From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/batchnorm_layer.c |  856 ++++++++++++++++++++++++++++----------------------------
 1 files changed, 431 insertions(+), 425 deletions(-)

diff --git a/lib/detecter_tools/darknet/batchnorm_layer.c b/lib/detecter_tools/darknet/batchnorm_layer.c
index 50f5778..6729b03 100644
--- a/lib/detecter_tools/darknet/batchnorm_layer.c
+++ b/lib/detecter_tools/darknet/batchnorm_layer.c
@@ -1,425 +1,431 @@
-#include "batchnorm_layer.h"
-#include "blas.h"
-#include "utils.h"
-#include <stdio.h>
-
-layer make_batchnorm_layer(int batch, int w, int h, int c, int train)
-{
-    fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c);
-    layer layer = { (LAYER_TYPE)0 };
-    layer.type = BATCHNORM;
-    layer.batch = batch;
-    layer.train = train;
-    layer.h = layer.out_h = h;
-    layer.w = layer.out_w = w;
-    layer.c = layer.out_c = c;
-
-    layer.n = layer.c;
-    layer.output = (float*)xcalloc(h * w * c * batch, sizeof(float));
-    layer.delta = (float*)xcalloc(h * w * c * batch, sizeof(float));
-    layer.inputs = w*h*c;
-    layer.outputs = layer.inputs;
-
-    layer.biases = (float*)xcalloc(c, sizeof(float));
-    layer.bias_updates = (float*)xcalloc(c, sizeof(float));
-
-    layer.scales = (float*)xcalloc(c, sizeof(float));
-    layer.scale_updates = (float*)xcalloc(c, sizeof(float));
-    int i;
-    for(i = 0; i < c; ++i){
-        layer.scales[i] = 1;
-    }
-
-    layer.mean = (float*)xcalloc(c, sizeof(float));
-    layer.variance = (float*)xcalloc(c, sizeof(float));
-
-    layer.rolling_mean = (float*)xcalloc(c, sizeof(float));
-    layer.rolling_variance = (float*)xcalloc(c, sizeof(float));
-
-    layer.forward = forward_batchnorm_layer;
-    layer.backward = backward_batchnorm_layer;
-    layer.update = update_batchnorm_layer;
-#ifdef GPU
-    layer.forward_gpu = forward_batchnorm_layer_gpu;
-    layer.backward_gpu = backward_batchnorm_layer_gpu;
-    layer.update_gpu = update_batchnorm_layer_gpu;
-
-    layer.output_gpu =  cuda_make_array(layer.output, h * w * c * batch);
-
-    layer.biases_gpu = cuda_make_array(layer.biases, c);
-    layer.scales_gpu = cuda_make_array(layer.scales, c);
-
-    if (train) {
-        layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch);
-
-        layer.bias_updates_gpu = cuda_make_array(layer.bias_updates, c);
-        layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c);
-
-        layer.mean_delta_gpu = cuda_make_array(layer.mean, c);
-        layer.variance_delta_gpu = cuda_make_array(layer.variance, c);
-    }
-
-    layer.mean_gpu = cuda_make_array(layer.mean, c);
-    layer.variance_gpu = cuda_make_array(layer.variance, c);
-
-    layer.rolling_mean_gpu = cuda_make_array(layer.mean, c);
-    layer.rolling_variance_gpu = cuda_make_array(layer.variance, c);
-
-    if (train) {
-        layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
-#ifndef CUDNN
-        layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
-#endif  // not CUDNN
-    }
-
-#ifdef CUDNN
-    CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normTensorDesc));
-    CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normDstTensorDesc));
-    CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w));
-    CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1));
-#endif
-#endif
-    return layer;
-}
-
-void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
-{
-    int i,b,f;
-    for(f = 0; f < n; ++f){
-        float sum = 0;
-        for(b = 0; b < batch; ++b){
-            for(i = 0; i < size; ++i){
-                int index = i + size*(f + n*b);
-                sum += delta[index] * x_norm[index];
-            }
-        }
-        scale_updates[f] += sum;
-    }
-}
-
-void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
-{
-
-    int i,j,k;
-    for(i = 0; i < filters; ++i){
-        mean_delta[i] = 0;
-        for (j = 0; j < batch; ++j) {
-            for (k = 0; k < spatial; ++k) {
-                int index = j*filters*spatial + i*spatial + k;
-                mean_delta[i] += delta[index];
-            }
-        }
-        mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
-    }
-}
-void  variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
-{
-
-    int i,j,k;
-    for(i = 0; i < filters; ++i){
-        variance_delta[i] = 0;
-        for(j = 0; j < batch; ++j){
-            for(k = 0; k < spatial; ++k){
-                int index = j*filters*spatial + i*spatial + k;
-                variance_delta[i] += delta[index]*(x[index] - mean[i]);
-            }
-        }
-        variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
-    }
-}
-void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
-{
-    int f, j, k;
-    for(j = 0; j < batch; ++j){
-        for(f = 0; f < filters; ++f){
-            for(k = 0; k < spatial; ++k){
-                int index = j*filters*spatial + f*spatial + k;
-                delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
-            }
-        }
-    }
-}
-
-void resize_batchnorm_layer(layer *l, int w, int h)
-{
-    l->out_h = l->h = h;
-    l->out_w = l->w = w;
-    l->outputs = l->inputs = h*w*l->c;
-
-    const int output_size = l->outputs * l->batch;
-
-    l->output = (float*)realloc(l->output, output_size * sizeof(float));
-    l->delta = (float*)realloc(l->delta, output_size * sizeof(float));
-
-#ifdef GPU
-    cuda_free(l->output_gpu);
-    l->output_gpu = cuda_make_array(l->output, output_size);
-
-    if (l->train) {
-        cuda_free(l->delta_gpu);
-        l->delta_gpu = cuda_make_array(l->delta, output_size);
-
-        cuda_free(l->x_gpu);
-        l->x_gpu = cuda_make_array(l->output, output_size);
-#ifndef CUDNN
-        cuda_free(l->x_norm_gpu);
-        l->x_norm_gpu = cuda_make_array(l->output, output_size);
-#endif  // not CUDNN
-    }
-
-
-#ifdef CUDNN
-    CHECK_CUDNN(cudnnDestroyTensorDescriptor(l->normDstTensorDesc));
-    CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc));
-    CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w));
-#endif // CUDNN
-#endif // GPU
-}
-
-void forward_batchnorm_layer(layer l, network_state state)
-{
-    if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
-    if(l.type == CONNECTED){
-        l.out_c = l.outputs;
-        l.out_h = l.out_w = 1;
-    }
-    if(state.train){
-        mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
-        variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
-
-        scal_cpu(l.out_c, .9, l.rolling_mean, 1);
-        axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1);
-        scal_cpu(l.out_c, .9, l.rolling_variance, 1);
-        axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1);
-
-        copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
-        normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);
-        copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
-    } else {
-        normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
-    }
-    scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
-    add_bias(l.output, l.biases, l.batch, l.out_c, l.out_w*l.out_h);
-}
-
-void backward_batchnorm_layer(const layer l, network_state state)
-{
-    backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates);
-
-    scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
-
-    mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta);
-    variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta);
-    normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
-    if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1);
-}
-
-void update_batchnorm_layer(layer l, int batch, float learning_rate, float momentum, float decay)
-{
-    //int size = l.nweights;
-    axpy_cpu(l.c, learning_rate / batch, l.bias_updates, 1, l.biases, 1);
-    scal_cpu(l.c, momentum, l.bias_updates, 1);
-
-    axpy_cpu(l.c, learning_rate / batch, l.scale_updates, 1, l.scales, 1);
-    scal_cpu(l.c, momentum, l.scale_updates, 1);
-}
-
-
-
-
-#ifdef GPU
-
-void pull_batchnorm_layer(layer l)
-{
-    cuda_pull_array(l.biases_gpu, l.biases, l.out_c);
-    cuda_pull_array(l.scales_gpu, l.scales, l.out_c);
-    cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.out_c);
-    cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.out_c);
-}
-void push_batchnorm_layer(layer l)
-{
-    cuda_push_array(l.biases_gpu, l.biases, l.out_c);
-    cuda_push_array(l.scales_gpu, l.scales, l.out_c);
-    cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.out_c);
-    cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.out_c);
-}
-
-void forward_batchnorm_layer_gpu(layer l, network_state state)
-{
-    if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu);
-        //copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
-
-    if (state.net.adversarial) {
-        normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
-        return;
-    }
-
-    if (state.train) {
-        simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_gpu);
-
-        // cbn
-        if (l.batch_normalize == 2) {
-
-            fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
-
-            //fast_v_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.v_cbn_gpu);
-            const int minibatch_index = state.net.current_subdivision + 1;
-            const int max_minibatch_index = state.net.subdivisions;
-            //printf("\n minibatch_index = %d, max_minibatch_index = %d \n", minibatch_index, max_minibatch_index);
-            const float alpha = 0.01;
-
-            int inverse_variance = 0;
-#ifdef CUDNN
-            inverse_variance = 1;
-#endif  // CUDNN
-
-            fast_v_cbn_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, minibatch_index, max_minibatch_index, l.m_cbn_avg_gpu, l.v_cbn_avg_gpu, l.variance_gpu,
-                alpha, l.rolling_mean_gpu, l.rolling_variance_gpu, inverse_variance, .00001);
-
-            normalize_scale_bias_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.scales_gpu, l.biases_gpu, l.batch, l.out_c, l.out_h*l.out_w, inverse_variance, .00001f);
-
-#ifndef CUDNN
-            simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_norm_gpu);
-#endif  // CUDNN
-
-            //printf("\n CBN, minibatch_index = %d \n", minibatch_index);
-        }
-        else {
-#ifdef CUDNN
-            float one = 1;
-            float zero = 0;
-            cudnnBatchNormalizationForwardTraining(cudnn_handle(),
-                CUDNN_BATCHNORM_SPATIAL,
-                &one,
-                &zero,
-                l.normDstTensorDesc,
-                l.x_gpu,                // input
-                l.normDstTensorDesc,
-                l.output_gpu,            // output
-                l.normTensorDesc,
-                l.scales_gpu,
-                l.biases_gpu,
-                .01,
-                l.rolling_mean_gpu,        // output (should be FP32)
-                l.rolling_variance_gpu,    // output (should be FP32)
-                .00001,
-                l.mean_gpu,            // output (should be FP32)
-                l.variance_gpu);    // output (should be FP32)
-
-            if (state.net.try_fix_nan) {
-                fix_nan_and_inf(l.scales_gpu, l.n);
-                fix_nan_and_inf(l.biases_gpu, l.n);
-                fix_nan_and_inf(l.mean_gpu, l.n);
-                fix_nan_and_inf(l.variance_gpu, l.n);
-                fix_nan_and_inf(l.rolling_mean_gpu, l.n);
-                fix_nan_and_inf(l.rolling_variance_gpu, l.n);
-            }
-
-            //simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_norm_gpu);
-#else   // CUDNN
-            fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
-            fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
-
-            scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
-            axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
-            scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
-            axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
-
-            copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
-            normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-            copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
-
-            scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-            add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
-#endif  // CUDNN
-        }
-    }
-    else {
-        normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
-    }
-
-}
-
-void backward_batchnorm_layer_gpu(layer l, network_state state)
-{
-    if (state.net.adversarial) {
-        inverse_variance_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu, 0.00001);
-
-        scale_bias_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-        scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-        return;
-    }
-
-    if (!state.train) {
-        //l.mean_gpu = l.rolling_mean_gpu;
-        //l.variance_gpu = l.rolling_variance_gpu;
-        simple_copy_ongpu(l.out_c, l.rolling_mean_gpu, l.mean_gpu);
-#ifdef CUDNN
-        inverse_variance_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu, 0.00001);
-#else
-        simple_copy_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu);
-#endif
-    }
-
-#ifdef CUDNN
-    float one = 1;
-    float zero = 0;
-    cudnnBatchNormalizationBackward(cudnn_handle(),
-        CUDNN_BATCHNORM_SPATIAL,
-        &one,
-        &zero,
-        &one,
-        &one,
-        l.normDstTensorDesc,
-        l.x_gpu,                // input
-        l.normDstTensorDesc,
-        l.delta_gpu,            // input
-        l.normDstTensorDesc,
-        l.output_gpu, //l.x_norm_gpu,            // output
-        l.normTensorDesc,
-        l.scales_gpu,            // input (should be FP32)
-        l.scale_updates_gpu,    // output (should be FP32)
-        l.bias_updates_gpu,        // output (should be FP32)
-        .00001,
-        l.mean_gpu,                // input (should be FP32)
-        l.variance_gpu);        // input (should be FP32)
-    simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.delta_gpu);
-    //simple_copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, l.delta_gpu);
-#else   // CUDNN
-    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
-    backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
-
-    scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-
-    fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
-    fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
-    normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
-#endif  // CUDNN
-    if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, l.delta_gpu, state.delta);
-        //copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
-
-    if (state.net.try_fix_nan) {
-        fix_nan_and_inf(l.scale_updates_gpu, l.n);
-        fix_nan_and_inf(l.bias_updates_gpu, l.n);
-    }
-}
-
-void update_batchnorm_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale)
-{
-    float learning_rate = learning_rate_init * l.learning_rate_scale / loss_scale;
-    //float momentum = a.momentum;
-    //float decay = a.decay;
-    //int batch = a.batch;
-
-    axpy_ongpu(l.c, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
-    scal_ongpu(l.c, momentum, l.bias_updates_gpu, 1);
-
-    axpy_ongpu(l.c, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
-    scal_ongpu(l.c, momentum, l.scale_updates_gpu, 1);
-}
-
-#endif  // GPU
+#include "batchnorm_layer.h"
+#include "blas.h"
+#include "utils.h"
+#include <stdio.h>
+
+layer make_batchnorm_layer(int batch, int w, int h, int c, int train)
+{
+    fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c);
+    layer layer = { (LAYER_TYPE)0 };
+    layer.type = BATCHNORM;
+    layer.batch = batch;
+    layer.train = train;
+    layer.h = layer.out_h = h;
+    layer.w = layer.out_w = w;
+    layer.c = layer.out_c = c;
+
+    layer.n = layer.c;
+    layer.output = (float*)xcalloc(h * w * c * batch, sizeof(float));
+    layer.delta = (float*)xcalloc(h * w * c * batch, sizeof(float));
+    layer.inputs = w*h*c;
+    layer.outputs = layer.inputs;
+
+    layer.biases = (float*)xcalloc(c, sizeof(float));
+    layer.bias_updates = (float*)xcalloc(c, sizeof(float));
+
+    layer.scales = (float*)xcalloc(c, sizeof(float));
+    layer.scale_updates = (float*)xcalloc(c, sizeof(float));
+    int i;
+    for(i = 0; i < c; ++i){
+        layer.scales[i] = 1;
+    }
+
+    layer.mean = (float*)xcalloc(c, sizeof(float));
+    layer.variance = (float*)xcalloc(c, sizeof(float));
+
+    layer.rolling_mean = (float*)xcalloc(c, sizeof(float));
+    layer.rolling_variance = (float*)xcalloc(c, sizeof(float));
+
+    layer.mean_delta = (float*)xcalloc(c, sizeof(float));
+    layer.variance_delta = (float*)xcalloc(c, sizeof(float));
+
+    layer.x = (float*)xcalloc(layer.batch*layer.outputs, sizeof(float));
+    layer.x_norm = (float*)xcalloc(layer.batch*layer.outputs, sizeof(float));
+
+    layer.forward = forward_batchnorm_layer;
+    layer.backward = backward_batchnorm_layer;
+    layer.update = update_batchnorm_layer;
+#ifdef GPU
+    layer.forward_gpu = forward_batchnorm_layer_gpu;
+    layer.backward_gpu = backward_batchnorm_layer_gpu;
+    layer.update_gpu = update_batchnorm_layer_gpu;
+
+    layer.output_gpu =  cuda_make_array(layer.output, h * w * c * batch);
+
+    layer.biases_gpu = cuda_make_array(layer.biases, c);
+    layer.scales_gpu = cuda_make_array(layer.scales, c);
+
+    if (train) {
+        layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch);
+
+        layer.bias_updates_gpu = cuda_make_array(layer.bias_updates, c);
+        layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c);
+
+        layer.mean_delta_gpu = cuda_make_array(layer.mean, c);
+        layer.variance_delta_gpu = cuda_make_array(layer.variance, c);
+    }
+
+    layer.mean_gpu = cuda_make_array(layer.mean, c);
+    layer.variance_gpu = cuda_make_array(layer.variance, c);
+
+    layer.rolling_mean_gpu = cuda_make_array(layer.mean, c);
+    layer.rolling_variance_gpu = cuda_make_array(layer.variance, c);
+
+    if (train) {
+        layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
+#ifndef CUDNN
+        layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
+#endif  // not CUDNN
+    }
+
+#ifdef CUDNN
+    CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normTensorDesc));
+    CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normDstTensorDesc));
+    CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w));
+    CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1));
+#endif
+#endif
+    return layer;
+}
+
+void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+    int i,b,f;
+    for(f = 0; f < n; ++f){
+        float sum = 0;
+        for(b = 0; b < batch; ++b){
+            for(i = 0; i < size; ++i){
+                int index = i + size*(f + n*b);
+                sum += delta[index] * x_norm[index];
+            }
+        }
+        scale_updates[f] += sum;
+    }
+}
+
+void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+
+    int i,j,k;
+    for(i = 0; i < filters; ++i){
+        mean_delta[i] = 0;
+        for (j = 0; j < batch; ++j) {
+            for (k = 0; k < spatial; ++k) {
+                int index = j*filters*spatial + i*spatial + k;
+                mean_delta[i] += delta[index];
+            }
+        }
+        mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
+    }
+}
+void  variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+
+    int i,j,k;
+    for(i = 0; i < filters; ++i){
+        variance_delta[i] = 0;
+        for(j = 0; j < batch; ++j){
+            for(k = 0; k < spatial; ++k){
+                int index = j*filters*spatial + i*spatial + k;
+                variance_delta[i] += delta[index]*(x[index] - mean[i]);
+            }
+        }
+        variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
+    }
+}
+void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
+{
+    int f, j, k;
+    for(j = 0; j < batch; ++j){
+        for(f = 0; f < filters; ++f){
+            for(k = 0; k < spatial; ++k){
+                int index = j*filters*spatial + f*spatial + k;
+                delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+            }
+        }
+    }
+}
+
+void resize_batchnorm_layer(layer *l, int w, int h)
+{
+    l->out_h = l->h = h;
+    l->out_w = l->w = w;
+    l->outputs = l->inputs = h*w*l->c;
+
+    const int output_size = l->outputs * l->batch;
+
+    l->output = (float*)realloc(l->output, output_size * sizeof(float));
+    l->delta = (float*)realloc(l->delta, output_size * sizeof(float));
+
+#ifdef GPU
+    cuda_free(l->output_gpu);
+    l->output_gpu = cuda_make_array(l->output, output_size);
+
+    if (l->train) {
+        cuda_free(l->delta_gpu);
+        l->delta_gpu = cuda_make_array(l->delta, output_size);
+
+        cuda_free(l->x_gpu);
+        l->x_gpu = cuda_make_array(l->output, output_size);
+#ifndef CUDNN
+        cuda_free(l->x_norm_gpu);
+        l->x_norm_gpu = cuda_make_array(l->output, output_size);
+#endif  // not CUDNN
+    }
+
+
+#ifdef CUDNN
+    CHECK_CUDNN(cudnnDestroyTensorDescriptor(l->normDstTensorDesc));
+    CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc));
+    CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w));
+#endif // CUDNN
+#endif // GPU
+}
+
+void forward_batchnorm_layer(layer l, network_state state)
+{
+    if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
+    if(l.type == CONNECTED){
+        l.out_c = l.outputs;
+        l.out_h = l.out_w = 1;
+    }
+    if(state.train){
+        mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
+        variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
+
+        scal_cpu(l.out_c, .9, l.rolling_mean, 1);
+        axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1);
+        scal_cpu(l.out_c, .9, l.rolling_variance, 1);
+        axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1);
+
+        copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
+        normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);
+        copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
+    } else {
+        normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
+    }
+    scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
+    add_bias(l.output, l.biases, l.batch, l.out_c, l.out_w*l.out_h);
+}
+
+void backward_batchnorm_layer(const layer l, network_state state)
+{
+    backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates);
+
+    scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
+
+    mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta);
+    variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta);
+    normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
+    if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1);
+}
+
+void update_batchnorm_layer(layer l, int batch, float learning_rate, float momentum, float decay)
+{
+    //int size = l.nweights;
+    axpy_cpu(l.c, learning_rate / batch, l.bias_updates, 1, l.biases, 1);
+    scal_cpu(l.c, momentum, l.bias_updates, 1);
+
+    axpy_cpu(l.c, learning_rate / batch, l.scale_updates, 1, l.scales, 1);
+    scal_cpu(l.c, momentum, l.scale_updates, 1);
+}
+
+
+
+
+#ifdef GPU
+
+void pull_batchnorm_layer(layer l)
+{
+    cuda_pull_array(l.biases_gpu, l.biases, l.out_c);
+    cuda_pull_array(l.scales_gpu, l.scales, l.out_c);
+    cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.out_c);
+    cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.out_c);
+}
+void push_batchnorm_layer(layer l)
+{
+    cuda_push_array(l.biases_gpu, l.biases, l.out_c);
+    cuda_push_array(l.scales_gpu, l.scales, l.out_c);
+    cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.out_c);
+    cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.out_c);
+}
+
+void forward_batchnorm_layer_gpu(layer l, network_state state)
+{
+    if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu);
+        //copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
+
+    if (state.net.adversarial) {
+        normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+        return;
+    }
+
+    if (state.train) {
+        simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_gpu);
+
+        // cbn
+        if (l.batch_normalize == 2) {
+
+            fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
+
+            //fast_v_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.v_cbn_gpu);
+            const int minibatch_index = state.net.current_subdivision + 1;
+            const int max_minibatch_index = state.net.subdivisions;
+            //printf("\n minibatch_index = %d, max_minibatch_index = %d \n", minibatch_index, max_minibatch_index);
+            const float alpha = 0.01;
+
+            int inverse_variance = 0;
+#ifdef CUDNN
+            inverse_variance = 1;
+#endif  // CUDNN
+
+            fast_v_cbn_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, minibatch_index, max_minibatch_index, l.m_cbn_avg_gpu, l.v_cbn_avg_gpu, l.variance_gpu,
+                alpha, l.rolling_mean_gpu, l.rolling_variance_gpu, inverse_variance, .00001);
+
+            normalize_scale_bias_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.scales_gpu, l.biases_gpu, l.batch, l.out_c, l.out_h*l.out_w, inverse_variance, .00001f);
+
+#ifndef CUDNN
+            simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_norm_gpu);
+#endif  // CUDNN
+
+            //printf("\n CBN, minibatch_index = %d \n", minibatch_index);
+        }
+        else {
+#ifdef CUDNN
+            float one = 1;
+            float zero = 0;
+            cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+                CUDNN_BATCHNORM_SPATIAL,
+                &one,
+                &zero,
+                l.normDstTensorDesc,
+                l.x_gpu,                // input
+                l.normDstTensorDesc,
+                l.output_gpu,            // output
+                l.normTensorDesc,
+                l.scales_gpu,
+                l.biases_gpu,
+                .01,
+                l.rolling_mean_gpu,        // output (should be FP32)
+                l.rolling_variance_gpu,    // output (should be FP32)
+                .00001,
+                l.mean_gpu,            // output (should be FP32)
+                l.variance_gpu);    // output (should be FP32)
+
+            if (state.net.try_fix_nan) {
+                fix_nan_and_inf(l.scales_gpu, l.n);
+                fix_nan_and_inf(l.biases_gpu, l.n);
+                fix_nan_and_inf(l.mean_gpu, l.n);
+                fix_nan_and_inf(l.variance_gpu, l.n);
+                fix_nan_and_inf(l.rolling_mean_gpu, l.n);
+                fix_nan_and_inf(l.rolling_variance_gpu, l.n);
+            }
+
+            //simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_norm_gpu);
+#else   // CUDNN
+            fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
+            fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
+
+            scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
+            axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
+            scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
+            axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
+
+            copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+            normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+            copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
+
+            scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+            add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+#endif  // CUDNN
+        }
+    }
+    else {
+        normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+    }
+
+}
+
+void backward_batchnorm_layer_gpu(layer l, network_state state)
+{
+    if (state.net.adversarial) {
+        inverse_variance_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu, 0.00001);
+
+        scale_bias_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        return;
+    }
+
+    if (!state.train) {
+        //l.mean_gpu = l.rolling_mean_gpu;
+        //l.variance_gpu = l.rolling_variance_gpu;
+        simple_copy_ongpu(l.out_c, l.rolling_mean_gpu, l.mean_gpu);
+#ifdef CUDNN
+        inverse_variance_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu, 0.00001);
+#else
+        simple_copy_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu);
+#endif
+    }
+
+#ifdef CUDNN
+    float one = 1;
+    float zero = 0;
+    cudnnBatchNormalizationBackward(cudnn_handle(),
+        CUDNN_BATCHNORM_SPATIAL,
+        &one,
+        &zero,
+        &one,
+        &one,
+        l.normDstTensorDesc,
+        l.x_gpu,                // input
+        l.normDstTensorDesc,
+        l.delta_gpu,            // input
+        l.normDstTensorDesc,
+        l.output_gpu, //l.x_norm_gpu,            // output
+        l.normTensorDesc,
+        l.scales_gpu,            // input (should be FP32)
+        l.scale_updates_gpu,    // output (should be FP32)
+        l.bias_updates_gpu,        // output (should be FP32)
+        .00001,
+        l.mean_gpu,                // input (should be FP32)
+        l.variance_gpu);        // input (should be FP32)
+    simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.delta_gpu);
+    //simple_copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, l.delta_gpu);
+#else   // CUDNN
+    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+    backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
+
+    scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+
+    fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
+    fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
+    normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
+#endif  // CUDNN
+    if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, l.delta_gpu, state.delta);
+        //copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
+
+    if (state.net.try_fix_nan) {
+        fix_nan_and_inf(l.scale_updates_gpu, l.n);
+        fix_nan_and_inf(l.bias_updates_gpu, l.n);
+    }
+}
+
+void update_batchnorm_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale)
+{
+    float learning_rate = learning_rate_init * l.learning_rate_scale / loss_scale;
+    //float momentum = a.momentum;
+    //float decay = a.decay;
+    //int batch = a.batch;
+
+    axpy_ongpu(l.c, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
+    scal_ongpu(l.c, momentum, l.bias_updates_gpu, 1);
+
+    axpy_ongpu(l.c, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
+    scal_ongpu(l.c, momentum, l.scale_updates_gpu, 1);
+}
+
+#endif  // GPU

--
Gitblit v1.8.0