From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/cost_layer.c |  296 +++++++++++++++++++++++++++++-----------------------------
 1 files changed, 148 insertions(+), 148 deletions(-)

diff --git a/lib/detecter_tools/darknet/cost_layer.c b/lib/detecter_tools/darknet/cost_layer.c
index dcddb88..ed1cc13 100644
--- a/lib/detecter_tools/darknet/cost_layer.c
+++ b/lib/detecter_tools/darknet/cost_layer.c
@@ -1,148 +1,148 @@
-#include "cost_layer.h"
-#include "utils.h"
-#include "dark_cuda.h"
-#include "blas.h"
-#include <math.h>
-#include <string.h>
-#include <stdlib.h>
-#include <stdio.h>
-
-COST_TYPE get_cost_type(char *s)
-{
-    if (strcmp(s, "sse")==0) return SSE;
-    if (strcmp(s, "masked")==0) return MASKED;
-    if (strcmp(s, "smooth")==0) return SMOOTH;
-    fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s);
-    return SSE;
-}
-
-char *get_cost_string(COST_TYPE a)
-{
-    switch(a){
-        case SSE:
-            return "sse";
-        case MASKED:
-            return "masked";
-        case SMOOTH:
-            return "smooth";
-		default:
-			return "sse";
-    }
-}
-
-cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale)
-{
-    fprintf(stderr, "cost                                           %4d\n",  inputs);
-    cost_layer l = { (LAYER_TYPE)0 };
-    l.type = COST;
-
-    l.scale = scale;
-    l.batch = batch;
-    l.inputs = inputs;
-    l.outputs = inputs;
-    l.cost_type = cost_type;
-    l.delta = (float*)xcalloc(inputs * batch, sizeof(float));
-    l.output = (float*)xcalloc(inputs * batch, sizeof(float));
-    l.cost = (float*)xcalloc(1, sizeof(float));
-
-    l.forward = forward_cost_layer;
-    l.backward = backward_cost_layer;
-    #ifdef GPU
-    l.forward_gpu = forward_cost_layer_gpu;
-    l.backward_gpu = backward_cost_layer_gpu;
-
-    l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
-    l.output_gpu = cuda_make_array(l.output, inputs*batch);
-    #endif
-    return l;
-}
-
-void resize_cost_layer(cost_layer *l, int inputs)
-{
-    l->inputs = inputs;
-    l->outputs = inputs;
-    l->delta = (float*)xrealloc(l->delta, inputs * l->batch * sizeof(float));
-    l->output = (float*)xrealloc(l->output, inputs * l->batch * sizeof(float));
-#ifdef GPU
-    cuda_free(l->delta_gpu);
-    cuda_free(l->output_gpu);
-    l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch);
-    l->output_gpu = cuda_make_array(l->output, inputs*l->batch);
-#endif
-}
-
-void forward_cost_layer(cost_layer l, network_state state)
-{
-    if (!state.truth) return;
-    if(l.cost_type == MASKED){
-        int i;
-        for(i = 0; i < l.batch*l.inputs; ++i){
-            if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM;
-        }
-    }
-    if(l.cost_type == SMOOTH){
-        smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output);
-    } else {
-        l2_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output);
-    }
-    l.cost[0] = sum_array(l.output, l.batch*l.inputs);
-}
-
-void backward_cost_layer(const cost_layer l, network_state state)
-{
-    axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, state.delta, 1);
-}
-
-#ifdef GPU
-
-void pull_cost_layer(cost_layer l)
-{
-    cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
-}
-
-void push_cost_layer(cost_layer l)
-{
-    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
-}
-
-int float_abs_compare (const void * a, const void * b)
-{
-    float fa = *(const float*) a;
-    if(fa < 0) fa = -fa;
-    float fb = *(const float*) b;
-    if(fb < 0) fb = -fb;
-    return (fa > fb) - (fa < fb);
-}
-
-void forward_cost_layer_gpu(cost_layer l, network_state state)
-{
-    if (!state.truth) return;
-    if (l.cost_type == MASKED) {
-        mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth);
-    }
-
-    if(l.cost_type == SMOOTH){
-        smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu);
-    } else {
-        l2_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu);
-    }
-
-    if(l.ratio){
-        cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
-        qsort(l.delta, l.batch*l.inputs, sizeof(float), float_abs_compare);
-        int n = (1-l.ratio) * l.batch*l.inputs;
-        float thresh = l.delta[n];
-        thresh = 0;
-        printf("%f\n", thresh);
-        supp_ongpu(l.batch*l.inputs, thresh, l.delta_gpu, 1);
-    }
-
-    cuda_pull_array(l.output_gpu, l.output, l.batch*l.inputs);
-    l.cost[0] = sum_array(l.output, l.batch*l.inputs);
-}
-
-void backward_cost_layer_gpu(const cost_layer l, network_state state)
-{
-    axpy_ongpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, state.delta, 1);
-}
-#endif
+#include "cost_layer.h"
+#include "utils.h"
+#include "dark_cuda.h"
+#include "blas.h"
+#include <math.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+COST_TYPE get_cost_type(char *s)
+{
+    if (strcmp(s, "sse")==0) return SSE;
+    if (strcmp(s, "masked")==0) return MASKED;
+    if (strcmp(s, "smooth")==0) return SMOOTH;
+    fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s);
+    return SSE;
+}
+
+char *get_cost_string(COST_TYPE a)
+{
+    switch(a){
+        case SSE:
+            return "sse";
+        case MASKED:
+            return "masked";
+        case SMOOTH:
+            return "smooth";
+		default:
+			return "sse";
+    }
+}
+
+cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale)
+{
+    fprintf(stderr, "cost                                           %4d\n",  inputs);
+    cost_layer l = { (LAYER_TYPE)0 };
+    l.type = COST;
+
+    l.scale = scale;
+    l.batch = batch;
+    l.inputs = inputs;
+    l.outputs = inputs;
+    l.cost_type = cost_type;
+    l.delta = (float*)xcalloc(inputs * batch, sizeof(float));
+    l.output = (float*)xcalloc(inputs * batch, sizeof(float));
+    l.cost = (float*)xcalloc(1, sizeof(float));
+
+    l.forward = forward_cost_layer;
+    l.backward = backward_cost_layer;
+    #ifdef GPU
+    l.forward_gpu = forward_cost_layer_gpu;
+    l.backward_gpu = backward_cost_layer_gpu;
+
+    l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
+    l.output_gpu = cuda_make_array(l.output, inputs*batch);
+    #endif
+    return l;
+}
+
+void resize_cost_layer(cost_layer *l, int inputs)
+{
+    l->inputs = inputs;
+    l->outputs = inputs;
+    l->delta = (float*)xrealloc(l->delta, inputs * l->batch * sizeof(float));
+    l->output = (float*)xrealloc(l->output, inputs * l->batch * sizeof(float));
+#ifdef GPU
+    cuda_free(l->delta_gpu);
+    cuda_free(l->output_gpu);
+    l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch);
+    l->output_gpu = cuda_make_array(l->output, inputs*l->batch);
+#endif
+}
+
+void forward_cost_layer(cost_layer l, network_state state)
+{
+    if (!state.truth) return;
+    if(l.cost_type == MASKED){
+        int i;
+        for(i = 0; i < l.batch*l.inputs; ++i){
+            if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM;
+        }
+    }
+    if(l.cost_type == SMOOTH){
+        smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output);
+    } else {
+        l2_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output);
+    }
+    l.cost[0] = sum_array(l.output, l.batch*l.inputs);
+}
+
+void backward_cost_layer(const cost_layer l, network_state state)
+{
+    axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, state.delta, 1);
+}
+
+#ifdef GPU
+
+void pull_cost_layer(cost_layer l)
+{
+    cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
+}
+
+void push_cost_layer(cost_layer l)
+{
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
+}
+
+int float_abs_compare (const void * a, const void * b)
+{
+    float fa = *(const float*) a;
+    if(fa < 0) fa = -fa;
+    float fb = *(const float*) b;
+    if(fb < 0) fb = -fb;
+    return (fa > fb) - (fa < fb);
+}
+
+void forward_cost_layer_gpu(cost_layer l, network_state state)
+{
+    if (!state.truth) return;
+    if (l.cost_type == MASKED) {
+        mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth);
+    }
+
+    if(l.cost_type == SMOOTH){
+        smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu);
+    } else {
+        l2_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu);
+    }
+
+    if(l.ratio){
+        cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
+        qsort(l.delta, l.batch*l.inputs, sizeof(float), float_abs_compare);
+        int n = (1-l.ratio) * l.batch*l.inputs;
+        float thresh = l.delta[n];
+        thresh = 0;
+        printf("%f\n", thresh);
+        supp_ongpu(l.batch*l.inputs, thresh, l.delta_gpu, 1);
+    }
+
+    cuda_pull_array(l.output_gpu, l.output, l.batch*l.inputs);
+    l.cost[0] = sum_array(l.output, l.batch*l.inputs);
+}
+
+void backward_cost_layer_gpu(const cost_layer l, network_state state)
+{
+    axpy_ongpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, state.delta, 1);
+}
+#endif

--
Gitblit v1.8.0