From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/activation_kernels.cu | 1393 +++++++++++++++++++++++++++++++--------------------------- 1 files changed, 745 insertions(+), 648 deletions(-) diff --git a/lib/detecter_tools/darknet/activation_kernels.cu b/lib/detecter_tools/darknet/activation_kernels.cu index 62abebd..7a4d06f 100644 --- a/lib/detecter_tools/darknet/activation_kernels.cu +++ b/lib/detecter_tools/darknet/activation_kernels.cu @@ -1,649 +1,746 @@ -#include "darknet.h" -#include <cuda_runtime.h> -#include <curand.h> -#include <cublas_v2.h> -#include <float.h> - -#include "activations.h" -#include "dark_cuda.h" - -__device__ float lhtan_activate_kernel(float x) -{ - if(x < 0) return .001*x; - if(x > 1) return .001*(x-1) + 1; - return x; -} -__device__ float lhtan_gradient_kernel(float x) -{ - if(x > 0 && x < 1) return 1; - return .001; -} - -__device__ float hardtan_activate_kernel(float x) -{ - if (x < -1) return -1; - if (x > 1) return 1; - return x; -} -__device__ float linear_activate_kernel(float x){return x;} -__device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));} -__device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;} -__device__ float relu_activate_kernel(float x){return x*(x>0);} -__device__ float relu6_activate_kernel(float x) { return min_val_cmp(max_val_cmp(x, 0), 6); } -__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);} -__device__ float selu_activate_kernel(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); } -__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;} -__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;} -__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;} -__device__ float tanh_activate_kernel(float x){return (2/(1 + expf(-2*x)) - 1);} -__device__ float gelu_activate_kernel(float x){return (0.5*x*(1 + tanhf(0.797885*x + 0.035677*powf(x, 3))));} -__device__ float softplus_kernel(float x, float threshold = 20) { - if (x > threshold) return x; // too large - else if (x < -threshold) return expf(x); // too small - return logf(expf(x) + 1); -} -__device__ float plse_activate_kernel(float x) -{ - if(x < -4) return .01f * (x + 4); - if(x > 4) return .01f * (x - 4) + 1; - return .125f*x + .5f; -} -__device__ float stair_activate_kernel(float x) -{ - int n = floorf(x); - if (n%2 == 0) return floorf(x/2.f); - else return (x - n) + floorf(x/2.f); -} - - -__device__ float hardtan_gradient_kernel(float x) -{ - if (x > -1 && x < 1) return 1; - return 0; -} -__device__ float linear_gradient_kernel(float x){return 1;} -__device__ float logistic_gradient_kernel(float x){return (1-x)*x;} -__device__ float loggy_gradient_kernel(float x) -{ - float y = (x+1.F)/2.F; - return 2*(1-y)*y; -} -__device__ float relu_gradient_kernel(float x){return (x>0);} -__device__ float relu6_gradient_kernel(float x) { return (x > 0 && x < 6); } -__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);} -__device__ float selu_gradient_kernel(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); } -__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;} -__device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;} -__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;} -__device__ float tanh_gradient_kernel(float x){return 1-x*x;} -__device__ float sech_gpu(float x) { return 2 / (expf(x) + expf(-x)); } -__device__ float gelu_gradient_kernel(float x) { - const float x3 = powf(x, 3); - return 0.5*tanhf(0.0356774*x3 + 0.797885*x) + (0.0535161*x3 + 0.398942*x) * powf(sech_gpu(0.0356774*x3 + 0.797885*x), 2) + 0.5; -} -__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;} -__device__ float stair_gradient_kernel(float x) -{ - if (floor(x) == x) return 0; - return 1; -} - -__device__ float activate_kernel(float x, ACTIVATION a) -{ - switch(a){ - case LINEAR: - return linear_activate_kernel(x); - case LOGISTIC: - return logistic_activate_kernel(x); - case LOGGY: - return loggy_activate_kernel(x); - case RELU: - return relu_activate_kernel(x); - case RELU6: - return relu6_activate_kernel(x); - case ELU: - return elu_activate_kernel(x); - case SELU: - return selu_activate_kernel(x); - case GELU: - return gelu_activate_kernel(x); - case RELIE: - return relie_activate_kernel(x); - case RAMP: - return ramp_activate_kernel(x); - case LEAKY: - return leaky_activate_kernel(x); - case TANH: - return tanh_activate_kernel(x); - case PLSE: - return plse_activate_kernel(x); - case STAIR: - return stair_activate_kernel(x); - case HARDTAN: - return hardtan_activate_kernel(x); - case LHTAN: - return lhtan_activate_kernel(x); - } - return 0; -} - -__device__ float gradient_kernel(float x, ACTIVATION a) -{ - switch (a) { - case LINEAR: - return linear_gradient_kernel(x); - case LOGISTIC: - return logistic_gradient_kernel(x); - case LOGGY: - return loggy_gradient_kernel(x); - case RELU: - return relu_gradient_kernel(x); - case RELU6: - return relu6_gradient_kernel(x); - case NORM_CHAN: - return relu_gradient_kernel(x); - case ELU: - return elu_gradient_kernel(x); - case SELU: - return selu_gradient_kernel(x); - case GELU: - return gelu_gradient_kernel(x); - case RELIE: - return relie_gradient_kernel(x); - case RAMP: - return ramp_gradient_kernel(x); - case LEAKY: - return leaky_gradient_kernel(x); - case TANH: - return tanh_gradient_kernel(x); - case PLSE: - return plse_gradient_kernel(x); - case STAIR: - return stair_gradient_kernel(x); - case HARDTAN: - return hardtan_gradient_kernel(x); - case LHTAN: - return lhtan_gradient_kernel(x); - } - return 0; -} - -__global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx) -{ - int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - int i = id % s; - int b = id / s; - float x1 = x[b*s + i]; - float x2 = x[b*s + s / 2 + i]; - if (id < n) { - float de = dy[id]; - dx[b*s + i] = x2*de; - dx[b*s + s / 2 + i] = x1*de; - } -} - -extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y) -{ - binary_gradient_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, dx, n / 2, size, a, y); - CHECK_CUDA(cudaPeekAtLastError()); -} -__global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y) -{ - int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - int i = id % s; - int b = id / s; - float x1 = x[b*s + i]; - float x2 = x[b*s + s / 2 + i]; - if (id < n) y[id] = x1*x2; -} - -extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y) -{ - binary_activate_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, n / 2, size, a, y); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void activate_array_kernel(float *x, int n, ACTIVATION a) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < n) x[i] = activate_kernel(x[i], a); -} - - - -__global__ void activate_array_swish_kernel(float *x, int n, float *output_sigmoid_gpu, float *output_gpu) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i < n) { - float x_val = x[i]; - float sigmoid = logistic_activate_kernel(x_val); - output_sigmoid_gpu[i] = sigmoid; - output_gpu[i] = x_val * sigmoid; - } -} - -// https://github.com/digantamisra98/Mish -__global__ void activate_array_mish_kernel(float *x, int n, float *activation_input, float *output_gpu) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i < n) { - const float MISH_THRESHOLD = 20; - float x_val = x[i]; - activation_input[i] = x_val; // store value before activation - //output_gpu[i] = x_val * tanh_activate_kernel(logf(1 + expf(x_val))); - - // Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L17-L20 - // TF: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L40-L49 - // log1p(x) == log(x + 1) - output_gpu[i] = x_val * tanh_activate_kernel( softplus_kernel(x_val, MISH_THRESHOLD) ); - } -} - -__global__ void activate_array_leaky_kernel(float *x, int n) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - x[index] = leaky_activate_kernel(x[index]); - } -} - -__global__ void activate_array_selu_kernel(float *x, int n) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - x[index] = selu_activate_kernel(x[index]); - } -} - -__global__ void activate_array_gelu_kernel(float *x, int n) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - x[index] = gelu_activate_kernel(x[index]); - } -} - -__global__ void activate_array_logistic_kernel(float *x, int n) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - x[index] = logistic_activate_kernel(x[index]); - } -} - -__global__ void activate_array_tanh_kernel(float *x, int n) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - x[index] = tanh_activate_kernel(x[index]); - } -} - -__global__ void activate_array_hardtan_kernel(float *x, int n) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - x[index] = hardtan_activate_kernel(x[index]); - } -} - -__global__ void activate_array_relu_kernel(float *x, int n) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - x[index] = relu_activate_kernel(x[index]); - } -} - -__global__ void activate_array_relu6_kernel(float *x, int n) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - x[index] = relu6_activate_kernel(x[index]); - } -} - -__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < n) delta[i] *= gradient_kernel(x[i], a); -} - -// https://github.com/BVLC/caffe/blob/04ab089db018a292ae48d51732dd6c66766b36b6/src/caffe/layers/swish_layer.cu#L28-L30 -__global__ void gradient_array_swish_kernel(float *x, int n, float *sigmoid_gpu, float *delta) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i < n) { - float swish = x[i]; - delta[i] *= swish + sigmoid_gpu[i] * (1 - swish); // gradient_kernel(x[i], a); - } -} - -// https://github.com/digantamisra98/Mish -__global__ void gradient_array_mish_kernel(int n, float *activation_input_gpu, float *delta) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i < n) { - const float MISH_THRESHOLD = 20.0f; - - // implementation from TensorFlow: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L66-L80 - // implementation from Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L26-L31 - // log1p(x) == log(x + 1) - const float inp = activation_input_gpu[i]; - const float sp = softplus_kernel(inp, MISH_THRESHOLD); - const float grad_sp = 1 - expf(-sp); - const float tsp = tanh(sp); - const float grad_tsp = (1 - tsp*tsp) * grad_sp; - const float grad = inp * grad_tsp + tsp; - delta[i] *= grad; - - //float x = activation_input[i]; - //float d = 2 * expf(x) + expf(2 * x) + 2; - //float w = 4 * (x + 1) + 4 * expf(2 * x) + expf(3 * x) + expf(x)*(4 * x + 6); - //float derivative = expf(x) * w / (d * d); - //delta[i] *= derivative; - } -} - -__global__ void gradient_array_leaky_kernel(float *x, int n, float *delta) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - delta[index] *= leaky_gradient_kernel(x[index]); - } -} - -__global__ void gradient_array_selu_kernel(float *x, int n, float *delta) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - delta[index] *= selu_gradient_kernel(x[index]); - } -} - -__global__ void gradient_array_gelu_kernel(float *x, int n, float *delta) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - delta[index] *= gelu_gradient_kernel(x[index]); - } -} - -__global__ void gradient_array_logistic_kernel(float *x, int n, float *delta) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - delta[index] *= logistic_gradient_kernel(x[index]); - } -} - -__global__ void gradient_array_tanh_kernel(float *x, int n, float *delta) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - delta[index] *= tanh_gradient_kernel(x[index]); - } -} - -__global__ void gradient_array_hardtan_kernel(float *x, int n, float *delta) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - delta[index] *= hardtan_gradient_kernel(x[index]); - } -} - -__global__ void gradient_array_relu_kernel(float *x, int n, float *delta) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - delta[index] *= relu_gradient_kernel(x[index]); - } -} - -__global__ void gradient_array_relu6_kernel(float *x, int n, float *delta) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < n) { - delta[index] *= relu6_gradient_kernel(x[index]); - } -} - -extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a) -{ - const int num_blocks = get_number_of_blocks(n, BLOCK); - if (a == LINEAR) return; - else if(a == LEAKY) activate_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); - else if (a == LOGISTIC) activate_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); - else if (a == TANH) activate_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); - else if (a == HARDTAN) activate_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); - else if (a == RELU) activate_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); - else if (a == RELU6) activate_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); - else if (a == SELU) activate_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); - else if (a == GELU) activate_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); - else - activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu) -{ - const int num_blocks = get_number_of_blocks(n, BLOCK); - activate_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, output_sigmoid_gpu, output_gpu); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu) -{ - const int num_blocks = get_number_of_blocks(n, BLOCK); - activate_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta) -{ - const int num_blocks = get_number_of_blocks(n, BLOCK); - if (a == LINEAR) return; - else if (a == LEAKY) gradient_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); - else if (a == LOGISTIC) gradient_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); - else if (a == TANH) gradient_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); - else if (a == HARDTAN) gradient_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); - else if (a == RELU) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); - else if (a == RELU6) gradient_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); - //else if (a == NORM_CHAN) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); - else if (a == NORM_CHAN_SOFTMAX || a == NORM_CHAN) { - printf(" Error: should be used custom NORM_CHAN_SOFTMAX-function for gradient \n"); - exit(0); - } - else if (a == SELU) gradient_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); - else if (a == GELU) gradient_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); - else - gradient_array_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, a, delta); - CHECK_CUDA(cudaPeekAtLastError()); -} - - -extern "C" void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta) -{ - const int num_blocks = get_number_of_blocks(n, BLOCK); - gradient_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, sigmoid_gpu, delta); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta) -{ - const int num_blocks = get_number_of_blocks(n, BLOCK); - gradient_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta); - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__global__ void activate_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu) -{ - int i = blockIdx.x * blockDim.x + threadIdx.x; - - int wh_i = i % wh_step; - int b = i / wh_step; - - const float eps = 0.0001; - if (i < size) { - float sum = eps; - int k; - for (k = 0; k < channels; ++k) { - float val = x[wh_i + k * wh_step + b*wh_step*channels]; - if (val > 0) sum += val; - } - for (k = 0; k < channels; ++k) { - float val = x[wh_i + k * wh_step + b*wh_step*channels]; - if (val > 0) val = val / sum; - else val = 0; - output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val; - } - } -} - -extern "C" void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu) -{ - // n = w*h*c*batch - // size = w*h*batch - int size = n / channels; - - const int num_blocks = get_number_of_blocks(size, BLOCK); - - activate_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu); - CHECK_CUDA(cudaPeekAtLastError()); -} - - - -__global__ void activate_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu, int use_max_val) -{ - int i = blockIdx.x * blockDim.x + threadIdx.x; - - int wh_i = i % wh_step; - int b = i / wh_step; - - const float eps = 0.0001; - if (i < size) { - float sum = eps; - float max_val = -FLT_MAX; - int k; - if (use_max_val) { - for (k = 0; k < channels; ++k) { - float val = x[wh_i + k * wh_step + b*wh_step*channels]; - if (val > max_val || k == 0) max_val = val; - } - } - else - max_val = 0; - - for (k = 0; k < channels; ++k) { - float val = x[wh_i + k * wh_step + b*wh_step*channels]; - sum += expf(val - max_val); - } - for (k = 0; k < channels; ++k) { - float val = x[wh_i + k * wh_step + b*wh_step*channels]; - val = expf(val - max_val) / sum; - if (isnan(val) || isinf(val)) val = 0; - output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val; - } - } -} - -extern "C" void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val) -{ - // n = w*h*c*batch - // size = w*h*batch - int size = n / channels; - - const int num_blocks = get_number_of_blocks(size, BLOCK); - - activate_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu, use_max_val); - CHECK_CUDA(cudaPeekAtLastError()); -} - - - -__global__ void gradient_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu) -{ - int i = blockIdx.x * blockDim.x + threadIdx.x; - - int wh_i = i % wh_step; - int b = i / wh_step; - - if (i < size) { - int k; - /* - float grad = 0; - for (k = 0; k < channels; ++k) { - const int index = wh_i + k * wh_step + b*wh_step*channels; - float out = x[index]; - float delta = delta_gpu[index]; - grad += out*fabs(delta); - } - */ - for (k = 0; k < channels; ++k) { - const int index = wh_i + k * wh_step + b*wh_step*channels; - float delta = delta_gpu[index]; - float grad = x[index] * (1 - x[index]); - delta = delta * grad; - if (isnan(delta) || isinf(delta)) delta = 0; - delta_gpu[index] = delta; - } - } -} - -extern "C" void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu) -{ - // n = w*h*c*batch - // size = w*h*batch - int size = n / channels; - - const int num_blocks = get_number_of_blocks(size, BLOCK); - - gradient_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu); - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__global__ void gradient_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu) -{ - int i = blockIdx.x * blockDim.x + threadIdx.x; - - int wh_i = i % wh_step; - int b = i / wh_step; - - if (i < size) { - int k; - /* - float grad = 0; - for (k = 0; k < channels; ++k) { - const int index = wh_i + k * wh_step + b*wh_step*channels; - float out = x[index]; - float delta = delta_gpu[index]; - grad += out*fabs(delta); - } - */ - for (k = 0; k < channels; ++k) { - const int index = wh_i + k * wh_step + b*wh_step*channels; - if (x[index] > 0) { - float delta = delta_gpu[index]; - float grad = x[index]; - delta = delta * grad; - delta_gpu[index] = delta; - } - } - } -} - -extern "C" void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu) -{ - // n = w*h*c*batch - // size = w*h*batch - int size = n / channels; - - const int num_blocks = get_number_of_blocks(size, BLOCK); - - gradient_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu); - CHECK_CUDA(cudaPeekAtLastError()); +#include "darknet.h" +#include <cuda_runtime.h> +#include <curand.h> +#include <cublas_v2.h> +#include <float.h> + +#include "activations.h" +#include "dark_cuda.h" + +__device__ float lhtan_activate_kernel(float x) +{ + if(x < 0) return .001*x; + if(x > 1) return .001*(x-1) + 1; + return x; +} +__device__ float lhtan_gradient_kernel(float x) +{ + if(x > 0 && x < 1) return 1; + return .001; +} + +__device__ float hardtan_activate_kernel(float x) +{ + if (x < -1) return -1; + if (x > 1) return 1; + return x; +} +__device__ float linear_activate_kernel(float x){return x;} +__device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));} +__device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;} +__device__ float relu_activate_kernel(float x){return x*(x>0);} +__device__ float relu6_activate_kernel(float x) { return min_val_cmp(max_val_cmp(x, 0), 6); } +__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);} +__device__ float selu_activate_kernel(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); } +__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;} +__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;} +__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;} +__device__ float tanh_activate_kernel(float x){return (2/(1 + expf(-2*x)) - 1);} +__device__ float gelu_activate_kernel(float x){return (0.5*x*(1 + tanhf(0.797885*x + 0.035677*powf(x, 3))));} +__device__ float softplus_kernel(float x, float threshold = 20) { + if (x > threshold) return x; // too large + else if (x < -threshold) return expf(x); // too small + return log1pf(expf(x)); + //return logf(expf(x) + 1); +} +__device__ float plse_activate_kernel(float x) +{ + if(x < -4) return .01f * (x + 4); + if(x > 4) return .01f * (x - 4) + 1; + return .125f*x + .5f; +} +__device__ float stair_activate_kernel(float x) +{ + int n = floorf(x); + if (n%2 == 0) return floorf(x/2.f); + else return (x - n) + floorf(x/2.f); +} + + +__device__ float hardtan_gradient_kernel(float x) +{ + if (x > -1 && x < 1) return 1; + return 0; +} +__device__ float linear_gradient_kernel(float x){return 1;} +__device__ float logistic_gradient_kernel(float x){return (1-x)*x;} +__device__ float loggy_gradient_kernel(float x) +{ + float y = (x+1.F)/2.F; + return 2*(1-y)*y; +} +__device__ float relu_gradient_kernel(float x){return (x>0);} +__device__ float relu6_gradient_kernel(float x) { return (x > 0 && x < 6); } +__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);} +__device__ float selu_gradient_kernel(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); } +__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;} +__device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;} +__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;} +__device__ float tanh_gradient_kernel(float x){return 1-x*x;} +__device__ float sech_gpu(float x) { return 2 / (expf(x) + expf(-x)); } +__device__ float gelu_gradient_kernel(float x) { + const float x3 = powf(x, 3); + return 0.5*tanhf(0.0356774*x3 + 0.797885*x) + (0.0535161*x3 + 0.398942*x) * powf(sech_gpu(0.0356774*x3 + 0.797885*x), 2) + 0.5; +} +__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;} +__device__ float stair_gradient_kernel(float x) +{ + if (floorf(x) == x) return 0; + return 1; +} + +__device__ float activate_kernel(float x, ACTIVATION a) +{ + switch(a){ + case LINEAR: + return linear_activate_kernel(x); + case LOGISTIC: + return logistic_activate_kernel(x); + case LOGGY: + return loggy_activate_kernel(x); + case RELU: + return relu_activate_kernel(x); + case RELU6: + return relu6_activate_kernel(x); + case ELU: + return elu_activate_kernel(x); + case SELU: + return selu_activate_kernel(x); + case GELU: + return gelu_activate_kernel(x); + case RELIE: + return relie_activate_kernel(x); + case RAMP: + return ramp_activate_kernel(x); + case LEAKY: + return leaky_activate_kernel(x); + case TANH: + return tanh_activate_kernel(x); + case PLSE: + return plse_activate_kernel(x); + case STAIR: + return stair_activate_kernel(x); + case HARDTAN: + return hardtan_activate_kernel(x); + case LHTAN: + return lhtan_activate_kernel(x); + } + return 0; +} + +__device__ float gradient_kernel(float x, ACTIVATION a) +{ + switch (a) { + case LINEAR: + return linear_gradient_kernel(x); + case LOGISTIC: + return logistic_gradient_kernel(x); + case LOGGY: + return loggy_gradient_kernel(x); + case RELU: + return relu_gradient_kernel(x); + case RELU6: + return relu6_gradient_kernel(x); + case NORM_CHAN: + return relu_gradient_kernel(x); + case ELU: + return elu_gradient_kernel(x); + case SELU: + return selu_gradient_kernel(x); + case GELU: + return gelu_gradient_kernel(x); + case RELIE: + return relie_gradient_kernel(x); + case RAMP: + return ramp_gradient_kernel(x); + case LEAKY: + return leaky_gradient_kernel(x); + case TANH: + return tanh_gradient_kernel(x); + case PLSE: + return plse_gradient_kernel(x); + case STAIR: + return stair_gradient_kernel(x); + case HARDTAN: + return hardtan_gradient_kernel(x); + case LHTAN: + return lhtan_gradient_kernel(x); + } + return 0; +} + +__global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx) +{ + int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + int i = id % s; + int b = id / s; + float x1 = x[b*s + i]; + float x2 = x[b*s + s / 2 + i]; + if (id < n) { + float de = dy[id]; + dx[b*s + i] = x2*de; + dx[b*s + s / 2 + i] = x1*de; + } +} + +extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y) +{ + binary_gradient_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, dx, n / 2, size, a, y); + CHECK_CUDA(cudaPeekAtLastError()); +} +__global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y) +{ + int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + int i = id % s; + int b = id / s; + float x1 = x[b*s + i]; + float x2 = x[b*s + s / 2 + i]; + if (id < n) y[id] = x1*x2; +} + +extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y) +{ + binary_activate_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, n / 2, size, a, y); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void activate_array_kernel(float *x, int n, ACTIVATION a) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n) x[i] = activate_kernel(x[i], a); +} + + + +__global__ void activate_array_swish_kernel(float *x, int n, float *output_sigmoid_gpu, float *output_gpu) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < n) { + float x_val = x[i]; + float sigmoid = logistic_activate_kernel(x_val); + if (output_sigmoid_gpu) output_sigmoid_gpu[i] = sigmoid; + output_gpu[i] = x_val * sigmoid; + } +} + +__device__ float mish_njuffa(float x) +{ + float r; + float e = expf(x); + r = 1.0f / fmaf(fmaf(-0.5f, e, -1.0f), e, -1.0f); + r = fmaf(r, x, x); + return r; +} + +__device__ float mish_yashas(float x) +{ + float e = __expf(x); + if (x <= -18.0f) + return x * e; + + float n = e * e + 2 * e; + if (x <= -5.0f) + return x * __fdividef(n, n + 2); + + return x - 2 * __fdividef(x, n + 2); +} + +__device__ float mish_yashas2(float x) +{ + float e = __expf(x); + float n = e * e + 2 * e; + if (x <= -0.6f) + return x * __fdividef(n, n + 2); + + return x - 2 * __fdividef(x, n + 2); +} + +// https://github.com/digantamisra98/Mish +__global__ void activate_array_mish_kernel(float *x, int n, float *activation_input, float *output_gpu) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < n) { + const float MISH_THRESHOLD = 20; + float x_val = x[i]; + if (activation_input) activation_input[i] = x_val; // store value before activation + //output_gpu[i] = x_val * tanh_activate_kernel(logf(1 + expf(x_val))); + + // Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L17-L20 + // TF: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L40-L49 + // log1p(x) == log(x + 1) + //output_gpu[i] = x_val * tanh_activate_kernel( softplus_kernel(x_val, MISH_THRESHOLD) ); + output_gpu[i] = mish_yashas2(x_val); + //output_gpu[i] = mish_njuffa(x_val); + } +} + +__device__ float hard_mish_yashas(float x) +{ + if (x > 0) + return x; + if (x > -2) + return x * x / 2 + x; + return 0; +} + +__global__ void activate_array_hard_mish_kernel(float *x, int n, float *activation_input, float *output_gpu) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < n) { + + float x_val = x[i]; + if (activation_input) activation_input[i] = x_val; // store value before activation + output_gpu[i] = hard_mish_yashas(x_val); + } +} +__global__ void activate_array_leaky_kernel(float *x, int n) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + x[index] = leaky_activate_kernel(x[index]); + } +} + +__global__ void activate_array_selu_kernel(float *x, int n) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + x[index] = selu_activate_kernel(x[index]); + } +} + +__global__ void activate_array_gelu_kernel(float *x, int n) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + x[index] = gelu_activate_kernel(x[index]); + } +} + +__global__ void activate_array_logistic_kernel(float *x, int n) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + x[index] = logistic_activate_kernel(x[index]); + } +} + +__global__ void activate_array_tanh_kernel(float *x, int n) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + x[index] = tanh_activate_kernel(x[index]); + } +} + +__global__ void activate_array_hardtan_kernel(float *x, int n) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + x[index] = hardtan_activate_kernel(x[index]); + } +} + +__global__ void activate_array_relu_kernel(float *x, int n) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + x[index] = relu_activate_kernel(x[index]); + } +} + +__global__ void activate_array_relu6_kernel(float *x, int n) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + x[index] = relu6_activate_kernel(x[index]); + } +} + +__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n) delta[i] *= gradient_kernel(x[i], a); +} + +// https://github.com/BVLC/caffe/blob/04ab089db018a292ae48d51732dd6c66766b36b6/src/caffe/layers/swish_layer.cu#L28-L30 +__global__ void gradient_array_swish_kernel(float *x, int n, float *sigmoid_gpu, float *delta) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < n) { + float swish = x[i]; + delta[i] *= swish + sigmoid_gpu[i] * (1 - swish); // gradient_kernel(x[i], a); + } +} + +// https://github.com/digantamisra98/Mish +__global__ void gradient_array_mish_kernel(int n, float *activation_input_gpu, float *delta) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < n) { + const float MISH_THRESHOLD = 20.0f; + + // implementation from TensorFlow: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L66-L80 + // implementation from Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L26-L31 + // log1p(x) == log(x + 1) + const float inp = activation_input_gpu[i]; + const float sp = softplus_kernel(inp, MISH_THRESHOLD); + const float grad_sp = -expm1f(-sp); + //const float grad_sp = 1 - expf(-sp); + const float tsp = tanh(sp); + const float grad_tsp = (1 - tsp*tsp) * grad_sp; + const float grad = inp * grad_tsp + tsp; + delta[i] *= grad; + + //float x = activation_input[i]; + //float d = 2 * expf(x) + expf(2 * x) + 2; + //float w = 4 * (x + 1) + 4 * expf(2 * x) + expf(3 * x) + expf(x)*(4 * x + 6); + //float derivative = expf(x) * w / (d * d); + //delta[i] *= derivative; + } +} + +__device__ float hard_mish_yashas_grad(float x) +{ + if (x > 0) + return 1; + if (x > -2) + return x + 1; + return 0; +} + +__global__ void gradient_array_hard_mish_kernel(int n, float *activation_input_gpu, float *delta) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < n) { + + const float x = activation_input_gpu[i]; + delta[i] *= hard_mish_yashas_grad(x); + } +} + +__global__ void gradient_array_leaky_kernel(float *x, int n, float *delta) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + delta[index] *= leaky_gradient_kernel(x[index]); + } +} + +__global__ void gradient_array_revleaky_kernel(float *x, int n, float *delta) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + delta[index] /= leaky_gradient_kernel(x[index]); + } +} + +__global__ void gradient_array_selu_kernel(float *x, int n, float *delta) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + delta[index] *= selu_gradient_kernel(x[index]); + } +} + +__global__ void gradient_array_gelu_kernel(float *x, int n, float *delta) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + delta[index] *= gelu_gradient_kernel(x[index]); + } +} + +__global__ void gradient_array_logistic_kernel(float *x, int n, float *delta) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + delta[index] *= logistic_gradient_kernel(x[index]); + } +} + +__global__ void gradient_array_tanh_kernel(float *x, int n, float *delta) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + delta[index] *= tanh_gradient_kernel(x[index]); + } +} + +__global__ void gradient_array_hardtan_kernel(float *x, int n, float *delta) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + delta[index] *= hardtan_gradient_kernel(x[index]); + } +} + +__global__ void gradient_array_relu_kernel(float *x, int n, float *delta) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + delta[index] *= relu_gradient_kernel(x[index]); + } +} + +__global__ void gradient_array_relu6_kernel(float *x, int n, float *delta) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < n) { + delta[index] *= relu6_gradient_kernel(x[index]); + } +} + +extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a) +{ + const int num_blocks = get_number_of_blocks(n, BLOCK); + if (a == LINEAR) return; + else if (a == LEAKY || a == REVLEAKY) activate_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); + else if (a == LOGISTIC) activate_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); + else if (a == TANH) activate_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); + else if (a == HARDTAN) activate_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); + else if (a == RELU) activate_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); + else if (a == RELU6) activate_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); + else if (a == SELU) activate_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); + else if (a == GELU) activate_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); + else + activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu) +{ + const int num_blocks = get_number_of_blocks(n, BLOCK); + activate_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, output_sigmoid_gpu, output_gpu); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu) +{ + const int num_blocks = get_number_of_blocks(n, BLOCK); + activate_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void activate_array_hard_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu) +{ + const int num_blocks = get_number_of_blocks(n, BLOCK); + activate_array_hard_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta) +{ + const int num_blocks = get_number_of_blocks(n, BLOCK); + if (a == LINEAR) return; + else if (a == LEAKY) gradient_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); + else if (a == REVLEAKY) gradient_array_revleaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); + else if (a == LOGISTIC) gradient_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); + else if (a == TANH) gradient_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); + else if (a == HARDTAN) gradient_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); + else if (a == RELU) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); + else if (a == RELU6) gradient_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); + //else if (a == NORM_CHAN) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); + else if (a == NORM_CHAN_SOFTMAX || a == NORM_CHAN) { + printf(" Error: should be used custom NORM_CHAN_SOFTMAX-function for gradient \n"); + exit(0); + } + else if (a == SELU) gradient_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); + else if (a == GELU) gradient_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); + else + gradient_array_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, a, delta); + CHECK_CUDA(cudaPeekAtLastError()); +} + + +extern "C" void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta) +{ + const int num_blocks = get_number_of_blocks(n, BLOCK); + gradient_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, sigmoid_gpu, delta); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta) +{ + const int num_blocks = get_number_of_blocks(n, BLOCK); + gradient_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void gradient_array_hard_mish_ongpu(int n, float *activation_input_gpu, float *delta) +{ + const int num_blocks = get_number_of_blocks(n, BLOCK); + gradient_array_hard_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta); + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void activate_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu) +{ + int i = blockIdx.x * blockDim.x + threadIdx.x; + + int wh_i = i % wh_step; + int b = i / wh_step; + + const float eps = 0.0001; + if (i < size) { + float sum = eps; + int k; + for (k = 0; k < channels; ++k) { + float val = x[wh_i + k * wh_step + b*wh_step*channels]; + if (val > 0) sum += val; + } + for (k = 0; k < channels; ++k) { + float val = x[wh_i + k * wh_step + b*wh_step*channels]; + if (val > 0) val = val / sum; + else val = 0; + output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val; + } + } +} + +extern "C" void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu) +{ + // n = w*h*c*batch + // size = w*h*batch + int size = n / channels; + + const int num_blocks = get_number_of_blocks(size, BLOCK); + + activate_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu); + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void activate_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu, int use_max_val) +{ + int i = blockIdx.x * blockDim.x + threadIdx.x; + + int wh_i = i % wh_step; + int b = i / wh_step; + + const float eps = 0.0001; + if (i < size) { + float sum = eps; + float max_val = -FLT_MAX; + int k; + if (use_max_val) { + for (k = 0; k < channels; ++k) { + float val = x[wh_i + k * wh_step + b*wh_step*channels]; + if (val > max_val || k == 0) max_val = val; + } + } + else + max_val = 0; + + for (k = 0; k < channels; ++k) { + float val = x[wh_i + k * wh_step + b*wh_step*channels]; + sum += expf(val - max_val); + } + for (k = 0; k < channels; ++k) { + float val = x[wh_i + k * wh_step + b*wh_step*channels]; + val = expf(val - max_val) / sum; + if (isnan(val) || isinf(val)) val = 0; + output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val; + } + } +} + +extern "C" void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val) +{ + // n = w*h*c*batch + // size = w*h*batch + int size = n / channels; + + const int num_blocks = get_number_of_blocks(size, BLOCK); + + activate_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu, use_max_val); + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void gradient_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu) +{ + int i = blockIdx.x * blockDim.x + threadIdx.x; + + int wh_i = i % wh_step; + int b = i / wh_step; + + if (i < size) { + int k; + /* + float grad = 0; + for (k = 0; k < channels; ++k) { + const int index = wh_i + k * wh_step + b*wh_step*channels; + float out = x[index]; + float delta = delta_gpu[index]; + grad += out*fabs(delta); + } + */ + for (k = 0; k < channels; ++k) { + const int index = wh_i + k * wh_step + b*wh_step*channels; + float delta = delta_gpu[index]; + float grad = x[index] * (1 - x[index]); + delta = delta * grad; + if (isnan(delta) || isinf(delta)) delta = 0; + delta_gpu[index] = delta; + } + } +} + +extern "C" void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu) +{ + // n = w*h*c*batch + // size = w*h*batch + int size = n / channels; + + const int num_blocks = get_number_of_blocks(size, BLOCK); + + gradient_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu); + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void gradient_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu) +{ + int i = blockIdx.x * blockDim.x + threadIdx.x; + + int wh_i = i % wh_step; + int b = i / wh_step; + + if (i < size) { + int k; + /* + float grad = 0; + for (k = 0; k < channels; ++k) { + const int index = wh_i + k * wh_step + b*wh_step*channels; + float out = x[index]; + float delta = delta_gpu[index]; + grad += out*fabs(delta); + } + */ + for (k = 0; k < channels; ++k) { + const int index = wh_i + k * wh_step + b*wh_step*channels; + if (x[index] > 0) { + float delta = delta_gpu[index]; + float grad = x[index]; + delta = delta * grad; + delta_gpu[index] = delta; + } + } + } +} + +extern "C" void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu) +{ + // n = w*h*c*batch + // size = w*h*batch + int size = n / channels; + + const int num_blocks = get_number_of_blocks(size, BLOCK); + + gradient_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu); + CHECK_CUDA(cudaPeekAtLastError()); } \ No newline at end of file -- Gitblit v1.8.0