From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/activations.h | 264 ++++++++++++++++++++++++++-------------------------- 1 files changed, 134 insertions(+), 130 deletions(-) diff --git a/lib/detecter_tools/darknet/activations.h b/lib/detecter_tools/darknet/activations.h index 7f7d8d3..95c2c2c 100644 --- a/lib/detecter_tools/darknet/activations.h +++ b/lib/detecter_tools/darknet/activations.h @@ -1,130 +1,134 @@ -#ifndef ACTIVATIONS_H -#define ACTIVATIONS_H -#include "darknet.h" -#include "dark_cuda.h" -#include "math.h" -#include "utils.h" - -//typedef enum{ -// LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN, SELU, SWISH, MISH -//}ACTIVATION; - -#ifdef __cplusplus -extern "C" { -#endif -ACTIVATION get_activation(char *s); - -char *get_activation_string(ACTIVATION a); -float activate(float x, ACTIVATION a); -float gradient(float x, ACTIVATION a); -void gradient_array(const float *x, const int n, const ACTIVATION a, float *delta); -void gradient_array_swish(const float *x, const int n, const float * sigmoid, float * delta); -void gradient_array_mish(const int n, const float * activation_input, float * delta); -void activate_array(float *x, const int n, const ACTIVATION a); -void activate_array_swish(float *x, const int n, float * output_sigmoid, float * output); -void activate_array_mish(float *x, const int n, float * activation_input, float * output); -void activate_array_normalize_channels(float *x, const int n, int batch, int channels, int wh_step, float *output); -void gradient_array_normalize_channels(float *x, const int n, int batch, int channels, int wh_step, float *delta); -void activate_array_normalize_channels_softmax(float *x, const int n, int batch, int channels, int wh_step, float *output, int use_max_val); -void gradient_array_normalize_channels_softmax(float *x, const int n, int batch, int channels, int wh_step, float *delta); -#ifdef GPU -void activate_array_ongpu(float *x, int n, ACTIVATION a); -void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu); -void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu); -void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta); -void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta); -void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta); -void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu); -void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu); -void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val); -void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu); - -#endif - -static inline float stair_activate(float x) -{ - int n = floorf(x); - if (n%2 == 0) return floorf(x/2.f); - else return (x - n) + floorf(x/2.f); -} -static inline float hardtan_activate(float x) -{ - if (x < -1) return -1; - if (x > 1) return 1; - return x; -} -static inline float linear_activate(float x){return x;} -static inline float logistic_activate(float x){return 1.f/(1.f + expf(-x));} -static inline float loggy_activate(float x){return 2.f/(1.f + expf(-x)) - 1;} -static inline float relu_activate(float x){return x*(x>0);} -static inline float relu6_activate(float x) { return min_val_cmp(max_val_cmp(x, 0), 6); } -static inline float elu_activate(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);} -static inline float selu_activate(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); } -static inline float relie_activate(float x){return (x>0) ? x : .01f*x;} -static inline float ramp_activate(float x){return x*(x>0)+.1f*x;} -static inline float leaky_activate(float x){return (x>0) ? x : .1f*x;} -//static inline float tanh_activate(float x){return (expf(2*x)-1)/(expf(2*x)+1);} -static inline float tanh_activate(float x) { return (2 / (1 + expf(-2 * x)) - 1); } -static inline float gelu_activate(float x) { return (0.5*x*(1 + tanhf(0.797885*x + 0.035677*powf(x, 3)))); } -static inline float softplus_activate(float x, float threshold) { - if (x > threshold) return x; // too large - else if (x < -threshold) return expf(x); // too small - return logf(expf(x) + 1); -} -static inline float plse_activate(float x) -{ - if(x < -4) return .01f * (x + 4); - if(x > 4) return .01f * (x - 4) + 1; - return .125f*x + .5f; -} - -static inline float lhtan_activate(float x) -{ - if(x < 0) return .001f*x; - if(x > 1) return .001f*(x-1) + 1; - return x; -} -static inline float lhtan_gradient(float x) -{ - if(x > 0 && x < 1) return 1; - return .001f; -} - -static inline float hardtan_gradient(float x) -{ - if (x > -1 && x < 1) return 1; - return 0; -} -static inline float linear_gradient(float x){return 1;} -static inline float logistic_gradient(float x){return (1-x)*x;} -static inline float loggy_gradient(float x) -{ - float y = (x+1.f)/2.f; - return 2*(1-y)*y; -} -static inline float stair_gradient(float x) -{ - if (floor(x) == x) return 0; - return 1.0f; -} -static inline float relu_gradient(float x){return (x>0);} -static inline float relu6_gradient(float x) { return (x > 0 && x < 6); } -static inline float elu_gradient(float x){return (x >= 0) + (x < 0)*(x + 1);} -static inline float selu_gradient(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); } -static inline float relie_gradient(float x){return (x>0) ? 1 : .01f;} -static inline float ramp_gradient(float x){return (x>0)+.1f;} -static inline float leaky_gradient(float x){return (x>0) ? 1 : .1f;} -static inline float tanh_gradient(float x){return 1-x*x;} - -static inline float sech(float x) { return 2 / (expf(x) + expf(-x)); } -static inline float gelu_gradient(float x) { - const float x3 = powf(x, 3); - return 0.5*tanhf(0.0356774*x3 + 0.797885*x) + (0.0535161*x3 + 0.398942*x) * powf(sech(0.0356774*x3 + 0.797885*x), 2) + 0.5; -} -static inline float plse_gradient(float x){return (x < 0 || x > 1) ? .01f : .125f;} - -#ifdef __cplusplus -} -#endif - -#endif +#ifndef ACTIVATIONS_H +#define ACTIVATIONS_H +#include "darknet.h" +#include "dark_cuda.h" +#include "math.h" +#include "utils.h" + +//typedef enum{ +// LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN, SELU, SWISH, MISH +//}ACTIVATION; + +#ifdef __cplusplus +extern "C" { +#endif +ACTIVATION get_activation(char *s); + +char *get_activation_string(ACTIVATION a); +float activate(float x, ACTIVATION a); +float gradient(float x, ACTIVATION a); +void gradient_array(const float *x, const int n, const ACTIVATION a, float *delta); +void gradient_array_swish(const float *x, const int n, const float * sigmoid, float * delta); +void gradient_array_mish(const int n, const float * activation_input, float * delta); +void gradient_array_hard_mish(const int n, const float * activation_input, float * delta); +void activate_array(float *x, const int n, const ACTIVATION a); +void activate_array_swish(float *x, const int n, float * output_sigmoid, float * output); +void activate_array_mish(float *x, const int n, float * activation_input, float * output); +void activate_array_hard_mish(float *x, const int n, float * activation_input, float * output); +void activate_array_normalize_channels(float *x, const int n, int batch, int channels, int wh_step, float *output); +void gradient_array_normalize_channels(float *x, const int n, int batch, int channels, int wh_step, float *delta); +void activate_array_normalize_channels_softmax(float *x, const int n, int batch, int channels, int wh_step, float *output, int use_max_val); +void gradient_array_normalize_channels_softmax(float *x, const int n, int batch, int channels, int wh_step, float *delta); +#ifdef GPU +void activate_array_ongpu(float *x, int n, ACTIVATION a); +void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu); +void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu); +void activate_array_hard_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu); +void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta); +void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta); +void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta); +void gradient_array_hard_mish_ongpu(int n, float *activation_input_gpu, float *delta); +void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu); +void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu); +void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val); +void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu); + +#endif + +static inline float stair_activate(float x) +{ + int n = floorf(x); + if (n%2 == 0) return floorf(x/2.f); + else return (x - n) + floorf(x/2.f); +} +static inline float hardtan_activate(float x) +{ + if (x < -1) return -1; + if (x > 1) return 1; + return x; +} +static inline float linear_activate(float x){return x;} +static inline float logistic_activate(float x){return 1.f/(1.f + expf(-x));} +static inline float loggy_activate(float x){return 2.f/(1.f + expf(-x)) - 1;} +static inline float relu_activate(float x){return x*(x>0);} +static inline float relu6_activate(float x) { return min_val_cmp(max_val_cmp(x, 0), 6); } +static inline float elu_activate(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);} +static inline float selu_activate(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); } +static inline float relie_activate(float x){return (x>0) ? x : .01f*x;} +static inline float ramp_activate(float x){return x*(x>0)+.1f*x;} +static inline float leaky_activate(float x){return (x>0) ? x : .1f*x;} +//static inline float tanh_activate(float x){return (expf(2*x)-1)/(expf(2*x)+1);} +static inline float tanh_activate(float x) { return (2 / (1 + expf(-2 * x)) - 1); } +static inline float gelu_activate(float x) { return (0.5*x*(1 + tanhf(0.797885*x + 0.035677*powf(x, 3)))); } +static inline float softplus_activate(float x, float threshold) { + if (x > threshold) return x; // too large + else if (x < -threshold) return expf(x); // too small + return logf(expf(x) + 1); +} +static inline float plse_activate(float x) +{ + if(x < -4) return .01f * (x + 4); + if(x > 4) return .01f * (x - 4) + 1; + return .125f*x + .5f; +} + +static inline float lhtan_activate(float x) +{ + if(x < 0) return .001f*x; + if(x > 1) return .001f*(x-1) + 1; + return x; +} +static inline float lhtan_gradient(float x) +{ + if(x > 0 && x < 1) return 1; + return .001f; +} + +static inline float hardtan_gradient(float x) +{ + if (x > -1 && x < 1) return 1; + return 0; +} +static inline float linear_gradient(float x){return 1;} +static inline float logistic_gradient(float x){return (1-x)*x;} +static inline float loggy_gradient(float x) +{ + float y = (x+1.f)/2.f; + return 2*(1-y)*y; +} +static inline float stair_gradient(float x) +{ + if (floor(x) == x) return 0; + return 1.0f; +} +static inline float relu_gradient(float x){return (x>0);} +static inline float relu6_gradient(float x) { return (x > 0 && x < 6); } +static inline float elu_gradient(float x){return (x >= 0) + (x < 0)*(x + 1);} +static inline float selu_gradient(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); } +static inline float relie_gradient(float x){return (x>0) ? 1 : .01f;} +static inline float ramp_gradient(float x){return (x>0)+.1f;} +static inline float leaky_gradient(float x){return (x>0) ? 1 : .1f;} +static inline float tanh_gradient(float x){return 1-x*x;} + +static inline float sech(float x) { return 2 / (expf(x) + expf(-x)); } +static inline float gelu_gradient(float x) { + const float x3 = powf(x, 3); + return 0.5*tanhf(0.0356774*x3 + 0.797885*x) + (0.0535161*x3 + 0.398942*x) * powf(sech(0.0356774*x3 + 0.797885*x), 2) + 0.5; +} +static inline float plse_gradient(float x){return (x < 0 || x > 1) ? .01f : .125f;} + +#ifdef __cplusplus +} +#endif + +#endif -- Gitblit v1.8.0