From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/blas.c | 1408 +++++++++++++++++++++++++++++++++++++--------------------- 1 files changed, 891 insertions(+), 517 deletions(-) diff --git a/lib/detecter_tools/darknet/blas.c b/lib/detecter_tools/darknet/blas.c index ccbbd76..f814b8a 100644 --- a/lib/detecter_tools/darknet/blas.c +++ b/lib/detecter_tools/darknet/blas.c @@ -1,517 +1,891 @@ -#include "blas.h" -#include "utils.h" - -#include <math.h> -#include <assert.h> -#include <float.h> -#include <stdio.h> -#include <stdlib.h> -#include <string.h> -void reorg_cpu(float *x, int out_w, int out_h, int out_c, int batch, int stride, int forward, float *out) -{ - int b,i,j,k; - int in_c = out_c/(stride*stride); - - //printf("\n out_c = %d, out_w = %d, out_h = %d, stride = %d, forward = %d \n", out_c, out_w, out_h, stride, forward); - //printf(" in_c = %d, in_w = %d, in_h = %d \n", in_c, out_w*stride, out_h*stride); - - for(b = 0; b < batch; ++b){ - for(k = 0; k < out_c; ++k){ - for(j = 0; j < out_h; ++j){ - for(i = 0; i < out_w; ++i){ - int in_index = i + out_w*(j + out_h*(k + out_c*b)); - int c2 = k % in_c; - int offset = k / in_c; - int w2 = i*stride + offset % stride; - int h2 = j*stride + offset / stride; - int out_index = w2 + out_w*stride*(h2 + out_h*stride*(c2 + in_c*b)); - if(forward) out[out_index] = x[in_index]; // used by default for forward (i.e. forward = 0) - else out[in_index] = x[out_index]; - } - } - } - } -} - -void flatten(float *x, int size, int layers, int batch, int forward) -{ - float* swap = (float*)xcalloc(size * layers * batch, sizeof(float)); - int i,c,b; - for(b = 0; b < batch; ++b){ - for(c = 0; c < layers; ++c){ - for(i = 0; i < size; ++i){ - int i1 = b*layers*size + c*size + i; - int i2 = b*layers*size + i*layers + c; - if (forward) swap[i2] = x[i1]; - else swap[i1] = x[i2]; - } - } - } - memcpy(x, swap, size*layers*batch*sizeof(float)); - free(swap); -} - -void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c) -{ - int i; - for(i = 0; i < n; ++i){ - c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); - } -} - -void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc) -{ - int i; - for(i = 0; i < n; ++i){ - if(da) da[i] += dc[i] * s[i]; - if(db) db[i] += dc[i] * (1-s[i]); - ds[i] += dc[i] * (a[i] - b[i]); - } -} - -static float relu(float src) { - if (src > 0) return src; - return 0; -} - -void shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_output, float *out, float *in, float *weights, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization) -{ - // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) - const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) - int step = 0; - if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 - - int id; - #pragma omp parallel for - for (id = 0; id < size; ++id) { - - int src_id = id; - const int src_i = src_id % src_outputs; - src_id /= src_outputs; - int src_b = src_id; - - float sum = 1, max_val = -FLT_MAX; - int i; - if (weights && weights_normalization) { - if (weights_normalization == SOFTMAX_NORMALIZATION) { - for (i = 0; i < (n + 1); ++i) { - const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] - float w = weights[weights_index]; - if (max_val < w) max_val = w; - } - } - const float eps = 0.0001; - sum = eps; - for (i = 0; i < (n + 1); ++i) { - const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] - const float w = weights[weights_index]; - if (weights_normalization == RELU_NORMALIZATION) sum += relu(w); - else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); - } - } - - if (weights) { - float w = weights[src_i / step]; - if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; - else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; - - out[id] = in[id] * w; // [0 or c or (c, h ,w)] - } - else out[id] = in[id]; - - // layers - for (i = 0; i < n; ++i) { - int add_outputs = outputs_of_layers[i]; - if (src_i < add_outputs) { - int add_index = add_outputs*src_b + src_i; - int out_index = id; - - float *add = layers_output[i]; - - if (weights) { - const int weights_index = src_i / step + (i + 1)*layer_step; // [0 or c or (c, h ,w)] - float w = weights[weights_index]; - if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; - else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; - - out[out_index] += add[add_index] * w; // [0 or c or (c, h ,w)] - } - else out[out_index] += add[add_index]; - } - } - } -} - -void backward_shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers, - float **layers_delta, float *delta_out, float *delta_in, float *weights, float *weight_updates, int nweights, float *in, float **layers_output, WEIGHTS_NORMALIZATION_T weights_normalization) -{ - // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) - const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) - int step = 0; - if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 - - int id; - #pragma omp parallel for - for (id = 0; id < size; ++id) { - int src_id = id; - int src_i = src_id % src_outputs; - src_id /= src_outputs; - int src_b = src_id; - - float grad = 1, sum = 1, max_val = -FLT_MAX;; - int i; - if (weights && weights_normalization) { - if (weights_normalization == SOFTMAX_NORMALIZATION) { - for (i = 0; i < (n + 1); ++i) { - const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] - float w = weights[weights_index]; - if (max_val < w) max_val = w; - } - } - const float eps = 0.0001; - sum = eps; - for (i = 0; i < (n + 1); ++i) { - const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] - const float w = weights[weights_index]; - if (weights_normalization == RELU_NORMALIZATION) sum += relu(w); - else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); - } - - /* - grad = 0; - for (i = 0; i < (n + 1); ++i) { - const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] - const float delta_w = delta_in[id] * in[id]; - const float w = weights[weights_index]; - if (weights_normalization == RELU_NORMALIZATION) grad += delta_w * relu(w) / sum; - else if (weights_normalization == SOFTMAX_NORMALIZATION) grad += delta_w * expf(w - max_val) / sum; - } - */ - } - - if (weights) { - float w = weights[src_i / step]; - if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; - else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; - - delta_out[id] += delta_in[id] * w; // [0 or c or (c, h ,w)] - weight_updates[src_i / step] += delta_in[id] * in[id] * grad; - } - else delta_out[id] += delta_in[id]; - - // layers - for (i = 0; i < n; ++i) { - int add_outputs = outputs_of_layers[i]; - if (src_i < add_outputs) { - int add_index = add_outputs*src_b + src_i; - int out_index = id; - - float *layer_delta = layers_delta[i]; - if (weights) { - float *add = layers_output[i]; - - const int weights_index = src_i / step + (i + 1)*layer_step; // [0 or c or (c, h ,w)] - float w = weights[weights_index]; - if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; - else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; - - layer_delta[add_index] += delta_in[id] * w; // [0 or c or (c, h ,w)] - weight_updates[weights_index] += delta_in[id] * add[add_index] * grad; - } - else layer_delta[add_index] += delta_in[id]; - } - } - } -} - -void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) -{ - int stride = w1/w2; - int sample = w2/w1; - assert(stride == h1/h2); - assert(sample == h2/h1); - if(stride < 1) stride = 1; - if(sample < 1) sample = 1; - int minw = (w1 < w2) ? w1 : w2; - int minh = (h1 < h2) ? h1 : h2; - int minc = (c1 < c2) ? c1 : c2; - - int i,j,k,b; - for(b = 0; b < batch; ++b){ - for(k = 0; k < minc; ++k){ - for(j = 0; j < minh; ++j){ - for(i = 0; i < minw; ++i){ - int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); - int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); - out[out_index] += add[add_index]; - } - } - } - } -} - -void mean_cpu(float *x, int batch, int filters, int spatial, float *mean) -{ - float scale = 1./(batch * spatial); - int i,j,k; - for(i = 0; i < filters; ++i){ - mean[i] = 0; - for(j = 0; j < batch; ++j){ - for(k = 0; k < spatial; ++k){ - int index = j*filters*spatial + i*spatial + k; - mean[i] += x[index]; - } - } - mean[i] *= scale; - } -} - -void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) -{ - float scale = 1./(batch * spatial - 1); - int i,j,k; - for(i = 0; i < filters; ++i){ - variance[i] = 0; - for(j = 0; j < batch; ++j){ - for(k = 0; k < spatial; ++k){ - int index = j*filters*spatial + i*spatial + k; - variance[i] += pow((x[index] - mean[i]), 2); - } - } - variance[i] *= scale; - } -} - -void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) -{ - int b, f, i; - for(b = 0; b < batch; ++b){ - for(f = 0; f < filters; ++f){ - for(i = 0; i < spatial; ++i){ - int index = b*filters*spatial + f*spatial + i; - x[index] = (x[index] - mean[f])/(sqrt(variance[f] + .000001f)); - } - } - } -} - -void const_cpu(int N, float ALPHA, float *X, int INCX) -{ - int i; - for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; -} - -void mul_cpu(int N, float *X, int INCX, float *Y, int INCY) -{ - int i; - for(i = 0; i < N; ++i) Y[i*INCY] *= X[i*INCX]; -} - -void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) -{ - int i; - for(i = 0; i < N; ++i) Y[i*INCY] = pow(X[i*INCX], ALPHA); -} - -void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) -{ - int i; - for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX]; -} - -void scal_cpu(int N, float ALPHA, float *X, int INCX) -{ - int i; - for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA; -} - -void scal_add_cpu(int N, float ALPHA, float BETA, float *X, int INCX) -{ - int i; - for (i = 0; i < N; ++i) X[i*INCX] = X[i*INCX] * ALPHA + BETA; -} - -void fill_cpu(int N, float ALPHA, float *X, int INCX) -{ - int i; - if (INCX == 1 && ALPHA == 0) { - memset(X, 0, N * sizeof(float)); - } - else { - for (i = 0; i < N; ++i) X[i*INCX] = ALPHA; - } -} - -void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) -{ - int i, j; - int index = 0; - for(j = 0; j < B; ++j) { - for(i = 0; i < NX; ++i){ - if(X) X[j*NX + i] += OUT[index]; - ++index; - } - for(i = 0; i < NY; ++i){ - if(Y) Y[j*NY + i] += OUT[index]; - ++index; - } - } -} - -void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) -{ - int i, j; - int index = 0; - for(j = 0; j < B; ++j) { - for(i = 0; i < NX; ++i){ - OUT[index++] = X[j*NX + i]; - } - for(i = 0; i < NY; ++i){ - OUT[index++] = Y[j*NY + i]; - } - } -} - -void copy_cpu(int N, float *X, int INCX, float *Y, int INCY) -{ - int i; - for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX]; -} - -void mult_add_into_cpu(int N, float *X, float *Y, float *Z) -{ - int i; - for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i]; -} - -void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error) -{ - int i; - for(i = 0; i < n; ++i){ - float diff = truth[i] - pred[i]; - float abs_val = fabs(diff); - if(abs_val < 1) { - error[i] = diff * diff; - delta[i] = diff; - } - else { - error[i] = 2*abs_val - 1; - delta[i] = (diff > 0) ? 1 : -1; - } - } -} - -void l1_cpu(int n, float *pred, float *truth, float *delta, float *error) -{ - int i; - for(i = 0; i < n; ++i){ - float diff = truth[i] - pred[i]; - error[i] = fabs(diff); - delta[i] = diff > 0 ? 1 : -1; - } -} - -void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) -{ - int i; - for(i = 0; i < n; ++i){ - float t = truth[i]; - float p = pred[i]; - error[i] = (t) ? -log(p) : 0; - delta[i] = t-p; - } -} - -void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) -{ - int i; - for(i = 0; i < n; ++i){ - float t = truth[i]; - float p = pred[i]; - error[i] = -t*log(p) - (1-t)*log(1-p); - delta[i] = t-p; - } -} - -void l2_cpu(int n, float *pred, float *truth, float *delta, float *error) -{ - int i; - for(i = 0; i < n; ++i){ - float diff = truth[i] - pred[i]; - error[i] = diff * diff; - delta[i] = diff; - } -} - -float dot_cpu(int N, float *X, int INCX, float *Y, int INCY) -{ - int i; - float dot = 0; - for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY]; - return dot; -} - -void softmax(float *input, int n, float temp, float *output, int stride) -{ - int i; - float sum = 0; - float largest = -FLT_MAX; - for(i = 0; i < n; ++i){ - if(input[i*stride] > largest) largest = input[i*stride]; - } - for(i = 0; i < n; ++i){ - float e = exp(input[i*stride]/temp - largest/temp); - sum += e; - output[i*stride] = e; - } - for(i = 0; i < n; ++i){ - output[i*stride] /= sum; - } -} - - -void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) -{ - int g, b; - for(b = 0; b < batch; ++b){ - for(g = 0; g < groups; ++g){ - softmax(input + b*batch_offset + g*group_offset, n, temp, output + b*batch_offset + g*group_offset, stride); - } - } -} - -void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) -{ - int i, j, k, b; - for (b = 0; b < batch; ++b) { - for (k = 0; k < c; ++k) { - for (j = 0; j < h*stride; ++j) { - for (i = 0; i < w*stride; ++i) { - int in_index = b*w*h*c + k*w*h + (j / stride)*w + i / stride; - int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i; - if (forward) out[out_index] = scale*in[in_index]; - else in[in_index] += scale*out[out_index]; - } - } - } - } -} - - -void constrain_cpu(int size, float ALPHA, float *X) -{ - int i; - for (i = 0; i < size; ++i) { - X[i] = fminf(ALPHA, fmaxf(-ALPHA, X[i])); - } -} - -void fix_nan_and_inf_cpu(float *input, size_t size) -{ - int i; - for (i = 0; i < size; ++i) { - float val = input[i]; - if (isnan(val) || isinf(val)) - input[i] = 1.0f / i; // pseudo random value - } -} +#include "blas.h" +#include "utils.h" + +#include <math.h> +#include <assert.h> +#include <float.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +void reorg_cpu(float *x, int out_w, int out_h, int out_c, int batch, int stride, int forward, float *out) +{ + int b,i,j,k; + int in_c = out_c/(stride*stride); + + //printf("\n out_c = %d, out_w = %d, out_h = %d, stride = %d, forward = %d \n", out_c, out_w, out_h, stride, forward); + //printf(" in_c = %d, in_w = %d, in_h = %d \n", in_c, out_w*stride, out_h*stride); + + for(b = 0; b < batch; ++b){ + for(k = 0; k < out_c; ++k){ + for(j = 0; j < out_h; ++j){ + for(i = 0; i < out_w; ++i){ + int in_index = i + out_w*(j + out_h*(k + out_c*b)); + int c2 = k % in_c; + int offset = k / in_c; + int w2 = i*stride + offset % stride; + int h2 = j*stride + offset / stride; + int out_index = w2 + out_w*stride*(h2 + out_h*stride*(c2 + in_c*b)); + if(forward) out[out_index] = x[in_index]; // used by default for forward (i.e. forward = 0) + else out[in_index] = x[out_index]; + } + } + } + } +} + +void flatten(float *x, int size, int layers, int batch, int forward) +{ + float* swap = (float*)xcalloc(size * layers * batch, sizeof(float)); + int i,c,b; + for(b = 0; b < batch; ++b){ + for(c = 0; c < layers; ++c){ + for(i = 0; i < size; ++i){ + int i1 = b*layers*size + c*size + i; + int i2 = b*layers*size + i*layers + c; + if (forward) swap[i2] = x[i1]; + else swap[i1] = x[i2]; + } + } + } + memcpy(x, swap, size*layers*batch*sizeof(float)); + free(swap); +} + +void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c) +{ + int i; + for(i = 0; i < n; ++i){ + c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); + } +} + +void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc) +{ + int i; + for(i = 0; i < n; ++i){ + if(da) da[i] += dc[i] * s[i]; + if(db) db[i] += dc[i] * (1-s[i]); + ds[i] += dc[i] * (a[i] - b[i]); + } +} + +static float relu(float src) { + if (src > 0) return src; + return 0; +} + +void shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_output, float *out, float *in, float *weights, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization) +{ + // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) + const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) + int step = 0; + if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 + + int id; + #pragma omp parallel for + for (id = 0; id < size; ++id) { + + int src_id = id; + const int src_i = src_id % src_outputs; + src_id /= src_outputs; + int src_b = src_id; + + float sum = 1, max_val = -FLT_MAX; + int i; + if (weights && weights_normalization) { + if (weights_normalization == SOFTMAX_NORMALIZATION) { + for (i = 0; i < (n + 1); ++i) { + const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] + float w = weights[weights_index]; + if (max_val < w) max_val = w; + } + } + const float eps = 0.0001; + sum = eps; + for (i = 0; i < (n + 1); ++i) { + const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] + const float w = weights[weights_index]; + if (weights_normalization == RELU_NORMALIZATION) sum += relu(w); + else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); + } + } + + if (weights) { + float w = weights[src_i / step]; + if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; + else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; + + out[id] = in[id] * w; // [0 or c or (c, h ,w)] + } + else out[id] = in[id]; + + // layers + for (i = 0; i < n; ++i) { + int add_outputs = outputs_of_layers[i]; + if (src_i < add_outputs) { + int add_index = add_outputs*src_b + src_i; + int out_index = id; + + float *add = layers_output[i]; + + if (weights) { + const int weights_index = src_i / step + (i + 1)*layer_step; // [0 or c or (c, h ,w)] + float w = weights[weights_index]; + if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; + else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; + + out[out_index] += add[add_index] * w; // [0 or c or (c, h ,w)] + } + else out[out_index] += add[add_index]; + } + } + } +} + +void backward_shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers, + float **layers_delta, float *delta_out, float *delta_in, float *weights, float *weight_updates, int nweights, float *in, float **layers_output, WEIGHTS_NORMALIZATION_T weights_normalization) +{ + // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) + const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) + int step = 0; + if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 + + int id; + #pragma omp parallel for + for (id = 0; id < size; ++id) { + int src_id = id; + int src_i = src_id % src_outputs; + src_id /= src_outputs; + int src_b = src_id; + + float grad = 1, sum = 1, max_val = -FLT_MAX;; + int i; + if (weights && weights_normalization) { + if (weights_normalization == SOFTMAX_NORMALIZATION) { + for (i = 0; i < (n + 1); ++i) { + const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] + float w = weights[weights_index]; + if (max_val < w) max_val = w; + } + } + const float eps = 0.0001; + sum = eps; + for (i = 0; i < (n + 1); ++i) { + const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] + const float w = weights[weights_index]; + if (weights_normalization == RELU_NORMALIZATION) sum += relu(w); + else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); + } + + /* + grad = 0; + for (i = 0; i < (n + 1); ++i) { + const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] + const float delta_w = delta_in[id] * in[id]; + const float w = weights[weights_index]; + if (weights_normalization == RELU_NORMALIZATION) grad += delta_w * relu(w) / sum; + else if (weights_normalization == SOFTMAX_NORMALIZATION) grad += delta_w * expf(w - max_val) / sum; + } + */ + } + + if (weights) { + float w = weights[src_i / step]; + if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; + else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; + + delta_out[id] += delta_in[id] * w; // [0 or c or (c, h ,w)] + weight_updates[src_i / step] += delta_in[id] * in[id] * grad; + } + else delta_out[id] += delta_in[id]; + + // layers + for (i = 0; i < n; ++i) { + int add_outputs = outputs_of_layers[i]; + if (src_i < add_outputs) { + int add_index = add_outputs*src_b + src_i; + int out_index = id; + + float *layer_delta = layers_delta[i]; + if (weights) { + float *add = layers_output[i]; + + const int weights_index = src_i / step + (i + 1)*layer_step; // [0 or c or (c, h ,w)] + float w = weights[weights_index]; + if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; + else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; + + layer_delta[add_index] += delta_in[id] * w; // [0 or c or (c, h ,w)] + weight_updates[weights_index] += delta_in[id] * add[add_index] * grad; + } + else layer_delta[add_index] += delta_in[id]; + } + } + } +} + +void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) +{ + int stride = w1/w2; + int sample = w2/w1; + assert(stride == h1/h2); + assert(sample == h2/h1); + if(stride < 1) stride = 1; + if(sample < 1) sample = 1; + int minw = (w1 < w2) ? w1 : w2; + int minh = (h1 < h2) ? h1 : h2; + int minc = (c1 < c2) ? c1 : c2; + + int i,j,k,b; + for(b = 0; b < batch; ++b){ + for(k = 0; k < minc; ++k){ + for(j = 0; j < minh; ++j){ + for(i = 0; i < minw; ++i){ + int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); + int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); + out[out_index] += add[add_index]; + } + } + } + } +} + +void mean_cpu(float *x, int batch, int filters, int spatial, float *mean) +{ + float scale = 1./(batch * spatial); + int i,j,k; + for(i = 0; i < filters; ++i){ + mean[i] = 0; + for(j = 0; j < batch; ++j){ + for(k = 0; k < spatial; ++k){ + int index = j*filters*spatial + i*spatial + k; + mean[i] += x[index]; + } + } + mean[i] *= scale; + } +} + +void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) +{ + float scale = 1./(batch * spatial - 1); + int i,j,k; + for(i = 0; i < filters; ++i){ + variance[i] = 0; + for(j = 0; j < batch; ++j){ + for(k = 0; k < spatial; ++k){ + int index = j*filters*spatial + i*spatial + k; + variance[i] += pow((x[index] - mean[i]), 2); + } + } + variance[i] *= scale; + } +} + +void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) +{ + int b, f, i; + for(b = 0; b < batch; ++b){ + for(f = 0; f < filters; ++f){ + for(i = 0; i < spatial; ++i){ + int index = b*filters*spatial + f*spatial + i; + x[index] = (x[index] - mean[f])/(sqrt(variance[f] + .00001f)); + } + } + } +} + +void const_cpu(int N, float ALPHA, float *X, int INCX) +{ + int i; + for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; +} + +void mul_cpu(int N, float *X, int INCX, float *Y, int INCY) +{ + int i; + for(i = 0; i < N; ++i) Y[i*INCY] *= X[i*INCX]; +} + +void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) +{ + int i; + for(i = 0; i < N; ++i) Y[i*INCY] = pow(X[i*INCX], ALPHA); +} + +void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) +{ + int i; + for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX]; +} + +void scal_cpu(int N, float ALPHA, float *X, int INCX) +{ + int i; + for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA; +} + +void scal_add_cpu(int N, float ALPHA, float BETA, float *X, int INCX) +{ + int i; + for (i = 0; i < N; ++i) X[i*INCX] = X[i*INCX] * ALPHA + BETA; +} + +void fill_cpu(int N, float ALPHA, float *X, int INCX) +{ + int i; + if (INCX == 1 && ALPHA == 0) { + memset(X, 0, N * sizeof(float)); + } + else { + for (i = 0; i < N; ++i) X[i*INCX] = ALPHA; + } +} + +void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) +{ + int i, j; + int index = 0; + for(j = 0; j < B; ++j) { + for(i = 0; i < NX; ++i){ + if(X) X[j*NX + i] += OUT[index]; + ++index; + } + for(i = 0; i < NY; ++i){ + if(Y) Y[j*NY + i] += OUT[index]; + ++index; + } + } +} + +void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) +{ + int i, j; + int index = 0; + for(j = 0; j < B; ++j) { + for(i = 0; i < NX; ++i){ + OUT[index++] = X[j*NX + i]; + } + for(i = 0; i < NY; ++i){ + OUT[index++] = Y[j*NY + i]; + } + } +} + +void copy_cpu(int N, float *X, int INCX, float *Y, int INCY) +{ + int i; + for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX]; +} + +void mult_add_into_cpu(int N, float *X, float *Y, float *Z) +{ + int i; + for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i]; +} + +void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error) +{ + int i; + for(i = 0; i < n; ++i){ + float diff = truth[i] - pred[i]; + float abs_val = fabs(diff); + if(abs_val < 1) { + error[i] = diff * diff; + delta[i] = diff; + } + else { + error[i] = 2*abs_val - 1; + delta[i] = (diff > 0) ? 1 : -1; + } + } +} + +void l1_cpu(int n, float *pred, float *truth, float *delta, float *error) +{ + int i; + for(i = 0; i < n; ++i){ + float diff = truth[i] - pred[i]; + error[i] = fabs(diff); + delta[i] = diff > 0 ? 1 : -1; + } +} + +void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) +{ + int i; + for(i = 0; i < n; ++i){ + float t = truth[i]; + float p = pred[i]; + error[i] = (t) ? -log(p) : 0; + delta[i] = t-p; + } +} + +void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) +{ + int i; + for(i = 0; i < n; ++i){ + float t = truth[i]; + float p = pred[i]; + error[i] = -t*log(p) - (1-t)*log(1-p); + delta[i] = t-p; + } +} + +void l2_cpu(int n, float *pred, float *truth, float *delta, float *error) +{ + int i; + for(i = 0; i < n; ++i){ + float diff = truth[i] - pred[i]; + error[i] = diff * diff; + delta[i] = diff; + } +} + +float dot_cpu(int N, float *X, int INCX, float *Y, int INCY) +{ + int i; + float dot = 0; + for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY]; + return dot; +} + +void softmax(float *input, int n, float temp, float *output, int stride) +{ + int i; + float sum = 0; + float largest = -FLT_MAX; + for(i = 0; i < n; ++i){ + if(input[i*stride] > largest) largest = input[i*stride]; + } + for(i = 0; i < n; ++i){ + float e = exp(input[i*stride]/temp - largest/temp); + sum += e; + output[i*stride] = e; + } + for(i = 0; i < n; ++i){ + output[i*stride] /= sum; + } +} + + +void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) +{ + int g, b; + for(b = 0; b < batch; ++b){ + for(g = 0; g < groups; ++g){ + softmax(input + b*batch_offset + g*group_offset, n, temp, output + b*batch_offset + g*group_offset, stride); + } + } +} + +void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) +{ + int i, j, k, b; + for (b = 0; b < batch; ++b) { + for (k = 0; k < c; ++k) { + for (j = 0; j < h*stride; ++j) { + for (i = 0; i < w*stride; ++i) { + int in_index = b*w*h*c + k*w*h + (j / stride)*w + i / stride; + int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i; + if (forward) out[out_index] = scale*in[in_index]; + else in[in_index] += scale*out[out_index]; + } + } + } + } +} + + +void constrain_cpu(int size, float ALPHA, float *X) +{ + int i; + for (i = 0; i < size; ++i) { + X[i] = fminf(ALPHA, fmaxf(-ALPHA, X[i])); + } +} + +void fix_nan_and_inf_cpu(float *input, size_t size) +{ + int i; + for (i = 0; i < size; ++i) { + float val = input[i]; + if (isnan(val) || isinf(val)) + input[i] = 1.0f / i; // pseudo random value + } +} + +void get_embedding(float *src, int src_w, int src_h, int src_c, int embedding_size, int cur_w, int cur_h, int cur_n, int cur_b, float *dst) +{ + int i; + for (i = 0; i < embedding_size; ++i) { + const int src_index = cur_b*(src_c*src_h*src_w) + cur_n*(embedding_size*src_h*src_w) + i*src_h*src_w + cur_h*(src_w) + cur_w; + + const float val = src[src_index]; + dst[i] = val; + //printf(" val = %f, ", val); + } +} + + +// Euclidean_norm +float math_vector_length(float *A, unsigned int feature_size) +{ + float sum = 0; + int i; + for (i = 0; i < feature_size; ++i) + { + sum += A[i] * A[i]; + } + float vector_length = sqrtf(sum); + return vector_length; +} + +float cosine_similarity(float *A, float *B, unsigned int feature_size) +{ + float mul = 0.0, d_a = 0.0, d_b = 0.0; + + int i; + for(i = 0; i < feature_size; ++i) + { + mul += A[i] * B[i]; + d_a += A[i] * A[i]; + d_b += B[i] * B[i]; + } + float similarity; + float divider = sqrtf(d_a) * sqrtf(d_b); + if (divider > 0) similarity = mul / divider; + else similarity = 0; + + return similarity; +} + +int get_sim_P_index(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) +{ + size_t z; + for (z = 0; z < contrast_p_size; ++z) { + if (contrast_p[z].i == i && contrast_p[z].j == j) break; + } + if (z == contrast_p_size) { + return -1; // not found + } + + return z; // found +} + +int check_sim(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) +{ + size_t z; + for (z = 0; z < contrast_p_size; ++z) { + if (contrast_p[z].i == i && contrast_p[z].j == j) break; + } + if (z == contrast_p_size) { + return 0; // not found + } + + return 1; // found +} + +float find_sim(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) +{ + size_t z; + for (z = 0; z < contrast_p_size; ++z) { + if (contrast_p[z].i == i && contrast_p[z].j == j) break; + } + if (z == contrast_p_size) { + printf(" Error: find_sim(): sim isn't found: i = %d, j = %d, z = %d \n", i, j, z); + getchar(); + } + + return contrast_p[z].sim; +} + +float find_P_constrastive(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) +{ + size_t z; + for (z = 0; z < contrast_p_size; ++z) { + if (contrast_p[z].i == i && contrast_p[z].j == j) break; + } + if (z == contrast_p_size) { + printf(" Error: find_P_constrastive(): P isn't found: i = %d, j = %d, z = %d \n", i, j, z); + getchar(); + } + + return contrast_p[z].P; +} + +// num_of_samples = 2 * loaded_images = mini_batch_size +float P_constrastive_f_det(size_t il, int *labels, float **z, unsigned int feature_size, float temperature, contrastive_params *contrast_p, int contrast_p_size) +{ + const float sim = contrast_p[il].sim; + const size_t i = contrast_p[il].i; + const size_t j = contrast_p[il].j; + + const float numerator = expf(sim / temperature); + + float denominator = 0; + int k; + for (k = 0; k < contrast_p_size; ++k) { + contrastive_params cp = contrast_p[k]; + //if (k != i && labels[k] != labels[i]) { + //if (k != i) { + if (cp.i != i && cp.j == j) { + //const float sim_den = cp.sim; + ////const float sim_den = find_sim(k, l, contrast_p, contrast_p_size); // cosine_similarity(z[k], z[l], feature_size); + //denominator += expf(sim_den / temperature); + denominator += cp.exp_sim; + } + } + + float result = 0.9999; + if (denominator != 0) result = numerator / denominator; + if (result > 1) result = 0.9999; + return result; +} + +// num_of_samples = 2 * loaded_images = mini_batch_size +float P_constrastive_f(size_t i, size_t l, int *labels, float **z, unsigned int feature_size, float temperature, contrastive_params *contrast_p, int contrast_p_size) +{ + if (i == l) { + fprintf(stderr, " Error: in P_constrastive must be i != l, while i = %d, l = %d \n", i, l); + getchar(); + } + + const float sim = find_sim(i, l, contrast_p, contrast_p_size); // cosine_similarity(z[i], z[l], feature_size); + const float numerator = expf(sim / temperature); + + float denominator = 0; + int k; + for (k = 0; k < contrast_p_size; ++k) { + contrastive_params cp = contrast_p[k]; + //if (k != i && labels[k] != labels[i]) { + //if (k != i) { + if (cp.i != i && cp.j == l) { + //const float sim_den = cp.sim; + ////const float sim_den = find_sim(k, l, contrast_p, contrast_p_size); // cosine_similarity(z[k], z[l], feature_size); + //denominator += expf(sim_den / temperature); + denominator += cp.exp_sim; + } + } + + float result = 0.9999; + if (denominator != 0) result = numerator / denominator; + if (result > 1) result = 0.9999; + return result; +} + +void grad_contrastive_loss_positive_f(size_t i, int *class_ids, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta, int wh, contrastive_params *contrast_p, int contrast_p_size) +{ + const float vec_len = math_vector_length(z[i], feature_size); + size_t j; + float N = 0; + for (j = 0; j < num_of_samples; ++j) { + if (labels[i] == labels[j] && labels[i] >= 0) N++; + } + if (N == 0 || temperature == 0 || vec_len == 0) { + fprintf(stderr, " Error: N == 0 || temperature == 0 || vec_len == 0. N=%f, temperature=%f, vec_len=%f, labels[i] = %d \n", + N, temperature, vec_len, labels[i]); + getchar(); + return; + } + const float mult = 1 / ((N - 1) * temperature * vec_len); + + for (j = 0; j < num_of_samples; ++j) { + //if (i != j && (i/2) == (j/2)) { + if (i != j && labels[i] == labels[j] && labels[i] >= 0) { + //printf(" i = %d, j = %d, num_of_samples = %d, labels[i] = %d, labels[j] = %d \n", + // i, j, num_of_samples, labels[i], labels[j]); + const int sim_P_i = get_sim_P_index(i, j, contrast_p, contrast_p_size); + if (sim_P_i < 0) continue; + const float sim = contrast_p[sim_P_i].sim; + const float P = contrast_p[sim_P_i].P; + //if (!check_sim(i, j, contrast_p, contrast_p_size)) continue; + //const float sim = find_sim(i, j, contrast_p, contrast_p_size); //cos_sim[i*num_of_samples + j]; // cosine_similarity(z[i], z[j], feature_size); + //const float P = find_P_constrastive(i, j, contrast_p, contrast_p_size); //p_constrastive[i*num_of_samples + j]; // P_constrastive(i, j, labels, num_of_samples, z, feature_size, temperature, cos_sim); + //const float custom_pos_mult = 1 - sim; + + + int m; + //const float d = mult*(sim * z[i][m] - z[j][m]) * (1 - P); // 1 + for (m = 0; m < feature_size; ++m) { + //const float d = mult*(sim * z[j][m] - z[j][m]) * (1 - P); // my + //const float d = mult*(sim * z[i][m] + sim * z[j][m] - z[j][m]) *(1 - P); // 1+2 + const float d = mult*(sim * z[i][m] - z[j][m]) *(1 - P); // 1 (70%) + //const float d = mult*(sim * z[j][m] - z[j][m]) * (1 - P); // 2 + // printf(" pos: z[j][m] = %f, z[i][m] = %f, d = %f, sim = %f \n", z[j][m], z[i][m], d, sim); + const int out_i = m * wh; + delta[out_i] -= d; + } + } + } +} + +void grad_contrastive_loss_negative_f(size_t i, int *class_ids, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta, int wh, contrastive_params *contrast_p, int contrast_p_size, int neg_max) +{ + const float vec_len = math_vector_length(z[i], feature_size); + size_t j; + float N = 0; + for (j = 0; j < num_of_samples; ++j) { + if (labels[i] == labels[j] && labels[i] >= 0) N++; + } + if (N == 0 || temperature == 0 || vec_len == 0) { + fprintf(stderr, " Error: N == 0 || temperature == 0 || vec_len == 0. N=%f, temperature=%f, vec_len=%f, labels[i] = %d \n", + N, temperature, vec_len, labels[i]); + getchar(); + return; + } + const float mult = 1 / ((N - 1) * temperature * vec_len); + + int neg_counter = 0; + + for (j = 0; j < num_of_samples; ++j) { + //if (i != j && (i/2) == (j/2)) { + if (labels[i] >= 0 && labels[i] == labels[j] && i != j) { + + size_t k; + for (k = 0; k < num_of_samples; ++k) { + //if (k != i && k != j && labels[k] != labels[i]) { + if (k != i && k != j && labels[k] != labels[i] && class_ids[j] == class_ids[k]) { + neg_counter++; + const int sim_P_i = get_sim_P_index(i, k, contrast_p, contrast_p_size); + if (sim_P_i < 0) continue; + const float sim = contrast_p[sim_P_i].sim; + const float P = contrast_p[sim_P_i].P; + //if (!check_sim(i, k, contrast_p, contrast_p_size)) continue; + //const float sim = find_sim(i, k, contrast_p, contrast_p_size); //cos_sim[i*num_of_samples + k]; // cosine_similarity(z[i], z[k], feature_size); + //const float P = find_P_constrastive(i, k, contrast_p, contrast_p_size); //p_constrastive[i*num_of_samples + k]; // P_constrastive(i, k, labels, num_of_samples, z, feature_size, temperature, cos_sim); + //const float custom_pos_mult = 1 + sim; + + int m; + //const float d = mult*(z[k][m] + sim * z[i][m]) * P; // my1 + for (m = 0; m < feature_size; ++m) { + //const float d = mult*(z[k][m] + sim * z[i][m]) * P; // 1 (70%) + //const float d = mult*(z[k][m] - sim * z[k][m] - sim * z[i][m]) * P; // 1+2 + const float d = mult*(z[k][m] - sim * z[i][m]) * P; // 1 (70%) + //const float d = mult*(z[k][m] - sim * z[k][m]) * P; // 2 + //printf(" neg: z[k][m] = %f, z[i][m] = %f, d = %f, sim = %f \n", z[k][m], z[i][m], d, sim); + const int out_i = m * wh; + delta[out_i] -= d; + } + + if (neg_counter >= neg_max) return; + } + } + } + } +} + + + +// num_of_samples = 2 * loaded_images = mini_batch_size +float P_constrastive(size_t i, size_t l, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *exp_cos_sim) +{ + if (i == l) { + fprintf(stderr, " Error: in P_constrastive must be i != l, while i = %d, l = %d \n", i, l); + getchar(); + } + + //const float sim = cos_sim[i*num_of_samples + l]; // cosine_similarity(z[i], z[l], feature_size); + //const float numerator = expf(sim / temperature); + const float numerator = exp_cos_sim[i*num_of_samples + l]; + + float denominator = 0; + int k; + for (k = 0; k < num_of_samples; ++k) { + //if (k != i && labels[k] != labels[i]) { + if (k != i) { + //const float sim_den = cos_sim[k*num_of_samples + l]; // cosine_similarity(z[k], z[l], feature_size); + //denominator += expf(sim_den / temperature); + denominator += exp_cos_sim[k*num_of_samples + l]; + } + } + + float result = numerator / denominator; + return result; +} + +// i - id of the current sample in mini_batch +// labels[num_of_samples] - array with class_id for each sample in the current mini_batch +// z[feature_size][num_of_samples] - array of arrays with contrastive features (output of conv-layer, f.e. 128 floats for each sample) +// delta[feature_size] - array with deltas for backpropagation +// temperature - scalar temperature param (temperature > 0), f.e. temperature = 0.07: Supervised Contrastive Learning +void grad_contrastive_loss_positive(size_t i, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *p_constrastive, float *delta, int wh) +{ + const float vec_len = math_vector_length(z[i], feature_size); + size_t j; + float N = 0; + for (j = 0; j < num_of_samples; ++j) { + if (labels[i] == labels[j]) N++; + } + if (N == 0 || temperature == 0 || vec_len == 0) { + fprintf(stderr, " Error: N == 0 || temperature == 0 || vec_len == 0. N=%f, temperature=%f, vec_len=%f \n", N, temperature, vec_len); + getchar(); + } + const float mult = 1 / ((N - 1) * temperature * vec_len); + + for (j = 0; j < num_of_samples; ++j) { + //if (i != j && (i/2) == (j/2)) { + if (i != j && labels[i] == labels[j]) { + //printf(" i = %d, j = %d, num_of_samples = %d, labels[i] = %d, labels[j] = %d \n", + // i, j, num_of_samples, labels[i], labels[j]); + const float sim = cos_sim[i*num_of_samples + j]; // cosine_similarity(z[i], z[j], feature_size); + const float P = p_constrastive[i*num_of_samples + j]; // P_constrastive(i, j, labels, num_of_samples, z, feature_size, temperature, cos_sim); + //const float custom_pos_mult = 1 - sim; + + int m; + for (m = 0; m < feature_size; ++m) { + const float d = mult*(sim * z[i][m] - z[j][m]) * (1 - P); // good + //const float d = mult*(sim * z[j][m] - z[j][m]) * (1 - P); // bad + // printf(" pos: z[j][m] = %f, z[i][m] = %f, d = %f, sim = %f \n", z[j][m], z[i][m], d, sim); + const int out_i = m * wh; + delta[out_i] -= d; + } + } + } +} + +// i - id of the current sample in mini_batch +// labels[num_of_samples] - array with class_id for each sample in the current mini_batch +// z[feature_size][num_of_samples] - array of arrays with contrastive features (output of conv-layer, f.e. 128 floats for each sample) +// delta[feature_size] - array with deltas for backpropagation +// temperature - scalar temperature param (temperature > 0), f.e. temperature = 0.07: Supervised Contrastive Learning +void grad_contrastive_loss_negative(size_t i, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *p_constrastive, float *delta, int wh) +{ + const float vec_len = math_vector_length(z[i], feature_size); + size_t j; + float N = 0; + for (j = 0; j < num_of_samples; ++j) { + if (labels[i] == labels[j]) N++; + } + if (N == 0 || temperature == 0 || vec_len == 0) { + fprintf(stderr, " Error: N == 0 || temperature == 0 || vec_len == 0. N=%f, temperature=%f, vec_len=%f \n", N, temperature, vec_len); + getchar(); + } + const float mult = 1 / ((N - 1) * temperature * vec_len); + + for (j = 0; j < num_of_samples; ++j) { + //if (i != j && (i/2) == (j/2)) { + if (i != j && labels[i] == labels[j]) { + + size_t k; + for (k = 0; k < num_of_samples; ++k) { + //if (k != i && k != j && labels[k] != labels[i]) { + if (k != i && k != j && labels[k] >= 0) { + const float sim = cos_sim[i*num_of_samples + k]; // cosine_similarity(z[i], z[k], feature_size); + const float P = p_constrastive[i*num_of_samples + k]; // P_constrastive(i, k, labels, num_of_samples, z, feature_size, temperature, cos_sim); + //const float custom_pos_mult = 1 + sim; + + int m; + for (m = 0; m < feature_size; ++m) { + const float d = mult*(z[k][m] - sim * z[i][m]) * P; // good + //const float d = mult*(z[k][m] - sim * z[k][m]) * P; // bad + //printf(" neg: z[k][m] = %f, z[i][m] = %f, d = %f, sim = %f \n", z[k][m], z[i][m], d, sim); + const int out_i = m * wh; + delta[out_i] -= d; + } + } + } + } + } +} \ No newline at end of file -- Gitblit v1.8.0