From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/crnn_layer.c | 766 +++++++++++++++++++++++++++++----------------------------- 1 files changed, 383 insertions(+), 383 deletions(-) diff --git a/lib/detecter_tools/darknet/crnn_layer.c b/lib/detecter_tools/darknet/crnn_layer.c index 1691a5f..84646b4 100644 --- a/lib/detecter_tools/darknet/crnn_layer.c +++ b/lib/detecter_tools/darknet/crnn_layer.c @@ -1,383 +1,383 @@ -#include "crnn_layer.h" -#include "convolutional_layer.h" -#include "utils.h" -#include "dark_cuda.h" -#include "blas.h" -#include "gemm.h" - -#include <math.h> -#include <stdio.h> -#include <stdlib.h> -#include <string.h> - -static void increment_layer(layer *l, int steps) -{ - int num = l->outputs*l->batch*steps; - l->output += num; - l->delta += num; - l->x += num; - l->x_norm += num; - -#ifdef GPU - l->output_gpu += num; - l->delta_gpu += num; - l->x_gpu += num; - l->x_norm_gpu += num; -#endif -} - -layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int output_filters, int groups, int steps, int size, int stride, int dilation, int pad, ACTIVATION activation, int batch_normalize, int xnor, int train) -{ - fprintf(stderr, "CRNN Layer: %d x %d x %d image, %d filters\n", h,w,c,output_filters); - batch = batch / steps; - layer l = { (LAYER_TYPE)0 }; - l.train = train; - l.batch = batch; - l.type = CRNN; - l.steps = steps; - l.size = size; - l.stride = stride; - l.dilation = dilation; - l.pad = pad; - l.h = h; - l.w = w; - l.c = c; - l.groups = groups; - l.out_c = output_filters; - l.inputs = h * w * c; - l.hidden = h * w * hidden_filters; - l.xnor = xnor; - - l.state = (float*)xcalloc(l.hidden * l.batch * (l.steps + 1), sizeof(float)); - - l.input_layer = (layer*)xcalloc(1, sizeof(layer)); - *(l.input_layer) = make_convolutional_layer(batch, steps, h, w, c, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); - l.input_layer->batch = batch; - if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size; - - l.self_layer = (layer*)xcalloc(1, sizeof(layer)); - *(l.self_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); - l.self_layer->batch = batch; - if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size; - - l.output_layer = (layer*)xcalloc(1, sizeof(layer)); - *(l.output_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); - l.output_layer->batch = batch; - if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size; - - l.out_h = l.output_layer->out_h; - l.out_w = l.output_layer->out_w; - l.outputs = l.output_layer->outputs; - - assert(l.input_layer->outputs == l.self_layer->outputs); - assert(l.input_layer->outputs == l.output_layer->inputs); - - l.output = l.output_layer->output; - l.delta = l.output_layer->delta; - - l.forward = forward_crnn_layer; - l.backward = backward_crnn_layer; - l.update = update_crnn_layer; - -#ifdef GPU - l.forward_gpu = forward_crnn_layer_gpu; - l.backward_gpu = backward_crnn_layer_gpu; - l.update_gpu = update_crnn_layer_gpu; - l.state_gpu = cuda_make_array(l.state, l.batch*l.hidden*(l.steps + 1)); - l.output_gpu = l.output_layer->output_gpu; - l.delta_gpu = l.output_layer->delta_gpu; -#endif - - l.bflops = l.input_layer->bflops + l.self_layer->bflops + l.output_layer->bflops; - - return l; -} - -void resize_crnn_layer(layer *l, int w, int h) -{ - resize_convolutional_layer(l->input_layer, w, h); - if (l->workspace_size < l->input_layer->workspace_size) l->workspace_size = l->input_layer->workspace_size; - - resize_convolutional_layer(l->self_layer, w, h); - if (l->workspace_size < l->self_layer->workspace_size) l->workspace_size = l->self_layer->workspace_size; - - resize_convolutional_layer(l->output_layer, w, h); - if (l->workspace_size < l->output_layer->workspace_size) l->workspace_size = l->output_layer->workspace_size; - - l->output = l->output_layer->output; - l->delta = l->output_layer->delta; - - int hidden_filters = l->self_layer->c; - l->w = w; - l->h = h; - l->inputs = h * w * l->c; - l->hidden = h * w * hidden_filters; - - l->out_h = l->output_layer->out_h; - l->out_w = l->output_layer->out_w; - l->outputs = l->output_layer->outputs; - - assert(l->input_layer->inputs == l->inputs); - assert(l->self_layer->inputs == l->hidden); - assert(l->input_layer->outputs == l->self_layer->outputs); - assert(l->input_layer->outputs == l->output_layer->inputs); - - l->state = (float*)xrealloc(l->state, l->batch*l->hidden*(l->steps + 1)*sizeof(float)); - -#ifdef GPU - if (l->state_gpu) cudaFree(l->state_gpu); - l->state_gpu = cuda_make_array(l->state, l->batch*l->hidden*(l->steps + 1)); - - l->output_gpu = l->output_layer->output_gpu; - l->delta_gpu = l->output_layer->delta_gpu; -#endif -} - -void free_state_crnn(layer l) -{ - int i; - for (i = 0; i < l.outputs * l.batch; ++i) l.self_layer->output[i] = rand_uniform(-1, 1); - -#ifdef GPU - cuda_push_array(l.self_layer->output_gpu, l.self_layer->output, l.outputs * l.batch); -#endif // GPU -} - -void update_crnn_layer(layer l, int batch, float learning_rate, float momentum, float decay) -{ - update_convolutional_layer(*(l.input_layer), batch, learning_rate, momentum, decay); - update_convolutional_layer(*(l.self_layer), batch, learning_rate, momentum, decay); - update_convolutional_layer(*(l.output_layer), batch, learning_rate, momentum, decay); -} - -void forward_crnn_layer(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - s.net = state.net; - //s.index = state.index; - int i; - layer input_layer = *(l.input_layer); - layer self_layer = *(l.self_layer); - layer output_layer = *(l.output_layer); - - if (state.train) { - fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1); - fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1); - fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1); - fill_cpu(l.hidden * l.batch, 0, l.state, 1); - } - - for (i = 0; i < l.steps; ++i) { - s.input = state.input; - forward_convolutional_layer(input_layer, s); - - s.input = l.state; - forward_convolutional_layer(self_layer, s); - - float *old_state = l.state; - if(state.train) l.state += l.hidden*l.batch; - if(l.shortcut){ - copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1); - }else{ - fill_cpu(l.hidden * l.batch, 0, l.state, 1); - } - axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1); - axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); - - s.input = l.state; - forward_convolutional_layer(output_layer, s); - - state.input += l.inputs*l.batch; - increment_layer(&input_layer, 1); - increment_layer(&self_layer, 1); - increment_layer(&output_layer, 1); - } -} - -void backward_crnn_layer(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - s.net = state.net; - //s.index = state.index; - int i; - layer input_layer = *(l.input_layer); - layer self_layer = *(l.self_layer); - layer output_layer = *(l.output_layer); - - increment_layer(&input_layer, l.steps-1); - increment_layer(&self_layer, l.steps-1); - increment_layer(&output_layer, l.steps-1); - - l.state += l.hidden*l.batch*l.steps; - for (i = l.steps-1; i >= 0; --i) { - copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1); - axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); - - s.input = l.state; - s.delta = self_layer.delta; - backward_convolutional_layer(output_layer, s); - - l.state -= l.hidden*l.batch; - /* - if(i > 0){ - copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1); - axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1); - }else{ - fill_cpu(l.hidden * l.batch, 0, l.state, 1); - } - */ - - s.input = l.state; - s.delta = self_layer.delta - l.hidden*l.batch; - if (i == 0) s.delta = 0; - backward_convolutional_layer(self_layer, s); - - copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1); - if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1); - s.input = state.input + i*l.inputs*l.batch; - if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; - else s.delta = 0; - backward_convolutional_layer(input_layer, s); - - increment_layer(&input_layer, -1); - increment_layer(&self_layer, -1); - increment_layer(&output_layer, -1); - } -} - -#ifdef GPU - -void pull_crnn_layer(layer l) -{ - pull_convolutional_layer(*(l.input_layer)); - pull_convolutional_layer(*(l.self_layer)); - pull_convolutional_layer(*(l.output_layer)); -} - -void push_crnn_layer(layer l) -{ - push_convolutional_layer(*(l.input_layer)); - push_convolutional_layer(*(l.self_layer)); - push_convolutional_layer(*(l.output_layer)); -} - -void update_crnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) -{ - update_convolutional_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale); - update_convolutional_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale); - update_convolutional_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale); -} - -void forward_crnn_layer_gpu(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - s.net = state.net; - if(!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() ) - int i; - layer input_layer = *(l.input_layer); - layer self_layer = *(l.self_layer); - layer output_layer = *(l.output_layer); - -/* -#ifdef CUDNN_HALF // slow and bad for training - if (!state.train && state.net.cudnn_half) { - s.index = state.index; - cuda_convert_f32_to_f16(input_layer.weights_gpu, input_layer.c*input_layer.n*input_layer.size*input_layer.size, input_layer.weights_gpu16); - cuda_convert_f32_to_f16(self_layer.weights_gpu, self_layer.c*self_layer.n*self_layer.size*self_layer.size, self_layer.weights_gpu16); - cuda_convert_f32_to_f16(output_layer.weights_gpu, output_layer.c*output_layer.n*output_layer.size*output_layer.size, output_layer.weights_gpu16); - } -#endif //CUDNN_HALF -*/ - - if (state.train) { - fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1); - fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1); - fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1); - fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); - } - - for (i = 0; i < l.steps; ++i) { - s.input = state.input; - forward_convolutional_layer_gpu(input_layer, s); - - s.input = l.state_gpu; - forward_convolutional_layer_gpu(self_layer, s); - - float *old_state = l.state_gpu; - if(state.train) l.state_gpu += l.hidden*l.batch; - if(l.shortcut){ - copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1); - }else{ - fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); - } - axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1); - axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); - - s.input = l.state_gpu; - forward_convolutional_layer_gpu(output_layer, s); - - state.input += l.inputs*l.batch; - increment_layer(&input_layer, 1); - increment_layer(&self_layer, 1); - increment_layer(&output_layer, 1); - } -} - -void backward_crnn_layer_gpu(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - s.net = state.net; - //s.index = state.index; - int i; - layer input_layer = *(l.input_layer); - layer self_layer = *(l.self_layer); - layer output_layer = *(l.output_layer); - increment_layer(&input_layer, l.steps - 1); - increment_layer(&self_layer, l.steps - 1); - increment_layer(&output_layer, l.steps - 1); - float *init_state_gpu = l.state_gpu; - l.state_gpu += l.hidden*l.batch*l.steps; - for (i = l.steps-1; i >= 0; --i) { - //copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1); // commented in RNN - //axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); // commented in RNN - - s.input = l.state_gpu; - s.delta = self_layer.delta_gpu; - backward_convolutional_layer_gpu(output_layer, s); - - l.state_gpu -= l.hidden*l.batch; - - copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); - - s.input = l.state_gpu; - s.delta = self_layer.delta_gpu - l.hidden*l.batch; - if (i == 0) s.delta = 0; - backward_convolutional_layer_gpu(self_layer, s); - - if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1); - s.input = state.input + i*l.inputs*l.batch; - if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; - else s.delta = 0; - backward_convolutional_layer_gpu(input_layer, s); - - if (state.net.try_fix_nan) { - fix_nan_and_inf(output_layer.delta_gpu, output_layer.inputs * output_layer.batch); - fix_nan_and_inf(self_layer.delta_gpu, self_layer.inputs * self_layer.batch); - fix_nan_and_inf(input_layer.delta_gpu, input_layer.inputs * input_layer.batch); - } - - increment_layer(&input_layer, -1); - increment_layer(&self_layer, -1); - increment_layer(&output_layer, -1); - } - fill_ongpu(l.hidden * l.batch, 0, init_state_gpu, 1); //clean l.state_gpu -} -#endif +#include "crnn_layer.h" +#include "convolutional_layer.h" +#include "utils.h" +#include "dark_cuda.h" +#include "blas.h" +#include "gemm.h" + +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +static void increment_layer(layer *l, int steps) +{ + int num = l->outputs*l->batch*steps; + l->output += num; + l->delta += num; + l->x += num; + l->x_norm += num; + +#ifdef GPU + l->output_gpu += num; + l->delta_gpu += num; + l->x_gpu += num; + l->x_norm_gpu += num; +#endif +} + +layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int output_filters, int groups, int steps, int size, int stride, int dilation, int pad, ACTIVATION activation, int batch_normalize, int xnor, int train) +{ + fprintf(stderr, "CRNN Layer: %d x %d x %d image, %d filters\n", h,w,c,output_filters); + batch = batch / steps; + layer l = { (LAYER_TYPE)0 }; + l.train = train; + l.batch = batch; + l.type = CRNN; + l.steps = steps; + l.size = size; + l.stride = stride; + l.dilation = dilation; + l.pad = pad; + l.h = h; + l.w = w; + l.c = c; + l.groups = groups; + l.out_c = output_filters; + l.inputs = h * w * c; + l.hidden = h * w * hidden_filters; + l.xnor = xnor; + + l.state = (float*)xcalloc(l.hidden * l.batch * (l.steps + 1), sizeof(float)); + + l.input_layer = (layer*)xcalloc(1, sizeof(layer)); + *(l.input_layer) = make_convolutional_layer(batch, steps, h, w, c, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); + l.input_layer->batch = batch; + if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size; + + l.self_layer = (layer*)xcalloc(1, sizeof(layer)); + *(l.self_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); + l.self_layer->batch = batch; + if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size; + + l.output_layer = (layer*)xcalloc(1, sizeof(layer)); + *(l.output_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); + l.output_layer->batch = batch; + if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size; + + l.out_h = l.output_layer->out_h; + l.out_w = l.output_layer->out_w; + l.outputs = l.output_layer->outputs; + + assert(l.input_layer->outputs == l.self_layer->outputs); + assert(l.input_layer->outputs == l.output_layer->inputs); + + l.output = l.output_layer->output; + l.delta = l.output_layer->delta; + + l.forward = forward_crnn_layer; + l.backward = backward_crnn_layer; + l.update = update_crnn_layer; + +#ifdef GPU + l.forward_gpu = forward_crnn_layer_gpu; + l.backward_gpu = backward_crnn_layer_gpu; + l.update_gpu = update_crnn_layer_gpu; + l.state_gpu = cuda_make_array(l.state, l.batch*l.hidden*(l.steps + 1)); + l.output_gpu = l.output_layer->output_gpu; + l.delta_gpu = l.output_layer->delta_gpu; +#endif + + l.bflops = l.input_layer->bflops + l.self_layer->bflops + l.output_layer->bflops; + + return l; +} + +void resize_crnn_layer(layer *l, int w, int h) +{ + resize_convolutional_layer(l->input_layer, w, h); + if (l->workspace_size < l->input_layer->workspace_size) l->workspace_size = l->input_layer->workspace_size; + + resize_convolutional_layer(l->self_layer, w, h); + if (l->workspace_size < l->self_layer->workspace_size) l->workspace_size = l->self_layer->workspace_size; + + resize_convolutional_layer(l->output_layer, w, h); + if (l->workspace_size < l->output_layer->workspace_size) l->workspace_size = l->output_layer->workspace_size; + + l->output = l->output_layer->output; + l->delta = l->output_layer->delta; + + int hidden_filters = l->self_layer->c; + l->w = w; + l->h = h; + l->inputs = h * w * l->c; + l->hidden = h * w * hidden_filters; + + l->out_h = l->output_layer->out_h; + l->out_w = l->output_layer->out_w; + l->outputs = l->output_layer->outputs; + + assert(l->input_layer->inputs == l->inputs); + assert(l->self_layer->inputs == l->hidden); + assert(l->input_layer->outputs == l->self_layer->outputs); + assert(l->input_layer->outputs == l->output_layer->inputs); + + l->state = (float*)xrealloc(l->state, l->batch*l->hidden*(l->steps + 1)*sizeof(float)); + +#ifdef GPU + if (l->state_gpu) cudaFree(l->state_gpu); + l->state_gpu = cuda_make_array(l->state, l->batch*l->hidden*(l->steps + 1)); + + l->output_gpu = l->output_layer->output_gpu; + l->delta_gpu = l->output_layer->delta_gpu; +#endif +} + +void free_state_crnn(layer l) +{ + int i; + for (i = 0; i < l.outputs * l.batch; ++i) l.self_layer->output[i] = rand_uniform(-1, 1); + +#ifdef GPU + cuda_push_array(l.self_layer->output_gpu, l.self_layer->output, l.outputs * l.batch); +#endif // GPU +} + +void update_crnn_layer(layer l, int batch, float learning_rate, float momentum, float decay) +{ + update_convolutional_layer(*(l.input_layer), batch, learning_rate, momentum, decay); + update_convolutional_layer(*(l.self_layer), batch, learning_rate, momentum, decay); + update_convolutional_layer(*(l.output_layer), batch, learning_rate, momentum, decay); +} + +void forward_crnn_layer(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + s.net = state.net; + //s.index = state.index; + int i; + layer input_layer = *(l.input_layer); + layer self_layer = *(l.self_layer); + layer output_layer = *(l.output_layer); + + if (state.train) { + fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1); + fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1); + fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1); + fill_cpu(l.hidden * l.batch, 0, l.state, 1); + } + + for (i = 0; i < l.steps; ++i) { + s.input = state.input; + forward_convolutional_layer(input_layer, s); + + s.input = l.state; + forward_convolutional_layer(self_layer, s); + + float *old_state = l.state; + if(state.train) l.state += l.hidden*l.batch; + if(l.shortcut){ + copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1); + }else{ + fill_cpu(l.hidden * l.batch, 0, l.state, 1); + } + axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1); + axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); + + s.input = l.state; + forward_convolutional_layer(output_layer, s); + + state.input += l.inputs*l.batch; + increment_layer(&input_layer, 1); + increment_layer(&self_layer, 1); + increment_layer(&output_layer, 1); + } +} + +void backward_crnn_layer(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + s.net = state.net; + //s.index = state.index; + int i; + layer input_layer = *(l.input_layer); + layer self_layer = *(l.self_layer); + layer output_layer = *(l.output_layer); + + increment_layer(&input_layer, l.steps-1); + increment_layer(&self_layer, l.steps-1); + increment_layer(&output_layer, l.steps-1); + + l.state += l.hidden*l.batch*l.steps; + for (i = l.steps-1; i >= 0; --i) { + copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1); + axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); + + s.input = l.state; + s.delta = self_layer.delta; + backward_convolutional_layer(output_layer, s); + + l.state -= l.hidden*l.batch; + /* + if(i > 0){ + copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1); + axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1); + }else{ + fill_cpu(l.hidden * l.batch, 0, l.state, 1); + } + */ + + s.input = l.state; + s.delta = self_layer.delta - l.hidden*l.batch; + if (i == 0) s.delta = 0; + backward_convolutional_layer(self_layer, s); + + copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1); + if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1); + s.input = state.input + i*l.inputs*l.batch; + if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; + else s.delta = 0; + backward_convolutional_layer(input_layer, s); + + increment_layer(&input_layer, -1); + increment_layer(&self_layer, -1); + increment_layer(&output_layer, -1); + } +} + +#ifdef GPU + +void pull_crnn_layer(layer l) +{ + pull_convolutional_layer(*(l.input_layer)); + pull_convolutional_layer(*(l.self_layer)); + pull_convolutional_layer(*(l.output_layer)); +} + +void push_crnn_layer(layer l) +{ + push_convolutional_layer(*(l.input_layer)); + push_convolutional_layer(*(l.self_layer)); + push_convolutional_layer(*(l.output_layer)); +} + +void update_crnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) +{ + update_convolutional_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale); + update_convolutional_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale); + update_convolutional_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale); +} + +void forward_crnn_layer_gpu(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + s.net = state.net; + if(!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() ) + int i; + layer input_layer = *(l.input_layer); + layer self_layer = *(l.self_layer); + layer output_layer = *(l.output_layer); + +/* +#ifdef CUDNN_HALF // slow and bad for training + if (!state.train && state.net.cudnn_half) { + s.index = state.index; + cuda_convert_f32_to_f16(input_layer.weights_gpu, input_layer.c*input_layer.n*input_layer.size*input_layer.size, input_layer.weights_gpu16); + cuda_convert_f32_to_f16(self_layer.weights_gpu, self_layer.c*self_layer.n*self_layer.size*self_layer.size, self_layer.weights_gpu16); + cuda_convert_f32_to_f16(output_layer.weights_gpu, output_layer.c*output_layer.n*output_layer.size*output_layer.size, output_layer.weights_gpu16); + } +#endif //CUDNN_HALF +*/ + + if (state.train) { + fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1); + fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1); + fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1); + fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); + } + + for (i = 0; i < l.steps; ++i) { + s.input = state.input; + forward_convolutional_layer_gpu(input_layer, s); + + s.input = l.state_gpu; + forward_convolutional_layer_gpu(self_layer, s); + + float *old_state = l.state_gpu; + if(state.train) l.state_gpu += l.hidden*l.batch; + if(l.shortcut){ + copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1); + }else{ + fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); + } + axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1); + axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); + + s.input = l.state_gpu; + forward_convolutional_layer_gpu(output_layer, s); + + state.input += l.inputs*l.batch; + increment_layer(&input_layer, 1); + increment_layer(&self_layer, 1); + increment_layer(&output_layer, 1); + } +} + +void backward_crnn_layer_gpu(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + s.net = state.net; + //s.index = state.index; + int i; + layer input_layer = *(l.input_layer); + layer self_layer = *(l.self_layer); + layer output_layer = *(l.output_layer); + increment_layer(&input_layer, l.steps - 1); + increment_layer(&self_layer, l.steps - 1); + increment_layer(&output_layer, l.steps - 1); + float *init_state_gpu = l.state_gpu; + l.state_gpu += l.hidden*l.batch*l.steps; + for (i = l.steps-1; i >= 0; --i) { + //copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1); // commented in RNN + //axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); // commented in RNN + + s.input = l.state_gpu; + s.delta = self_layer.delta_gpu; + backward_convolutional_layer_gpu(output_layer, s); + + l.state_gpu -= l.hidden*l.batch; + + copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); + + s.input = l.state_gpu; + s.delta = self_layer.delta_gpu - l.hidden*l.batch; + if (i == 0) s.delta = 0; + backward_convolutional_layer_gpu(self_layer, s); + + if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1); + s.input = state.input + i*l.inputs*l.batch; + if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; + else s.delta = 0; + backward_convolutional_layer_gpu(input_layer, s); + + if (state.net.try_fix_nan) { + fix_nan_and_inf(output_layer.delta_gpu, output_layer.inputs * output_layer.batch); + fix_nan_and_inf(self_layer.delta_gpu, self_layer.inputs * self_layer.batch); + fix_nan_and_inf(input_layer.delta_gpu, input_layer.inputs * input_layer.batch); + } + + increment_layer(&input_layer, -1); + increment_layer(&self_layer, -1); + increment_layer(&output_layer, -1); + } + fill_ongpu(l.hidden * l.batch, 0, init_state_gpu, 1); //clean l.state_gpu +} +#endif -- Gitblit v1.8.0