alphabet = load_alphabet(); + network net = parse_network_cfg(cfgfile);// parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 + net.adversarial = 1; + set_batch_network(&net, 1); + if (weightfile) { + load_weights(&net, weightfile); + } + net.benchmark_layers = benchmark_layers; + //fuse_conv_batchnorm(net); + //calculate_binary_weights(net); + if (net.layers[net.n - 1].classes != names_size) { + printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", + name_list, names_size, net.layers[net.n - 1].classes, cfgfile); + if (net.layers[net.n - 1].classes > names_size) getchar(); + } + + srand(2222222); + char buff[256]; + char *input = buff; + + int j; + float nms = .45; // 0.4F + while (1) { + if (filename) { + strncpy(input, filename, 256); + if (strlen(input) > 0) + if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; + } + else { + printf("Enter Image Path: "); + fflush(stdout); + input = fgets(input, 256, stdin); + if (!input) break; + strtok(input, "\n"); + } + //image im; + //image sized = load_image_resize(input, net.w, net.h, net.c, &im); + image im = load_image(input, 0, 0, net.c); + image sized; + if (letter_box) sized = letterbox_image(im, net.w, net.h); + else sized = resize_image(im, net.w, net.h); + + image src_sized = copy_image(sized); + + layer l = net.layers[net.n - 1]; + int k; + for (k = 0; k < net.n; ++k) { + layer lk = net.layers[k]; + if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) { + l = lk; + printf(" Detection layer: %d - type = %d \n", k, l.type); + } + } + + net.num_boxes = l.max_boxes; + int num_truth = l.truths; + float *truth_cpu = (float *)xcalloc(num_truth, sizeof(float)); + + int *it_num_set = (int *)xcalloc(1, sizeof(int)); + float *lr_set = (float *)xcalloc(1, sizeof(float)); + int *boxonly = (int *)xcalloc(1, sizeof(int)); + + cv_draw_object(sized, truth_cpu, net.num_boxes, num_truth, it_num_set, lr_set, boxonly, l.classes, names); + + net.learning_rate = *lr_set; + it_num = *it_num_set; + + float *X = sized.data; + + mat_cv* img = NULL; + float max_img_loss = 5; + int number_of_lines = 100; + int img_size = 1000; + char windows_name[100]; + char *base = basecfg(cfgfile); + sprintf(windows_name, "chart_%s.png", base); + img = draw_train_chart(windows_name, max_img_loss, it_num, number_of_lines, img_size, dont_show, NULL); + + int iteration; + for (iteration = 0; iteration < it_num; ++iteration) + { + forward_backward_network_gpu(net, X, truth_cpu); + + float avg_loss = get_network_cost(net); + draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, it_num, 0, 0, "mAP%", 0, dont_show, 0, 0); + + float inv_loss = 1.0 / max_val_cmp(0.01, avg_loss); + //net.learning_rate = *lr_set * inv_loss; + + if (*boxonly) { + int dw = truth_cpu[2] * sized.w, dh = truth_cpu[3] * sized.h; + int dx = truth_cpu[0] * sized.w - dw / 2, dy = truth_cpu[1] * sized.h - dh / 2; + image crop = crop_image(sized, dx, dy, dw, dh); + copy_image_inplace(src_sized, sized); + embed_image(crop, sized, dx, dy); + } + + show_image_cv(sized, "image_optimization"); + wait_key_cv(20); + } + + net.train = 0; + quantize_image(sized); + network_predict(net, X); + + save_image_png(sized, "drawn"); + //sized = load_image("drawn.png", 0, 0, net.c); + + int nboxes = 0; + detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, 0, 0, 1, &nboxes, letter_box); + if (nms) { + if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); + else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); + } + draw_detections_v3(sized, dets, nboxes, thresh, names, alphabet, l.classes, 1); + save_image(sized, "pre_predictions"); + if (!dont_show) { + show_image(sized, "pre_predictions"); + } + + free_detections(dets, nboxes); + free_image(im); + free_image(sized); + free_image(src_sized); + + if (!dont_show) { + wait_until_press_key_cv(); + destroy_all_windows_cv(); + } + + free(lr_set); + free(it_num_set); + + if (filename) break; + } + + // free memory + free_ptrs((void**)names, net.layers[net.n - 1].classes); + free_list_contents_kvp(options); + free_list(options); + + int i; + const int nsize = 8; + for (j = 0; j < nsize; ++j) { + for (i = 32; i < 127; ++i) { + free_image(alphabet[j][i]); + } + free(alphabet[j]); + } + free(alphabet); + + free_network(net); +} +#else // defined(OPENCV) && defined(GPU) +void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num, + int letter_box, int benchmark_layers) +{ + printf(" ./darknet detector draw ... can't be used without OpenCV and CUDA! \n"); + getchar(); +} +#endif // defined(OPENCV) && defined(GPU) + +void run_detector(int argc, char **argv) +{ + int dont_show = find_arg(argc, argv, "-dont_show"); + int benchmark = find_arg(argc, argv, "-benchmark"); + int benchmark_layers = find_arg(argc, argv, "-benchmark_layers"); + //if (benchmark_layers) benchmark = 1; + if (benchmark) dont_show = 1; + int show = find_arg(argc, argv, "-show"); + int letter_box = find_arg(argc, argv, "-letter_box"); + int calc_map = find_arg(argc, argv, "-map"); + int map_points = find_int_arg(argc, argv, "-points", 0); + check_mistakes = find_arg(argc, argv, "-check_mistakes"); + int show_imgs = find_arg(argc, argv, "-show_imgs"); + int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1); + int avgframes = find_int_arg(argc, argv, "-avgframes", 3); + int dontdraw_bbox = find_arg(argc, argv, "-dontdraw_bbox"); + int json_port = find_int_arg(argc, argv, "-json_port", -1); + char *http_post_host = find_char_arg(argc, argv, "-http_post_host", 0); + int time_limit_sec = find_int_arg(argc, argv, "-time_limit_sec", 0); + char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); + char *outfile = find_char_arg(argc, argv, "-out", 0); + char *prefix = find_char_arg(argc, argv, "-prefix", 0); + float thresh = find_float_arg(argc, argv, "-thresh", .25); // 0.24 + float iou_thresh = find_float_arg(argc, argv, "-iou_thresh", .5); // 0.5 for mAP + float hier_thresh = find_float_arg(argc, argv, "-hier", .5); + int cam_index = find_int_arg(argc, argv, "-c", 0); + int frame_skip = find_int_arg(argc, argv, "-s", 0); + int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); + int width = find_int_arg(argc, argv, "-width", -1); + int height = find_int_arg(argc, argv, "-height", -1); + // extended output in test mode (output of rect bound coords) + // and for recall mode (extended output table-like format with results for best_class fit) + int ext_output = find_arg(argc, argv, "-ext_output"); + int save_labels = find_arg(argc, argv, "-save_labels"); + char* chart_path = find_char_arg(argc, argv, "-chart", 0); + if (argc < 4) { + fprintf(stderr, "usage: %s %s [train/test/valid/demo/map] [data] [cfg] [weights (optional)]\n", argv[0], argv[1]); + return; + } + char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); + int *gpus = 0; + int gpu = 0; + int ngpus = 0; + if (gpu_list) { + printf("%s\n", gpu_list); + int len = (int)strlen(gpu_list); + ngpus = 1; + int i; + for (i = 0; i < len; ++i) { + if (gpu_list[i] == ',') ++ngpus; + } + gpus = (int*)xcalloc(ngpus, sizeof(int)); + for (i = 0; i < ngpus; ++i) { + gpus[i] = atoi(gpu_list); + gpu_list = strchr(gpu_list, ',') + 1; + } + } + else { + gpu = gpu_index; + gpus = &gpu; + ngpus = 1; + } + + int clear = find_arg(argc, argv, "-clear"); + + char *datacfg = argv[3]; + char *cfg = argv[4]; + char *weights = (argc > 5) ? argv[5] : 0; + if (weights) + if (strlen(weights) > 0) + if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; + char *filename = (argc > 6) ? argv[6] : 0; + if (0 == strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels, outfile, letter_box, benchmark_layers); + else if (0 == strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show, calc_map, mjpeg_port, show_imgs, benchmark_layers, chart_path); + else if (0 == strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile); + else if (0 == strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); + else if (0 == strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh, iou_thresh, map_points, letter_box, NULL); + else if (0 == strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show); + else if (0 == strcmp(argv[2], "draw")) { + int it_num = 100; + draw_object(datacfg, cfg, weights, filename, thresh, dont_show, it_num, letter_box, benchmark_layers); + } + else if (0 == strcmp(argv[2], "demo")) { + list *options = read_data_cfg(datacfg); + int classes = option_find_int(options, "classes", 20); + char *name_list = option_find_str(options, "names", "data/names.list"); + char **names = get_labels(name_list); + if (filename) + if (strlen(filename) > 0) + if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; + demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, avgframes, frame_skip, prefix, out_filename, + mjpeg_port, dontdraw_bbox, json_port, dont_show, ext_output, letter_box, time_limit_sec, http_post_host, benchmark, benchmark_layers); + + free_list_contents_kvp(options); + free_list(options); + } + else printf(" There isn't such command: %s", argv[2]); + + if (gpus && gpu_list && ngpus > 1) free(gpus); +} -- Gitblit v1.8.0