From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/activation_kernels.cu | 1393 +++++++++++++++++++++++++++++++---------------------------
 1 files changed, 745 insertions(+), 648 deletions(-)

diff --git a/lib/detecter_tools/darknet/activation_kernels.cu b/lib/detecter_tools/darknet/activation_kernels.cu
index 62abebd..7a4d06f 100644
--- a/lib/detecter_tools/darknet/activation_kernels.cu
+++ b/lib/detecter_tools/darknet/activation_kernels.cu
@@ -1,649 +1,746 @@
-#include "darknet.h"
-#include <cuda_runtime.h>
-#include <curand.h>
-#include <cublas_v2.h>
-#include <float.h>
-
-#include "activations.h"
-#include "dark_cuda.h"
-
-__device__ float lhtan_activate_kernel(float x)
-{
-    if(x < 0) return .001*x;
-    if(x > 1) return .001*(x-1) + 1;
-    return x;
-}
-__device__ float lhtan_gradient_kernel(float x)
-{
-    if(x > 0 && x < 1) return 1;
-    return .001;
-}
-
-__device__ float hardtan_activate_kernel(float x)
-{
-    if (x < -1) return -1;
-    if (x > 1) return 1;
-    return x;
-}
-__device__ float linear_activate_kernel(float x){return x;}
-__device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));}
-__device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;}
-__device__ float relu_activate_kernel(float x){return x*(x>0);}
-__device__ float relu6_activate_kernel(float x) { return min_val_cmp(max_val_cmp(x, 0), 6); }
-__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);}
-__device__ float selu_activate_kernel(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); }
-__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;}
-__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;}
-__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;}
-__device__ float tanh_activate_kernel(float x){return (2/(1 + expf(-2*x)) - 1);}
-__device__ float gelu_activate_kernel(float x){return (0.5*x*(1 + tanhf(0.797885*x + 0.035677*powf(x, 3))));}
-__device__ float softplus_kernel(float x, float threshold = 20) {
-    if (x > threshold) return x;                // too large
-    else if (x < -threshold) return expf(x);    // too small
-    return logf(expf(x) + 1);
-}
-__device__ float plse_activate_kernel(float x)
-{
-    if(x < -4) return .01f * (x + 4);
-    if(x > 4)  return .01f * (x - 4) + 1;
-    return .125f*x + .5f;
-}
-__device__ float stair_activate_kernel(float x)
-{
-    int n = floorf(x);
-    if (n%2 == 0) return floorf(x/2.f);
-    else return (x - n) + floorf(x/2.f);
-}
-
-
-__device__ float hardtan_gradient_kernel(float x)
-{
-    if (x > -1 && x < 1) return 1;
-    return 0;
-}
-__device__ float linear_gradient_kernel(float x){return 1;}
-__device__ float logistic_gradient_kernel(float x){return (1-x)*x;}
-__device__ float loggy_gradient_kernel(float x)
-{
-    float y = (x+1.F)/2.F;
-    return 2*(1-y)*y;
-}
-__device__ float relu_gradient_kernel(float x){return (x>0);}
-__device__ float relu6_gradient_kernel(float x) { return (x > 0 && x < 6); }
-__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);}
-__device__ float selu_gradient_kernel(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); }
-__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;}
-__device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;}
-__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;}
-__device__ float tanh_gradient_kernel(float x){return 1-x*x;}
-__device__ float sech_gpu(float x) { return 2 / (expf(x) + expf(-x)); }
-__device__ float gelu_gradient_kernel(float x) {
-    const float x3 = powf(x, 3);
-    return 0.5*tanhf(0.0356774*x3 + 0.797885*x) + (0.0535161*x3 + 0.398942*x) * powf(sech_gpu(0.0356774*x3 + 0.797885*x), 2) + 0.5;
-}
-__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;}
-__device__ float stair_gradient_kernel(float x)
-{
-    if (floor(x) == x) return 0;
-    return 1;
-}
-
-__device__ float activate_kernel(float x, ACTIVATION a)
-{
-    switch(a){
-        case LINEAR:
-            return linear_activate_kernel(x);
-        case LOGISTIC:
-            return logistic_activate_kernel(x);
-        case LOGGY:
-            return loggy_activate_kernel(x);
-        case RELU:
-            return relu_activate_kernel(x);
-        case RELU6:
-            return relu6_activate_kernel(x);
-        case ELU:
-            return elu_activate_kernel(x);
-        case SELU:
-            return selu_activate_kernel(x);
-        case GELU:
-            return gelu_activate_kernel(x);
-        case RELIE:
-            return relie_activate_kernel(x);
-        case RAMP:
-            return ramp_activate_kernel(x);
-        case LEAKY:
-            return leaky_activate_kernel(x);
-        case TANH:
-            return tanh_activate_kernel(x);
-        case PLSE:
-            return plse_activate_kernel(x);
-        case STAIR:
-            return stair_activate_kernel(x);
-        case HARDTAN:
-            return hardtan_activate_kernel(x);
-        case LHTAN:
-            return lhtan_activate_kernel(x);
-    }
-    return 0;
-}
-
-__device__ float gradient_kernel(float x, ACTIVATION a)
-{
-    switch (a) {
-    case LINEAR:
-        return linear_gradient_kernel(x);
-    case LOGISTIC:
-        return logistic_gradient_kernel(x);
-    case LOGGY:
-        return loggy_gradient_kernel(x);
-    case RELU:
-        return relu_gradient_kernel(x);
-    case RELU6:
-        return relu6_gradient_kernel(x);
-    case NORM_CHAN:
-        return relu_gradient_kernel(x);
-    case ELU:
-        return elu_gradient_kernel(x);
-    case SELU:
-        return selu_gradient_kernel(x);
-    case GELU:
-        return gelu_gradient_kernel(x);
-    case RELIE:
-        return relie_gradient_kernel(x);
-    case RAMP:
-        return ramp_gradient_kernel(x);
-    case LEAKY:
-        return leaky_gradient_kernel(x);
-    case TANH:
-        return tanh_gradient_kernel(x);
-    case PLSE:
-        return plse_gradient_kernel(x);
-    case STAIR:
-        return stair_gradient_kernel(x);
-    case HARDTAN:
-        return hardtan_gradient_kernel(x);
-    case LHTAN:
-        return lhtan_gradient_kernel(x);
-    }
-    return 0;
-}
-
-__global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx)
-{
-    int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    int i = id % s;
-    int b = id / s;
-    float x1 = x[b*s + i];
-    float x2 = x[b*s + s / 2 + i];
-    if (id < n) {
-        float de = dy[id];
-        dx[b*s + i] = x2*de;
-        dx[b*s + s / 2 + i] = x1*de;
-    }
-}
-
-extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y)
-{
-    binary_gradient_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, dx, n / 2, size, a, y);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-__global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y)
-{
-    int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    int i = id % s;
-    int b = id / s;
-    float x1 = x[b*s + i];
-    float x2 = x[b*s + s / 2 + i];
-    if (id < n) y[id] = x1*x2;
-}
-
-extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y)
-{
-    binary_activate_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, n / 2, size, a, y);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-
-__global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
-{
-    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if(i < n) x[i] = activate_kernel(x[i], a);
-}
-
-
-
-__global__ void activate_array_swish_kernel(float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
-{
-    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if (i < n) {
-        float x_val = x[i];
-        float sigmoid = logistic_activate_kernel(x_val);
-        output_sigmoid_gpu[i] = sigmoid;
-        output_gpu[i] = x_val * sigmoid;
-    }
-}
-
-// https://github.com/digantamisra98/Mish
-__global__ void activate_array_mish_kernel(float *x, int n, float *activation_input, float *output_gpu)
-{
-    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if (i < n) {
-        const float MISH_THRESHOLD = 20;
-        float x_val = x[i];
-        activation_input[i] = x_val;    // store value before activation
-        //output_gpu[i] = x_val * tanh_activate_kernel(logf(1 + expf(x_val)));
-
-        // Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L17-L20
-        // TF: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L40-L49
-        // log1p(x) == log(x + 1)
-        output_gpu[i] = x_val * tanh_activate_kernel( softplus_kernel(x_val, MISH_THRESHOLD) );
-    }
-}
-
-__global__ void activate_array_leaky_kernel(float *x, int n)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        x[index] = leaky_activate_kernel(x[index]);
-    }
-}
-
-__global__ void activate_array_selu_kernel(float *x, int n)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        x[index] = selu_activate_kernel(x[index]);
-    }
-}
-
-__global__ void activate_array_gelu_kernel(float *x, int n)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        x[index] = gelu_activate_kernel(x[index]);
-    }
-}
-
-__global__ void activate_array_logistic_kernel(float *x, int n)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        x[index] = logistic_activate_kernel(x[index]);
-    }
-}
-
-__global__ void activate_array_tanh_kernel(float *x, int n)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        x[index] = tanh_activate_kernel(x[index]);
-    }
-}
-
-__global__ void activate_array_hardtan_kernel(float *x, int n)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        x[index] = hardtan_activate_kernel(x[index]);
-    }
-}
-
-__global__ void activate_array_relu_kernel(float *x, int n)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        x[index] = relu_activate_kernel(x[index]);
-    }
-}
-
-__global__ void activate_array_relu6_kernel(float *x, int n)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        x[index] = relu6_activate_kernel(x[index]);
-    }
-}
-
-__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta)
-{
-    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if(i < n) delta[i] *= gradient_kernel(x[i], a);
-}
-
-// https://github.com/BVLC/caffe/blob/04ab089db018a292ae48d51732dd6c66766b36b6/src/caffe/layers/swish_layer.cu#L28-L30
-__global__ void gradient_array_swish_kernel(float *x, int n, float *sigmoid_gpu, float *delta)
-{
-    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if (i < n) {
-        float swish = x[i];
-        delta[i] *= swish + sigmoid_gpu[i] * (1 - swish); // gradient_kernel(x[i], a);
-    }
-}
-
-// https://github.com/digantamisra98/Mish
-__global__ void gradient_array_mish_kernel(int n, float *activation_input_gpu, float *delta)
-{
-    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if (i < n) {
-        const float MISH_THRESHOLD = 20.0f;
-
-        // implementation from TensorFlow: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L66-L80
-        // implementation from Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L26-L31
-        // log1p(x) == log(x + 1)
-        const float inp = activation_input_gpu[i];
-        const float sp = softplus_kernel(inp, MISH_THRESHOLD);
-        const float grad_sp = 1 - expf(-sp);
-        const float tsp = tanh(sp);
-        const float grad_tsp = (1 - tsp*tsp) * grad_sp;
-        const float grad = inp * grad_tsp + tsp;
-        delta[i] *= grad;
-
-        //float x = activation_input[i];
-        //float d = 2 * expf(x) + expf(2 * x) + 2;
-        //float w = 4 * (x + 1) + 4 * expf(2 * x) + expf(3 * x) + expf(x)*(4 * x + 6);
-        //float derivative = expf(x) * w / (d * d);
-        //delta[i] *= derivative;
-    }
-}
-
-__global__ void gradient_array_leaky_kernel(float *x, int n, float *delta)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        delta[index] *= leaky_gradient_kernel(x[index]);
-    }
-}
-
-__global__ void gradient_array_selu_kernel(float *x, int n, float *delta)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        delta[index] *= selu_gradient_kernel(x[index]);
-    }
-}
-
-__global__ void gradient_array_gelu_kernel(float *x, int n, float *delta)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        delta[index] *= gelu_gradient_kernel(x[index]);
-    }
-}
-
-__global__ void gradient_array_logistic_kernel(float *x, int n, float *delta)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        delta[index] *= logistic_gradient_kernel(x[index]);
-    }
-}
-
-__global__ void gradient_array_tanh_kernel(float *x, int n, float *delta)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        delta[index] *= tanh_gradient_kernel(x[index]);
-    }
-}
-
-__global__ void gradient_array_hardtan_kernel(float *x, int n, float *delta)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        delta[index] *= hardtan_gradient_kernel(x[index]);
-    }
-}
-
-__global__ void gradient_array_relu_kernel(float *x, int n, float *delta)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        delta[index] *= relu_gradient_kernel(x[index]);
-    }
-}
-
-__global__ void gradient_array_relu6_kernel(float *x, int n, float *delta)
-{
-    int index = blockIdx.x*blockDim.x + threadIdx.x;
-    if (index < n) {
-        delta[index] *= relu6_gradient_kernel(x[index]);
-    }
-}
-
-extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a)
-{
-    const int num_blocks = get_number_of_blocks(n, BLOCK);
-    if (a == LINEAR) return;
-    else if(a == LEAKY) activate_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
-    else if (a == LOGISTIC) activate_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
-    else if (a == TANH) activate_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
-    else if (a == HARDTAN) activate_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
-    else if (a == RELU) activate_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
-    else if (a == RELU6) activate_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
-    else if (a == SELU) activate_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
-    else if (a == GELU) activate_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
-    else
-        activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-
-extern "C" void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
-{
-    const int num_blocks = get_number_of_blocks(n, BLOCK);
-    activate_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, output_sigmoid_gpu, output_gpu);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-
-extern "C" void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu)
-{
-    const int num_blocks = get_number_of_blocks(n, BLOCK);
-    activate_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-
-extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta)
-{
-    const int num_blocks = get_number_of_blocks(n, BLOCK);
-    if (a == LINEAR) return;
-    else if (a == LEAKY) gradient_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
-    else if (a == LOGISTIC) gradient_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
-    else if (a == TANH) gradient_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
-    else if (a == HARDTAN) gradient_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
-    else if (a == RELU) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
-    else if (a == RELU6) gradient_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
-    //else if (a == NORM_CHAN) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
-    else if (a == NORM_CHAN_SOFTMAX || a == NORM_CHAN) {
-        printf(" Error: should be used custom NORM_CHAN_SOFTMAX-function for gradient \n");
-        exit(0);
-    }
-    else if (a == SELU) gradient_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
-    else if (a == GELU) gradient_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
-    else
-        gradient_array_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, a, delta);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-
-
-extern "C" void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta)
-{
-    const int num_blocks = get_number_of_blocks(n, BLOCK);
-    gradient_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, sigmoid_gpu, delta);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-
-extern "C" void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta)
-{
-    const int num_blocks = get_number_of_blocks(n, BLOCK);
-    gradient_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-
-
-__global__ void activate_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu)
-{
-    int i = blockIdx.x * blockDim.x + threadIdx.x;
-
-    int wh_i = i % wh_step;
-    int b = i / wh_step;
-
-    const float eps = 0.0001;
-    if (i < size) {
-        float sum = eps;
-        int k;
-        for (k = 0; k < channels; ++k) {
-            float val = x[wh_i + k * wh_step + b*wh_step*channels];
-            if (val > 0) sum += val;
-        }
-        for (k = 0; k < channels; ++k) {
-            float val = x[wh_i + k * wh_step + b*wh_step*channels];
-            if (val > 0) val = val / sum;
-            else val = 0;
-            output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val;
-        }
-    }
-}
-
-extern "C" void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu)
-{
-    // n = w*h*c*batch
-    // size = w*h*batch
-    int size = n / channels;
-
-    const int num_blocks = get_number_of_blocks(size, BLOCK);
-
-    activate_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-
-
-
-__global__ void activate_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
-{
-    int i = blockIdx.x * blockDim.x + threadIdx.x;
-
-    int wh_i = i % wh_step;
-    int b = i / wh_step;
-
-    const float eps = 0.0001;
-    if (i < size) {
-        float sum = eps;
-        float max_val = -FLT_MAX;
-        int k;
-        if (use_max_val) {
-            for (k = 0; k < channels; ++k) {
-                float val = x[wh_i + k * wh_step + b*wh_step*channels];
-                if (val > max_val || k == 0) max_val = val;
-            }
-        }
-        else
-            max_val = 0;
-
-        for (k = 0; k < channels; ++k) {
-            float val = x[wh_i + k * wh_step + b*wh_step*channels];
-            sum += expf(val - max_val);
-        }
-        for (k = 0; k < channels; ++k) {
-            float val = x[wh_i + k * wh_step + b*wh_step*channels];
-            val = expf(val - max_val) / sum;
-            if (isnan(val) || isinf(val)) val = 0;
-            output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val;
-        }
-    }
-}
-
-extern "C" void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
-{
-    // n = w*h*c*batch
-    // size = w*h*batch
-    int size = n / channels;
-
-    const int num_blocks = get_number_of_blocks(size, BLOCK);
-
-    activate_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu, use_max_val);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-
-
-
-__global__ void gradient_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
-{
-    int i = blockIdx.x * blockDim.x + threadIdx.x;
-
-    int wh_i = i % wh_step;
-    int b = i / wh_step;
-
-    if (i < size) {
-        int k;
-        /*
-        float grad = 0;
-        for (k = 0; k < channels; ++k) {
-            const int index = wh_i + k * wh_step + b*wh_step*channels;
-            float out = x[index];
-            float delta = delta_gpu[index];
-            grad += out*fabs(delta);
-        }
-        */
-        for (k = 0; k < channels; ++k) {
-            const int index = wh_i + k * wh_step + b*wh_step*channels;
-            float delta = delta_gpu[index];
-            float grad = x[index] * (1 - x[index]);
-            delta = delta * grad;
-            if (isnan(delta) || isinf(delta)) delta = 0;
-            delta_gpu[index] = delta;
-        }
-    }
-}
-
-extern "C" void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
-{
-    // n = w*h*c*batch
-    // size = w*h*batch
-    int size = n / channels;
-
-    const int num_blocks = get_number_of_blocks(size, BLOCK);
-
-    gradient_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-
-
-__global__ void gradient_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
-{
-    int i = blockIdx.x * blockDim.x + threadIdx.x;
-
-    int wh_i = i % wh_step;
-    int b = i / wh_step;
-
-    if (i < size) {
-        int k;
-        /*
-        float grad = 0;
-        for (k = 0; k < channels; ++k) {
-            const int index = wh_i + k * wh_step + b*wh_step*channels;
-            float out = x[index];
-            float delta = delta_gpu[index];
-            grad += out*fabs(delta);
-        }
-        */
-        for (k = 0; k < channels; ++k) {
-            const int index = wh_i + k * wh_step + b*wh_step*channels;
-            if (x[index] > 0) {
-                float delta = delta_gpu[index];
-                float grad = x[index];
-                delta = delta * grad;
-                delta_gpu[index] = delta;
-            }
-        }
-    }
-}
-
-extern "C" void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
-{
-    // n = w*h*c*batch
-    // size = w*h*batch
-    int size = n / channels;
-
-    const int num_blocks = get_number_of_blocks(size, BLOCK);
-
-    gradient_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu);
-    CHECK_CUDA(cudaPeekAtLastError());
+#include "darknet.h"
+#include <cuda_runtime.h>
+#include <curand.h>
+#include <cublas_v2.h>
+#include <float.h>
+
+#include "activations.h"
+#include "dark_cuda.h"
+
+__device__ float lhtan_activate_kernel(float x)
+{
+    if(x < 0) return .001*x;
+    if(x > 1) return .001*(x-1) + 1;
+    return x;
+}
+__device__ float lhtan_gradient_kernel(float x)
+{
+    if(x > 0 && x < 1) return 1;
+    return .001;
+}
+
+__device__ float hardtan_activate_kernel(float x)
+{
+    if (x < -1) return -1;
+    if (x > 1) return 1;
+    return x;
+}
+__device__ float linear_activate_kernel(float x){return x;}
+__device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));}
+__device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;}
+__device__ float relu_activate_kernel(float x){return x*(x>0);}
+__device__ float relu6_activate_kernel(float x) { return min_val_cmp(max_val_cmp(x, 0), 6); }
+__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);}
+__device__ float selu_activate_kernel(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); }
+__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;}
+__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;}
+__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;}
+__device__ float tanh_activate_kernel(float x){return (2/(1 + expf(-2*x)) - 1);}
+__device__ float gelu_activate_kernel(float x){return (0.5*x*(1 + tanhf(0.797885*x + 0.035677*powf(x, 3))));}
+__device__ float softplus_kernel(float x, float threshold = 20) {
+    if (x > threshold) return x;                // too large
+    else if (x < -threshold) return expf(x);    // too small
+    return log1pf(expf(x));
+    //return logf(expf(x) + 1);
+}
+__device__ float plse_activate_kernel(float x)
+{
+    if(x < -4) return .01f * (x + 4);
+    if(x > 4)  return .01f * (x - 4) + 1;
+    return .125f*x + .5f;
+}
+__device__ float stair_activate_kernel(float x)
+{
+    int n = floorf(x);
+    if (n%2 == 0) return floorf(x/2.f);
+    else return (x - n) + floorf(x/2.f);
+}
+
+
+__device__ float hardtan_gradient_kernel(float x)
+{
+    if (x > -1 && x < 1) return 1;
+    return 0;
+}
+__device__ float linear_gradient_kernel(float x){return 1;}
+__device__ float logistic_gradient_kernel(float x){return (1-x)*x;}
+__device__ float loggy_gradient_kernel(float x)
+{
+    float y = (x+1.F)/2.F;
+    return 2*(1-y)*y;
+}
+__device__ float relu_gradient_kernel(float x){return (x>0);}
+__device__ float relu6_gradient_kernel(float x) { return (x > 0 && x < 6); }
+__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);}
+__device__ float selu_gradient_kernel(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); }
+__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;}
+__device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;}
+__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;}
+__device__ float tanh_gradient_kernel(float x){return 1-x*x;}
+__device__ float sech_gpu(float x) { return 2 / (expf(x) + expf(-x)); }
+__device__ float gelu_gradient_kernel(float x) {
+    const float x3 = powf(x, 3);
+    return 0.5*tanhf(0.0356774*x3 + 0.797885*x) + (0.0535161*x3 + 0.398942*x) * powf(sech_gpu(0.0356774*x3 + 0.797885*x), 2) + 0.5;
+}
+__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;}
+__device__ float stair_gradient_kernel(float x)
+{
+    if (floorf(x) == x) return 0;
+    return 1;
+}
+
+__device__ float activate_kernel(float x, ACTIVATION a)
+{
+    switch(a){
+        case LINEAR:
+            return linear_activate_kernel(x);
+        case LOGISTIC:
+            return logistic_activate_kernel(x);
+        case LOGGY:
+            return loggy_activate_kernel(x);
+        case RELU:
+            return relu_activate_kernel(x);
+        case RELU6:
+            return relu6_activate_kernel(x);
+        case ELU:
+            return elu_activate_kernel(x);
+        case SELU:
+            return selu_activate_kernel(x);
+        case GELU:
+            return gelu_activate_kernel(x);
+        case RELIE:
+            return relie_activate_kernel(x);
+        case RAMP:
+            return ramp_activate_kernel(x);
+        case LEAKY:
+            return leaky_activate_kernel(x);
+        case TANH:
+            return tanh_activate_kernel(x);
+        case PLSE:
+            return plse_activate_kernel(x);
+        case STAIR:
+            return stair_activate_kernel(x);
+        case HARDTAN:
+            return hardtan_activate_kernel(x);
+        case LHTAN:
+            return lhtan_activate_kernel(x);
+    }
+    return 0;
+}
+
+__device__ float gradient_kernel(float x, ACTIVATION a)
+{
+    switch (a) {
+    case LINEAR:
+        return linear_gradient_kernel(x);
+    case LOGISTIC:
+        return logistic_gradient_kernel(x);
+    case LOGGY:
+        return loggy_gradient_kernel(x);
+    case RELU:
+        return relu_gradient_kernel(x);
+    case RELU6:
+        return relu6_gradient_kernel(x);
+    case NORM_CHAN:
+        return relu_gradient_kernel(x);
+    case ELU:
+        return elu_gradient_kernel(x);
+    case SELU:
+        return selu_gradient_kernel(x);
+    case GELU:
+        return gelu_gradient_kernel(x);
+    case RELIE:
+        return relie_gradient_kernel(x);
+    case RAMP:
+        return ramp_gradient_kernel(x);
+    case LEAKY:
+        return leaky_gradient_kernel(x);
+    case TANH:
+        return tanh_gradient_kernel(x);
+    case PLSE:
+        return plse_gradient_kernel(x);
+    case STAIR:
+        return stair_gradient_kernel(x);
+    case HARDTAN:
+        return hardtan_gradient_kernel(x);
+    case LHTAN:
+        return lhtan_gradient_kernel(x);
+    }
+    return 0;
+}
+
+__global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx)
+{
+    int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    int i = id % s;
+    int b = id / s;
+    float x1 = x[b*s + i];
+    float x2 = x[b*s + s / 2 + i];
+    if (id < n) {
+        float de = dy[id];
+        dx[b*s + i] = x2*de;
+        dx[b*s + s / 2 + i] = x1*de;
+    }
+}
+
+extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y)
+{
+    binary_gradient_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, dx, n / 2, size, a, y);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+__global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y)
+{
+    int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    int i = id % s;
+    int b = id / s;
+    float x1 = x[b*s + i];
+    float x2 = x[b*s + s / 2 + i];
+    if (id < n) y[id] = x1*x2;
+}
+
+extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y)
+{
+    binary_activate_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, n / 2, size, a, y);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+__global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i < n) x[i] = activate_kernel(x[i], a);
+}
+
+
+
+__global__ void activate_array_swish_kernel(float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (i < n) {
+        float x_val = x[i];
+        float sigmoid = logistic_activate_kernel(x_val);
+        if (output_sigmoid_gpu) output_sigmoid_gpu[i] = sigmoid;
+        output_gpu[i] = x_val * sigmoid;
+    }
+}
+
+__device__ float mish_njuffa(float x)
+{
+    float r;
+    float e = expf(x);
+    r = 1.0f / fmaf(fmaf(-0.5f, e, -1.0f), e, -1.0f);
+    r = fmaf(r, x, x);
+    return r;
+}
+
+__device__ float mish_yashas(float x)
+{
+    float e = __expf(x);
+    if (x <= -18.0f)
+        return x * e;
+
+    float n = e * e + 2 * e;
+    if (x <= -5.0f)
+        return x * __fdividef(n, n + 2);
+
+    return x - 2 * __fdividef(x, n + 2);
+}
+
+__device__ float mish_yashas2(float x)
+{
+    float e = __expf(x);
+    float n = e * e + 2 * e;
+    if (x <= -0.6f)
+        return x * __fdividef(n, n + 2);
+
+    return x - 2 * __fdividef(x, n + 2);
+}
+
+// https://github.com/digantamisra98/Mish
+__global__ void activate_array_mish_kernel(float *x, int n, float *activation_input, float *output_gpu)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (i < n) {
+        const float MISH_THRESHOLD = 20;
+        float x_val = x[i];
+        if (activation_input) activation_input[i] = x_val;    // store value before activation
+        //output_gpu[i] = x_val * tanh_activate_kernel(logf(1 + expf(x_val)));
+
+        // Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L17-L20
+        // TF: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L40-L49
+        // log1p(x) == log(x + 1)
+        //output_gpu[i] = x_val * tanh_activate_kernel( softplus_kernel(x_val, MISH_THRESHOLD) );
+        output_gpu[i] = mish_yashas2(x_val);
+        //output_gpu[i] = mish_njuffa(x_val);
+    }
+}
+
+__device__ float hard_mish_yashas(float x)
+{
+    if (x > 0)
+        return x;
+    if (x > -2)
+        return x * x / 2 + x;
+    return 0;
+}
+
+__global__ void activate_array_hard_mish_kernel(float *x, int n, float *activation_input, float *output_gpu)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (i < n) {
+
+        float x_val = x[i];
+        if (activation_input) activation_input[i] = x_val;    // store value before activation
+        output_gpu[i] = hard_mish_yashas(x_val);
+    }
+}
+__global__ void activate_array_leaky_kernel(float *x, int n)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        x[index] = leaky_activate_kernel(x[index]);
+    }
+}
+
+__global__ void activate_array_selu_kernel(float *x, int n)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        x[index] = selu_activate_kernel(x[index]);
+    }
+}
+
+__global__ void activate_array_gelu_kernel(float *x, int n)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        x[index] = gelu_activate_kernel(x[index]);
+    }
+}
+
+__global__ void activate_array_logistic_kernel(float *x, int n)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        x[index] = logistic_activate_kernel(x[index]);
+    }
+}
+
+__global__ void activate_array_tanh_kernel(float *x, int n)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        x[index] = tanh_activate_kernel(x[index]);
+    }
+}
+
+__global__ void activate_array_hardtan_kernel(float *x, int n)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        x[index] = hardtan_activate_kernel(x[index]);
+    }
+}
+
+__global__ void activate_array_relu_kernel(float *x, int n)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        x[index] = relu_activate_kernel(x[index]);
+    }
+}
+
+__global__ void activate_array_relu6_kernel(float *x, int n)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        x[index] = relu6_activate_kernel(x[index]);
+    }
+}
+
+__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i < n) delta[i] *= gradient_kernel(x[i], a);
+}
+
+// https://github.com/BVLC/caffe/blob/04ab089db018a292ae48d51732dd6c66766b36b6/src/caffe/layers/swish_layer.cu#L28-L30
+__global__ void gradient_array_swish_kernel(float *x, int n, float *sigmoid_gpu, float *delta)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (i < n) {
+        float swish = x[i];
+        delta[i] *= swish + sigmoid_gpu[i] * (1 - swish); // gradient_kernel(x[i], a);
+    }
+}
+
+// https://github.com/digantamisra98/Mish
+__global__ void gradient_array_mish_kernel(int n, float *activation_input_gpu, float *delta)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (i < n) {
+        const float MISH_THRESHOLD = 20.0f;
+
+        // implementation from TensorFlow: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L66-L80
+        // implementation from Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L26-L31
+        // log1p(x) == log(x + 1)
+        const float inp = activation_input_gpu[i];
+        const float sp = softplus_kernel(inp, MISH_THRESHOLD);
+        const float grad_sp = -expm1f(-sp);
+        //const float grad_sp = 1 - expf(-sp);
+        const float tsp = tanh(sp);
+        const float grad_tsp = (1 - tsp*tsp) * grad_sp;
+        const float grad = inp * grad_tsp + tsp;
+        delta[i] *= grad;
+
+        //float x = activation_input[i];
+        //float d = 2 * expf(x) + expf(2 * x) + 2;
+        //float w = 4 * (x + 1) + 4 * expf(2 * x) + expf(3 * x) + expf(x)*(4 * x + 6);
+        //float derivative = expf(x) * w / (d * d);
+        //delta[i] *= derivative;
+    }
+}
+
+__device__ float hard_mish_yashas_grad(float x)
+{
+    if (x > 0)
+        return 1;
+    if (x > -2)
+        return x + 1;
+    return 0;
+}
+
+__global__ void gradient_array_hard_mish_kernel(int n, float *activation_input_gpu, float *delta)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (i < n) {
+
+        const float x = activation_input_gpu[i];
+        delta[i] *= hard_mish_yashas_grad(x);
+    }
+}
+
+__global__ void gradient_array_leaky_kernel(float *x, int n, float *delta)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        delta[index] *= leaky_gradient_kernel(x[index]);
+    }
+}
+
+__global__ void gradient_array_revleaky_kernel(float *x, int n, float *delta)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        delta[index] /= leaky_gradient_kernel(x[index]);
+    }
+}
+
+__global__ void gradient_array_selu_kernel(float *x, int n, float *delta)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        delta[index] *= selu_gradient_kernel(x[index]);
+    }
+}
+
+__global__ void gradient_array_gelu_kernel(float *x, int n, float *delta)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        delta[index] *= gelu_gradient_kernel(x[index]);
+    }
+}
+
+__global__ void gradient_array_logistic_kernel(float *x, int n, float *delta)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        delta[index] *= logistic_gradient_kernel(x[index]);
+    }
+}
+
+__global__ void gradient_array_tanh_kernel(float *x, int n, float *delta)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        delta[index] *= tanh_gradient_kernel(x[index]);
+    }
+}
+
+__global__ void gradient_array_hardtan_kernel(float *x, int n, float *delta)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        delta[index] *= hardtan_gradient_kernel(x[index]);
+    }
+}
+
+__global__ void gradient_array_relu_kernel(float *x, int n, float *delta)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        delta[index] *= relu_gradient_kernel(x[index]);
+    }
+}
+
+__global__ void gradient_array_relu6_kernel(float *x, int n, float *delta)
+{
+    int index = blockIdx.x*blockDim.x + threadIdx.x;
+    if (index < n) {
+        delta[index] *= relu6_gradient_kernel(x[index]);
+    }
+}
+
+extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a)
+{
+    const int num_blocks = get_number_of_blocks(n, BLOCK);
+    if (a == LINEAR) return;
+    else if (a == LEAKY || a == REVLEAKY) activate_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
+    else if (a == LOGISTIC) activate_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
+    else if (a == TANH) activate_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
+    else if (a == HARDTAN) activate_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
+    else if (a == RELU) activate_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
+    else if (a == RELU6) activate_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
+    else if (a == SELU) activate_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
+    else if (a == GELU) activate_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
+    else
+        activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+extern "C" void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
+{
+    const int num_blocks = get_number_of_blocks(n, BLOCK);
+    activate_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, output_sigmoid_gpu, output_gpu);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+extern "C" void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu)
+{
+    const int num_blocks = get_number_of_blocks(n, BLOCK);
+    activate_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+extern "C" void activate_array_hard_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu)
+{
+    const int num_blocks = get_number_of_blocks(n, BLOCK);
+    activate_array_hard_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta)
+{
+    const int num_blocks = get_number_of_blocks(n, BLOCK);
+    if (a == LINEAR) return;
+    else if (a == LEAKY) gradient_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
+    else if (a == REVLEAKY) gradient_array_revleaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
+    else if (a == LOGISTIC) gradient_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
+    else if (a == TANH) gradient_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
+    else if (a == HARDTAN) gradient_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
+    else if (a == RELU) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
+    else if (a == RELU6) gradient_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
+    //else if (a == NORM_CHAN) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
+    else if (a == NORM_CHAN_SOFTMAX || a == NORM_CHAN) {
+        printf(" Error: should be used custom NORM_CHAN_SOFTMAX-function for gradient \n");
+        exit(0);
+    }
+    else if (a == SELU) gradient_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
+    else if (a == GELU) gradient_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
+    else
+        gradient_array_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, a, delta);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+
+extern "C" void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta)
+{
+    const int num_blocks = get_number_of_blocks(n, BLOCK);
+    gradient_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, sigmoid_gpu, delta);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+extern "C" void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta)
+{
+    const int num_blocks = get_number_of_blocks(n, BLOCK);
+    gradient_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+extern "C" void gradient_array_hard_mish_ongpu(int n, float *activation_input_gpu, float *delta)
+{
+    const int num_blocks = get_number_of_blocks(n, BLOCK);
+    gradient_array_hard_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+
+__global__ void activate_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu)
+{
+    int i = blockIdx.x * blockDim.x + threadIdx.x;
+
+    int wh_i = i % wh_step;
+    int b = i / wh_step;
+
+    const float eps = 0.0001;
+    if (i < size) {
+        float sum = eps;
+        int k;
+        for (k = 0; k < channels; ++k) {
+            float val = x[wh_i + k * wh_step + b*wh_step*channels];
+            if (val > 0) sum += val;
+        }
+        for (k = 0; k < channels; ++k) {
+            float val = x[wh_i + k * wh_step + b*wh_step*channels];
+            if (val > 0) val = val / sum;
+            else val = 0;
+            output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val;
+        }
+    }
+}
+
+extern "C" void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu)
+{
+    // n = w*h*c*batch
+    // size = w*h*batch
+    int size = n / channels;
+
+    const int num_blocks = get_number_of_blocks(size, BLOCK);
+
+    activate_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+
+
+__global__ void activate_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
+{
+    int i = blockIdx.x * blockDim.x + threadIdx.x;
+
+    int wh_i = i % wh_step;
+    int b = i / wh_step;
+
+    const float eps = 0.0001;
+    if (i < size) {
+        float sum = eps;
+        float max_val = -FLT_MAX;
+        int k;
+        if (use_max_val) {
+            for (k = 0; k < channels; ++k) {
+                float val = x[wh_i + k * wh_step + b*wh_step*channels];
+                if (val > max_val || k == 0) max_val = val;
+            }
+        }
+        else
+            max_val = 0;
+
+        for (k = 0; k < channels; ++k) {
+            float val = x[wh_i + k * wh_step + b*wh_step*channels];
+            sum += expf(val - max_val);
+        }
+        for (k = 0; k < channels; ++k) {
+            float val = x[wh_i + k * wh_step + b*wh_step*channels];
+            val = expf(val - max_val) / sum;
+            if (isnan(val) || isinf(val)) val = 0;
+            output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val;
+        }
+    }
+}
+
+extern "C" void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
+{
+    // n = w*h*c*batch
+    // size = w*h*batch
+    int size = n / channels;
+
+    const int num_blocks = get_number_of_blocks(size, BLOCK);
+
+    activate_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu, use_max_val);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+
+
+__global__ void gradient_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
+{
+    int i = blockIdx.x * blockDim.x + threadIdx.x;
+
+    int wh_i = i % wh_step;
+    int b = i / wh_step;
+
+    if (i < size) {
+        int k;
+        /*
+        float grad = 0;
+        for (k = 0; k < channels; ++k) {
+            const int index = wh_i + k * wh_step + b*wh_step*channels;
+            float out = x[index];
+            float delta = delta_gpu[index];
+            grad += out*fabs(delta);
+        }
+        */
+        for (k = 0; k < channels; ++k) {
+            const int index = wh_i + k * wh_step + b*wh_step*channels;
+            float delta = delta_gpu[index];
+            float grad = x[index] * (1 - x[index]);
+            delta = delta * grad;
+            if (isnan(delta) || isinf(delta)) delta = 0;
+            delta_gpu[index] = delta;
+        }
+    }
+}
+
+extern "C" void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
+{
+    // n = w*h*c*batch
+    // size = w*h*batch
+    int size = n / channels;
+
+    const int num_blocks = get_number_of_blocks(size, BLOCK);
+
+    gradient_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+
+
+__global__ void gradient_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
+{
+    int i = blockIdx.x * blockDim.x + threadIdx.x;
+
+    int wh_i = i % wh_step;
+    int b = i / wh_step;
+
+    if (i < size) {
+        int k;
+        /*
+        float grad = 0;
+        for (k = 0; k < channels; ++k) {
+            const int index = wh_i + k * wh_step + b*wh_step*channels;
+            float out = x[index];
+            float delta = delta_gpu[index];
+            grad += out*fabs(delta);
+        }
+        */
+        for (k = 0; k < channels; ++k) {
+            const int index = wh_i + k * wh_step + b*wh_step*channels;
+            if (x[index] > 0) {
+                float delta = delta_gpu[index];
+                float grad = x[index];
+                delta = delta * grad;
+                delta_gpu[index] = delta;
+            }
+        }
+    }
+}
+
+extern "C" void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
+{
+    // n = w*h*c*batch
+    // size = w*h*batch
+    int size = n / channels;
+
+    const int num_blocks = get_number_of_blocks(size, BLOCK);
+
+    gradient_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu);
+    CHECK_CUDA(cudaPeekAtLastError());
 }
\ No newline at end of file

--
Gitblit v1.8.0