From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/cifar.c |  542 +++++++++++++++++++++++++++---------------------------
 1 files changed, 271 insertions(+), 271 deletions(-)

diff --git a/lib/detecter_tools/darknet/cifar.c b/lib/detecter_tools/darknet/cifar.c
index 011777f..1b87cb5 100644
--- a/lib/detecter_tools/darknet/cifar.c
+++ b/lib/detecter_tools/darknet/cifar.c
@@ -1,271 +1,271 @@
-#include "network.h"
-#include "utils.h"
-#include "parser.h"
-#include "option_list.h"
-#include "blas.h"
-
-void train_cifar(char *cfgfile, char *weightfile)
-{
-    srand(time(0));
-    float avg_loss = -1;
-    char *base = basecfg(cfgfile);
-    printf("%s\n", base);
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-
-    char* backup_directory = "backup/";
-    int classes = 10;
-    int N = 50000;
-
-    char **labels = get_labels("data/cifar/labels.txt");
-    int epoch = (*net.seen)/N;
-    data train = load_all_cifar10();
-    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
-        clock_t time=clock();
-
-        float loss = train_network_sgd(net, train, 1);
-        if(avg_loss == -1) avg_loss = loss;
-        avg_loss = avg_loss*.95 + loss*.05;
-        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
-        if(*net.seen/N > epoch){
-            epoch = *net.seen/N;
-            char buff[256];
-            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
-            save_weights(net, buff);
-        }
-        if(get_current_batch(net)%100 == 0){
-            char buff[256];
-            sprintf(buff, "%s/%s.backup",backup_directory,base);
-            save_weights(net, buff);
-        }
-    }
-    char buff[256];
-    sprintf(buff, "%s/%s.weights", backup_directory, base);
-    save_weights(net, buff);
-
-    free_network(net);
-    free_ptrs((void**)labels, classes);
-    free(base);
-    free_data(train);
-}
-
-void train_cifar_distill(char *cfgfile, char *weightfile)
-{
-    srand(time(0));
-    float avg_loss = -1;
-    char *base = basecfg(cfgfile);
-    printf("%s\n", base);
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-
-    char* backup_directory = "backup/";
-    int classes = 10;
-    int N = 50000;
-
-    char **labels = get_labels("data/cifar/labels.txt");
-    int epoch = (*net.seen)/N;
-
-    data train = load_all_cifar10();
-    matrix soft = csv_to_matrix("results/ensemble.csv");
-
-    float weight = .9;
-    scale_matrix(soft, weight);
-    scale_matrix(train.y, 1. - weight);
-    matrix_add_matrix(soft, train.y);
-
-    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
-        clock_t time=clock();
-
-        float loss = train_network_sgd(net, train, 1);
-        if(avg_loss == -1) avg_loss = loss;
-        avg_loss = avg_loss*.95 + loss*.05;
-        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
-        if(*net.seen/N > epoch){
-            epoch = *net.seen/N;
-            char buff[256];
-            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
-            save_weights(net, buff);
-        }
-        if(get_current_batch(net)%100 == 0){
-            char buff[256];
-            sprintf(buff, "%s/%s.backup",backup_directory,base);
-            save_weights(net, buff);
-        }
-    }
-    char buff[256];
-    sprintf(buff, "%s/%s.weights", backup_directory, base);
-    save_weights(net, buff);
-
-    free_network(net);
-    free_ptrs((void**)labels, classes);
-    free(base);
-    free_data(train);
-}
-
-void test_cifar_multi(char *filename, char *weightfile)
-{
-    network net = parse_network_cfg(filename);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    set_batch_network(&net, 1);
-    srand(time(0));
-
-    float avg_acc = 0;
-    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
-
-    int i;
-    for(i = 0; i < test.X.rows; ++i){
-        image im = float_to_image(32, 32, 3, test.X.vals[i]);
-
-        float pred[10] = {0};
-
-        float *p = network_predict(net, im.data);
-        axpy_cpu(10, 1, p, 1, pred, 1);
-        flip_image(im);
-        p = network_predict(net, im.data);
-        axpy_cpu(10, 1, p, 1, pred, 1);
-
-        int index = max_index(pred, 10);
-        int class_id = max_index(test.y.vals[i], 10);
-        if(index == class_id) avg_acc += 1;
-        free_image(im);
-        printf("%4d: %.2f%%\n", i, 100.*avg_acc/(i+1));
-    }
-}
-
-void test_cifar(char *filename, char *weightfile)
-{
-    network net = parse_network_cfg(filename);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    srand(time(0));
-
-    clock_t time;
-    float avg_acc = 0;
-    float avg_top5 = 0;
-    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
-
-    time=clock();
-
-    float *acc = network_accuracies(net, test, 2);
-    avg_acc += acc[0];
-    avg_top5 += acc[1];
-    printf("top1: %f, %lf seconds, %d images\n", avg_acc, sec(clock()-time), test.X.rows);
-    free_data(test);
-}
-
-void extract_cifar()
-{
-char *labels[] = {"airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"};
-    int i;
-    data train = load_all_cifar10();
-    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
-    for(i = 0; i < train.X.rows; ++i){
-        image im = float_to_image(32, 32, 3, train.X.vals[i]);
-        int class_id = max_index(train.y.vals[i], 10);
-        char buff[256];
-        sprintf(buff, "data/cifar/train/%d_%s",i,labels[class_id]);
-        save_image_png(im, buff);
-    }
-    for(i = 0; i < test.X.rows; ++i){
-        image im = float_to_image(32, 32, 3, test.X.vals[i]);
-        int class_id = max_index(test.y.vals[i], 10);
-        char buff[256];
-        sprintf(buff, "data/cifar/test/%d_%s",i,labels[class_id]);
-        save_image_png(im, buff);
-    }
-}
-
-void test_cifar_csv(char *filename, char *weightfile)
-{
-    network net = parse_network_cfg(filename);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    srand(time(0));
-
-    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
-
-    matrix pred = network_predict_data(net, test);
-
-    int i;
-    for(i = 0; i < test.X.rows; ++i){
-        image im = float_to_image(32, 32, 3, test.X.vals[i]);
-        flip_image(im);
-    }
-    matrix pred2 = network_predict_data(net, test);
-    scale_matrix(pred, .5);
-    scale_matrix(pred2, .5);
-    matrix_add_matrix(pred2, pred);
-
-    matrix_to_csv(pred);
-    fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
-    free_data(test);
-}
-
-void test_cifar_csvtrain(char *filename, char *weightfile)
-{
-    network net = parse_network_cfg(filename);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    srand(time(0));
-
-    data test = load_all_cifar10();
-
-    matrix pred = network_predict_data(net, test);
-
-    int i;
-    for(i = 0; i < test.X.rows; ++i){
-        image im = float_to_image(32, 32, 3, test.X.vals[i]);
-        flip_image(im);
-    }
-    matrix pred2 = network_predict_data(net, test);
-    scale_matrix(pred, .5);
-    scale_matrix(pred2, .5);
-    matrix_add_matrix(pred2, pred);
-
-    matrix_to_csv(pred);
-    fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
-    free_data(test);
-}
-
-void eval_cifar_csv()
-{
-    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
-
-    matrix pred = csv_to_matrix("results/combined.csv");
-    fprintf(stderr, "%d %d\n", pred.rows, pred.cols);
-
-    fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
-    free_data(test);
-    free_matrix(pred);
-}
-
-
-void run_cifar(int argc, char **argv)
-{
-    if(argc < 4){
-        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
-        return;
-    }
-
-    char *cfg = argv[3];
-    char *weights = (argc > 4) ? argv[4] : 0;
-    if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights);
-    else if(0==strcmp(argv[2], "extract")) extract_cifar();
-    else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights);
-    else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights);
-    else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights);
-    else if(0==strcmp(argv[2], "csv")) test_cifar_csv(cfg, weights);
-    else if(0==strcmp(argv[2], "csvtrain")) test_cifar_csvtrain(cfg, weights);
-    else if(0==strcmp(argv[2], "eval")) eval_cifar_csv();
-}
+#include "network.h"
+#include "utils.h"
+#include "parser.h"
+#include "option_list.h"
+#include "blas.h"
+
+void train_cifar(char *cfgfile, char *weightfile)
+{
+    srand(time(0));
+    float avg_loss = -1;
+    char *base = basecfg(cfgfile);
+    printf("%s\n", base);
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+
+    char* backup_directory = "backup/";
+    int classes = 10;
+    int N = 50000;
+
+    char **labels = get_labels("data/cifar/labels.txt");
+    int epoch = (*net.seen)/N;
+    data train = load_all_cifar10();
+    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
+        clock_t time=clock();
+
+        float loss = train_network_sgd(net, train, 1);
+        if(avg_loss == -1) avg_loss = loss;
+        avg_loss = avg_loss*.95 + loss*.05;
+        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
+        if(*net.seen/N > epoch){
+            epoch = *net.seen/N;
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
+            save_weights(net, buff);
+        }
+        if(get_current_batch(net)%100 == 0){
+            char buff[256];
+            sprintf(buff, "%s/%s.backup",backup_directory,base);
+            save_weights(net, buff);
+        }
+    }
+    char buff[256];
+    sprintf(buff, "%s/%s.weights", backup_directory, base);
+    save_weights(net, buff);
+
+    free_network(net);
+    free_ptrs((void**)labels, classes);
+    free(base);
+    free_data(train);
+}
+
+void train_cifar_distill(char *cfgfile, char *weightfile)
+{
+    srand(time(0));
+    float avg_loss = -1;
+    char *base = basecfg(cfgfile);
+    printf("%s\n", base);
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+
+    char* backup_directory = "backup/";
+    int classes = 10;
+    int N = 50000;
+
+    char **labels = get_labels("data/cifar/labels.txt");
+    int epoch = (*net.seen)/N;
+
+    data train = load_all_cifar10();
+    matrix soft = csv_to_matrix("results/ensemble.csv");
+
+    float weight = .9;
+    scale_matrix(soft, weight);
+    scale_matrix(train.y, 1. - weight);
+    matrix_add_matrix(soft, train.y);
+
+    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
+        clock_t time=clock();
+
+        float loss = train_network_sgd(net, train, 1);
+        if(avg_loss == -1) avg_loss = loss;
+        avg_loss = avg_loss*.95 + loss*.05;
+        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
+        if(*net.seen/N > epoch){
+            epoch = *net.seen/N;
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
+            save_weights(net, buff);
+        }
+        if(get_current_batch(net)%100 == 0){
+            char buff[256];
+            sprintf(buff, "%s/%s.backup",backup_directory,base);
+            save_weights(net, buff);
+        }
+    }
+    char buff[256];
+    sprintf(buff, "%s/%s.weights", backup_directory, base);
+    save_weights(net, buff);
+
+    free_network(net);
+    free_ptrs((void**)labels, classes);
+    free(base);
+    free_data(train);
+}
+
+void test_cifar_multi(char *filename, char *weightfile)
+{
+    network net = parse_network_cfg(filename);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    srand(time(0));
+
+    float avg_acc = 0;
+    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+
+    int i;
+    for(i = 0; i < test.X.rows; ++i){
+        image im = float_to_image(32, 32, 3, test.X.vals[i]);
+
+        float pred[10] = {0};
+
+        float *p = network_predict(net, im.data);
+        axpy_cpu(10, 1, p, 1, pred, 1);
+        flip_image(im);
+        p = network_predict(net, im.data);
+        axpy_cpu(10, 1, p, 1, pred, 1);
+
+        int index = max_index(pred, 10);
+        int class_id = max_index(test.y.vals[i], 10);
+        if(index == class_id) avg_acc += 1;
+        free_image(im);
+        printf("%4d: %.2f%%\n", i, 100.*avg_acc/(i+1));
+    }
+}
+
+void test_cifar(char *filename, char *weightfile)
+{
+    network net = parse_network_cfg(filename);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    clock_t time;
+    float avg_acc = 0;
+    float avg_top5 = 0;
+    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+
+    time=clock();
+
+    float *acc = network_accuracies(net, test, 2);
+    avg_acc += acc[0];
+    avg_top5 += acc[1];
+    printf("top1: %f, %lf seconds, %d images\n", avg_acc, sec(clock()-time), test.X.rows);
+    free_data(test);
+}
+
+void extract_cifar()
+{
+char *labels[] = {"airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"};
+    int i;
+    data train = load_all_cifar10();
+    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+    for(i = 0; i < train.X.rows; ++i){
+        image im = float_to_image(32, 32, 3, train.X.vals[i]);
+        int class_id = max_index(train.y.vals[i], 10);
+        char buff[256];
+        sprintf(buff, "data/cifar/train/%d_%s",i,labels[class_id]);
+        save_image_png(im, buff);
+    }
+    for(i = 0; i < test.X.rows; ++i){
+        image im = float_to_image(32, 32, 3, test.X.vals[i]);
+        int class_id = max_index(test.y.vals[i], 10);
+        char buff[256];
+        sprintf(buff, "data/cifar/test/%d_%s",i,labels[class_id]);
+        save_image_png(im, buff);
+    }
+}
+
+void test_cifar_csv(char *filename, char *weightfile)
+{
+    network net = parse_network_cfg(filename);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+
+    matrix pred = network_predict_data(net, test);
+
+    int i;
+    for(i = 0; i < test.X.rows; ++i){
+        image im = float_to_image(32, 32, 3, test.X.vals[i]);
+        flip_image(im);
+    }
+    matrix pred2 = network_predict_data(net, test);
+    scale_matrix(pred, .5);
+    scale_matrix(pred2, .5);
+    matrix_add_matrix(pred2, pred);
+
+    matrix_to_csv(pred);
+    fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
+    free_data(test);
+}
+
+void test_cifar_csvtrain(char *filename, char *weightfile)
+{
+    network net = parse_network_cfg(filename);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    data test = load_all_cifar10();
+
+    matrix pred = network_predict_data(net, test);
+
+    int i;
+    for(i = 0; i < test.X.rows; ++i){
+        image im = float_to_image(32, 32, 3, test.X.vals[i]);
+        flip_image(im);
+    }
+    matrix pred2 = network_predict_data(net, test);
+    scale_matrix(pred, .5);
+    scale_matrix(pred2, .5);
+    matrix_add_matrix(pred2, pred);
+
+    matrix_to_csv(pred);
+    fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
+    free_data(test);
+}
+
+void eval_cifar_csv()
+{
+    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+
+    matrix pred = csv_to_matrix("results/combined.csv");
+    fprintf(stderr, "%d %d\n", pred.rows, pred.cols);
+
+    fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
+    free_data(test);
+    free_matrix(pred);
+}
+
+
+void run_cifar(int argc, char **argv)
+{
+    if(argc < 4){
+        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+        return;
+    }
+
+    char *cfg = argv[3];
+    char *weights = (argc > 4) ? argv[4] : 0;
+    if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights);
+    else if(0==strcmp(argv[2], "extract")) extract_cifar();
+    else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights);
+    else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights);
+    else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights);
+    else if(0==strcmp(argv[2], "csv")) test_cifar_csv(cfg, weights);
+    else if(0==strcmp(argv[2], "csvtrain")) test_cifar_csvtrain(cfg, weights);
+    else if(0==strcmp(argv[2], "eval")) eval_cifar_csv();
+}

--
Gitblit v1.8.0