From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/col2im_kernels.cu |  270 +++++++++++++++++++++++++++---------------------------
 1 files changed, 135 insertions(+), 135 deletions(-)

diff --git a/lib/detecter_tools/darknet/col2im_kernels.cu b/lib/detecter_tools/darknet/col2im_kernels.cu
index 5051e21..0e07bc3 100644
--- a/lib/detecter_tools/darknet/col2im_kernels.cu
+++ b/lib/detecter_tools/darknet/col2im_kernels.cu
@@ -1,136 +1,136 @@
-#include <cuda_runtime.h>
-#include <curand.h>
-#include <cublas_v2.h>
-
-#include "col2im.h"
-#include "dark_cuda.h"
-
-// src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
-// You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE
-
-__global__ void col2im_gpu_kernel(const int n, const float* data_col,
-        const int height, const int width, const int ksize,
-        const int pad,
-        const int stride,
-        const int height_col, const int width_col,
-        float *data_im) {
-    int index = blockIdx.x*blockDim.x+threadIdx.x;
-    for(; index < n; index += blockDim.x*gridDim.x){
-        float val = 0;
-        int w = index % width + pad;
-        int h = (index / width) % height + pad;
-        int c = index / (width * height);
-        // compute the start and end of the output
-        int w_col_start = (w < ksize) ? 0 : (w - ksize) / stride + 1;
-        int w_col_end = min(w / stride + 1, width_col);
-        int h_col_start = (h < ksize) ? 0 : (h - ksize) / stride + 1;
-        int h_col_end = min(h / stride + 1, height_col);
-        // equivalent implementation
-        int offset =
-            (c * ksize * ksize + h * ksize + w) * height_col * width_col;
-        int coeff_h_col = (1 - stride * ksize * height_col) * width_col;
-        int coeff_w_col = (1 - stride * height_col * width_col);
-        for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
-            for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
-                val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col];
-            }
-        }
-        data_im[index] += val;
-    }
-}
-
-void col2im_ongpu(float *data_col,
-        int channels, int height, int width,
-        int ksize, int stride, int pad, float *data_im){
-    // We are going to launch channels * height_col * width_col kernels, each
-    // kernel responsible for copying a single-channel grid.
-    int height_col = (height + 2 * pad - ksize) / stride + 1;
-    int width_col = (width + 2 * pad - ksize) / stride + 1;
-    int num_kernels = channels * height * width;
-    col2im_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK,
-        BLOCK, 0, get_cuda_stream() >>>(
-                num_kernels, data_col, height, width, ksize, pad,
-                stride, height_col,
-                width_col, data_im);
-
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-// -----------------------------------------
-
-// CUDA: use 512 threads per block
-const int CAFFE_CUDA_NUM_THREADS = 512;
-
-// CUDA: number of blocks for threads.
-inline int CAFFE_GET_BLOCKS(const int N) {
-    return (N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS;
-}
-
-// CUDA: grid stride looping
-#define CUDA_KERNEL_LOOP(i, n) \
-  for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
-       i < (n); \
-       i += blockDim.x * gridDim.x)
-
-// https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
-__global__ void col2im_gpu_kernel_ext(const int n, const float* data_col,
-    const int height, const int width, const int channels,
-    const int kernel_h, const int kernel_w,
-    const int pad_h, const int pad_w,
-    const int stride_h, const int stride_w,
-    const int dilation_h, const int dilation_w,
-    const int height_col, const int width_col,
-    float* data_im) {
-    CUDA_KERNEL_LOOP(index, n) {
-        float val = 0;
-        const int w_im = index % width + pad_w;
-        const int h_im = (index / width) % height + pad_h;
-        const int c_im = index / (width * height);
-        int kernel_extent_w = (kernel_w - 1) * dilation_w + 1;
-        int kernel_extent_h = (kernel_h - 1) * dilation_h + 1;
-        // compute the start and end of the output
-        const int w_col_start =
-            (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1;
-        const int w_col_end = min(w_im / stride_w + 1, width_col);
-        const int h_col_start =
-            (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1;
-        const int h_col_end = min(h_im / stride_h + 1, height_col);
-        // TODO: use LCM of stride and dilation to avoid unnecessary loops
-        for (int h_col = h_col_start; h_col < h_col_end; h_col += 1) {
-            for (int w_col = w_col_start; w_col < w_col_end; w_col += 1) {
-                int h_k = (h_im - h_col * stride_h);
-                int w_k = (w_im - w_col * stride_w);
-                if (h_k % dilation_h == 0 && w_k % dilation_w == 0) {
-                    h_k /= dilation_h;
-                    w_k /= dilation_w;
-                    int data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) *
-                        height_col + h_col) * width_col + w_col;
-                    val += data_col[data_col_index];
-                }
-            }
-        }
-        data_im[index] = val;
-    }
-}
-
-void col2im_gpu_ext(const float* data_col, const int channels,
-    const int height, const int width, const int kernel_h, const int kernel_w,
-    const int pad_h, const int pad_w, const int stride_h,
-    const int stride_w, const int dilation_h, const int dilation_w,
-    float* data_im)
-{
-    int height_col = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) /
-        stride_h + 1;
-    int width_col = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) /
-        stride_w + 1;
-    int num_kernels = channels * height * width;
-    // To avoid involving atomic operations, we will launch one kernel per
-    // bottom dimension, and then in the kernel add up the top dimensions.
-    // NOLINT_NEXT_LINE(whitespace/operators)
-    col2im_gpu_kernel_ext<< <CAFFE_GET_BLOCKS(num_kernels),
-        CAFFE_CUDA_NUM_THREADS >> >(
-            num_kernels, data_col, height, width, channels, kernel_h, kernel_w,
-            pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
-            height_col, width_col, data_im);
-
-    CHECK_CUDA(cudaPeekAtLastError());
+#include <cuda_runtime.h>
+#include <curand.h>
+#include <cublas_v2.h>
+
+#include "col2im.h"
+#include "dark_cuda.h"
+
+// src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
+// You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE
+
+__global__ void col2im_gpu_kernel(const int n, const float* data_col,
+        const int height, const int width, const int ksize,
+        const int pad,
+        const int stride,
+        const int height_col, const int width_col,
+        float *data_im) {
+    int index = blockIdx.x*blockDim.x+threadIdx.x;
+    for(; index < n; index += blockDim.x*gridDim.x){
+        float val = 0;
+        int w = index % width + pad;
+        int h = (index / width) % height + pad;
+        int c = index / (width * height);
+        // compute the start and end of the output
+        int w_col_start = (w < ksize) ? 0 : (w - ksize) / stride + 1;
+        int w_col_end = min(w / stride + 1, width_col);
+        int h_col_start = (h < ksize) ? 0 : (h - ksize) / stride + 1;
+        int h_col_end = min(h / stride + 1, height_col);
+        // equivalent implementation
+        int offset =
+            (c * ksize * ksize + h * ksize + w) * height_col * width_col;
+        int coeff_h_col = (1 - stride * ksize * height_col) * width_col;
+        int coeff_w_col = (1 - stride * height_col * width_col);
+        for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
+            for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
+                val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col];
+            }
+        }
+        data_im[index] += val;
+    }
+}
+
+void col2im_ongpu(float *data_col,
+        int channels, int height, int width,
+        int ksize, int stride, int pad, float *data_im){
+    // We are going to launch channels * height_col * width_col kernels, each
+    // kernel responsible for copying a single-channel grid.
+    int height_col = (height + 2 * pad - ksize) / stride + 1;
+    int width_col = (width + 2 * pad - ksize) / stride + 1;
+    int num_kernels = channels * height * width;
+    col2im_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK,
+        BLOCK, 0, get_cuda_stream() >>>(
+                num_kernels, data_col, height, width, ksize, pad,
+                stride, height_col,
+                width_col, data_im);
+
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+// -----------------------------------------
+
+// CUDA: use 512 threads per block
+const int CAFFE_CUDA_NUM_THREADS = 512;
+
+// CUDA: number of blocks for threads.
+inline int CAFFE_GET_BLOCKS(const int N) {
+    return (N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS;
+}
+
+// CUDA: grid stride looping
+#define CUDA_KERNEL_LOOP(i, n) \
+  for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
+       i < (n); \
+       i += blockDim.x * gridDim.x)
+
+// https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
+__global__ void col2im_gpu_kernel_ext(const int n, const float* data_col,
+    const int height, const int width, const int channels,
+    const int kernel_h, const int kernel_w,
+    const int pad_h, const int pad_w,
+    const int stride_h, const int stride_w,
+    const int dilation_h, const int dilation_w,
+    const int height_col, const int width_col,
+    float* data_im) {
+    CUDA_KERNEL_LOOP(index, n) {
+        float val = 0;
+        const int w_im = index % width + pad_w;
+        const int h_im = (index / width) % height + pad_h;
+        const int c_im = index / (width * height);
+        int kernel_extent_w = (kernel_w - 1) * dilation_w + 1;
+        int kernel_extent_h = (kernel_h - 1) * dilation_h + 1;
+        // compute the start and end of the output
+        const int w_col_start =
+            (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1;
+        const int w_col_end = min(w_im / stride_w + 1, width_col);
+        const int h_col_start =
+            (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1;
+        const int h_col_end = min(h_im / stride_h + 1, height_col);
+        // TODO: use LCM of stride and dilation to avoid unnecessary loops
+        for (int h_col = h_col_start; h_col < h_col_end; h_col += 1) {
+            for (int w_col = w_col_start; w_col < w_col_end; w_col += 1) {
+                int h_k = (h_im - h_col * stride_h);
+                int w_k = (w_im - w_col * stride_w);
+                if (h_k % dilation_h == 0 && w_k % dilation_w == 0) {
+                    h_k /= dilation_h;
+                    w_k /= dilation_w;
+                    int data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) *
+                        height_col + h_col) * width_col + w_col;
+                    val += data_col[data_col_index];
+                }
+            }
+        }
+        data_im[index] = val;
+    }
+}
+
+void col2im_gpu_ext(const float* data_col, const int channels,
+    const int height, const int width, const int kernel_h, const int kernel_w,
+    const int pad_h, const int pad_w, const int stride_h,
+    const int stride_w, const int dilation_h, const int dilation_w,
+    float* data_im)
+{
+    int height_col = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) /
+        stride_h + 1;
+    int width_col = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) /
+        stride_w + 1;
+    int num_kernels = channels * height * width;
+    // To avoid involving atomic operations, we will launch one kernel per
+    // bottom dimension, and then in the kernel add up the top dimensions.
+    // NOLINT_NEXT_LINE(whitespace/operators)
+    col2im_gpu_kernel_ext<< <CAFFE_GET_BLOCKS(num_kernels),
+        CAFFE_CUDA_NUM_THREADS >> >(
+            num_kernels, data_col, height, width, channels, kernel_h, kernel_w,
+            pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
+            height_col, width_col, data_im);
+
+    CHECK_CUDA(cudaPeekAtLastError());
 }
\ No newline at end of file

--
Gitblit v1.8.0