From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/col2im_kernels.cu | 270 +++++++++++++++++++++++++++--------------------------- 1 files changed, 135 insertions(+), 135 deletions(-) diff --git a/lib/detecter_tools/darknet/col2im_kernels.cu b/lib/detecter_tools/darknet/col2im_kernels.cu index 5051e21..0e07bc3 100644 --- a/lib/detecter_tools/darknet/col2im_kernels.cu +++ b/lib/detecter_tools/darknet/col2im_kernels.cu @@ -1,136 +1,136 @@ -#include <cuda_runtime.h> -#include <curand.h> -#include <cublas_v2.h> - -#include "col2im.h" -#include "dark_cuda.h" - -// src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu -// You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE - -__global__ void col2im_gpu_kernel(const int n, const float* data_col, - const int height, const int width, const int ksize, - const int pad, - const int stride, - const int height_col, const int width_col, - float *data_im) { - int index = blockIdx.x*blockDim.x+threadIdx.x; - for(; index < n; index += blockDim.x*gridDim.x){ - float val = 0; - int w = index % width + pad; - int h = (index / width) % height + pad; - int c = index / (width * height); - // compute the start and end of the output - int w_col_start = (w < ksize) ? 0 : (w - ksize) / stride + 1; - int w_col_end = min(w / stride + 1, width_col); - int h_col_start = (h < ksize) ? 0 : (h - ksize) / stride + 1; - int h_col_end = min(h / stride + 1, height_col); - // equivalent implementation - int offset = - (c * ksize * ksize + h * ksize + w) * height_col * width_col; - int coeff_h_col = (1 - stride * ksize * height_col) * width_col; - int coeff_w_col = (1 - stride * height_col * width_col); - for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { - for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { - val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col]; - } - } - data_im[index] += val; - } -} - -void col2im_ongpu(float *data_col, - int channels, int height, int width, - int ksize, int stride, int pad, float *data_im){ - // We are going to launch channels * height_col * width_col kernels, each - // kernel responsible for copying a single-channel grid. - int height_col = (height + 2 * pad - ksize) / stride + 1; - int width_col = (width + 2 * pad - ksize) / stride + 1; - int num_kernels = channels * height * width; - col2im_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK, - BLOCK, 0, get_cuda_stream() >>>( - num_kernels, data_col, height, width, ksize, pad, - stride, height_col, - width_col, data_im); - - CHECK_CUDA(cudaPeekAtLastError()); -} -// ----------------------------------------- - -// CUDA: use 512 threads per block -const int CAFFE_CUDA_NUM_THREADS = 512; - -// CUDA: number of blocks for threads. -inline int CAFFE_GET_BLOCKS(const int N) { - return (N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS; -} - -// CUDA: grid stride looping -#define CUDA_KERNEL_LOOP(i, n) \ - for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ - i < (n); \ - i += blockDim.x * gridDim.x) - -// https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu -__global__ void col2im_gpu_kernel_ext(const int n, const float* data_col, - const int height, const int width, const int channels, - const int kernel_h, const int kernel_w, - const int pad_h, const int pad_w, - const int stride_h, const int stride_w, - const int dilation_h, const int dilation_w, - const int height_col, const int width_col, - float* data_im) { - CUDA_KERNEL_LOOP(index, n) { - float val = 0; - const int w_im = index % width + pad_w; - const int h_im = (index / width) % height + pad_h; - const int c_im = index / (width * height); - int kernel_extent_w = (kernel_w - 1) * dilation_w + 1; - int kernel_extent_h = (kernel_h - 1) * dilation_h + 1; - // compute the start and end of the output - const int w_col_start = - (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1; - const int w_col_end = min(w_im / stride_w + 1, width_col); - const int h_col_start = - (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1; - const int h_col_end = min(h_im / stride_h + 1, height_col); - // TODO: use LCM of stride and dilation to avoid unnecessary loops - for (int h_col = h_col_start; h_col < h_col_end; h_col += 1) { - for (int w_col = w_col_start; w_col < w_col_end; w_col += 1) { - int h_k = (h_im - h_col * stride_h); - int w_k = (w_im - w_col * stride_w); - if (h_k % dilation_h == 0 && w_k % dilation_w == 0) { - h_k /= dilation_h; - w_k /= dilation_w; - int data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) * - height_col + h_col) * width_col + w_col; - val += data_col[data_col_index]; - } - } - } - data_im[index] = val; - } -} - -void col2im_gpu_ext(const float* data_col, const int channels, - const int height, const int width, const int kernel_h, const int kernel_w, - const int pad_h, const int pad_w, const int stride_h, - const int stride_w, const int dilation_h, const int dilation_w, - float* data_im) -{ - int height_col = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / - stride_h + 1; - int width_col = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / - stride_w + 1; - int num_kernels = channels * height * width; - // To avoid involving atomic operations, we will launch one kernel per - // bottom dimension, and then in the kernel add up the top dimensions. - // NOLINT_NEXT_LINE(whitespace/operators) - col2im_gpu_kernel_ext<< <CAFFE_GET_BLOCKS(num_kernels), - CAFFE_CUDA_NUM_THREADS >> >( - num_kernels, data_col, height, width, channels, kernel_h, kernel_w, - pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, - height_col, width_col, data_im); - - CHECK_CUDA(cudaPeekAtLastError()); +#include <cuda_runtime.h> +#include <curand.h> +#include <cublas_v2.h> + +#include "col2im.h" +#include "dark_cuda.h" + +// src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu +// You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE + +__global__ void col2im_gpu_kernel(const int n, const float* data_col, + const int height, const int width, const int ksize, + const int pad, + const int stride, + const int height_col, const int width_col, + float *data_im) { + int index = blockIdx.x*blockDim.x+threadIdx.x; + for(; index < n; index += blockDim.x*gridDim.x){ + float val = 0; + int w = index % width + pad; + int h = (index / width) % height + pad; + int c = index / (width * height); + // compute the start and end of the output + int w_col_start = (w < ksize) ? 0 : (w - ksize) / stride + 1; + int w_col_end = min(w / stride + 1, width_col); + int h_col_start = (h < ksize) ? 0 : (h - ksize) / stride + 1; + int h_col_end = min(h / stride + 1, height_col); + // equivalent implementation + int offset = + (c * ksize * ksize + h * ksize + w) * height_col * width_col; + int coeff_h_col = (1 - stride * ksize * height_col) * width_col; + int coeff_w_col = (1 - stride * height_col * width_col); + for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { + for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { + val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col]; + } + } + data_im[index] += val; + } +} + +void col2im_ongpu(float *data_col, + int channels, int height, int width, + int ksize, int stride, int pad, float *data_im){ + // We are going to launch channels * height_col * width_col kernels, each + // kernel responsible for copying a single-channel grid. + int height_col = (height + 2 * pad - ksize) / stride + 1; + int width_col = (width + 2 * pad - ksize) / stride + 1; + int num_kernels = channels * height * width; + col2im_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK, + BLOCK, 0, get_cuda_stream() >>>( + num_kernels, data_col, height, width, ksize, pad, + stride, height_col, + width_col, data_im); + + CHECK_CUDA(cudaPeekAtLastError()); +} +// ----------------------------------------- + +// CUDA: use 512 threads per block +const int CAFFE_CUDA_NUM_THREADS = 512; + +// CUDA: number of blocks for threads. +inline int CAFFE_GET_BLOCKS(const int N) { + return (N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS; +} + +// CUDA: grid stride looping +#define CUDA_KERNEL_LOOP(i, n) \ + for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ + i < (n); \ + i += blockDim.x * gridDim.x) + +// https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu +__global__ void col2im_gpu_kernel_ext(const int n, const float* data_col, + const int height, const int width, const int channels, + const int kernel_h, const int kernel_w, + const int pad_h, const int pad_w, + const int stride_h, const int stride_w, + const int dilation_h, const int dilation_w, + const int height_col, const int width_col, + float* data_im) { + CUDA_KERNEL_LOOP(index, n) { + float val = 0; + const int w_im = index % width + pad_w; + const int h_im = (index / width) % height + pad_h; + const int c_im = index / (width * height); + int kernel_extent_w = (kernel_w - 1) * dilation_w + 1; + int kernel_extent_h = (kernel_h - 1) * dilation_h + 1; + // compute the start and end of the output + const int w_col_start = + (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1; + const int w_col_end = min(w_im / stride_w + 1, width_col); + const int h_col_start = + (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1; + const int h_col_end = min(h_im / stride_h + 1, height_col); + // TODO: use LCM of stride and dilation to avoid unnecessary loops + for (int h_col = h_col_start; h_col < h_col_end; h_col += 1) { + for (int w_col = w_col_start; w_col < w_col_end; w_col += 1) { + int h_k = (h_im - h_col * stride_h); + int w_k = (w_im - w_col * stride_w); + if (h_k % dilation_h == 0 && w_k % dilation_w == 0) { + h_k /= dilation_h; + w_k /= dilation_w; + int data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) * + height_col + h_col) * width_col + w_col; + val += data_col[data_col_index]; + } + } + } + data_im[index] = val; + } +} + +void col2im_gpu_ext(const float* data_col, const int channels, + const int height, const int width, const int kernel_h, const int kernel_w, + const int pad_h, const int pad_w, const int stride_h, + const int stride_w, const int dilation_h, const int dilation_w, + float* data_im) +{ + int height_col = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / + stride_h + 1; + int width_col = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / + stride_w + 1; + int num_kernels = channels * height * width; + // To avoid involving atomic operations, we will launch one kernel per + // bottom dimension, and then in the kernel add up the top dimensions. + // NOLINT_NEXT_LINE(whitespace/operators) + col2im_gpu_kernel_ext<< <CAFFE_GET_BLOCKS(num_kernels), + CAFFE_CUDA_NUM_THREADS >> >( + num_kernels, data_col, height, width, channels, kernel_h, kernel_w, + pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, + height_col, width_col, data_im); + + CHECK_CUDA(cudaPeekAtLastError()); } \ No newline at end of file -- Gitblit v1.8.0