From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/crnn_layer.c |  766 +++++++++++++++++++++++++++++-----------------------------
 1 files changed, 383 insertions(+), 383 deletions(-)

diff --git a/lib/detecter_tools/darknet/crnn_layer.c b/lib/detecter_tools/darknet/crnn_layer.c
index 1691a5f..84646b4 100644
--- a/lib/detecter_tools/darknet/crnn_layer.c
+++ b/lib/detecter_tools/darknet/crnn_layer.c
@@ -1,383 +1,383 @@
-#include "crnn_layer.h"
-#include "convolutional_layer.h"
-#include "utils.h"
-#include "dark_cuda.h"
-#include "blas.h"
-#include "gemm.h"
-
-#include <math.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-static void increment_layer(layer *l, int steps)
-{
-    int num = l->outputs*l->batch*steps;
-    l->output += num;
-    l->delta += num;
-    l->x += num;
-    l->x_norm += num;
-
-#ifdef GPU
-    l->output_gpu += num;
-    l->delta_gpu += num;
-    l->x_gpu += num;
-    l->x_norm_gpu += num;
-#endif
-}
-
-layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int output_filters, int groups, int steps, int size, int stride, int dilation, int pad, ACTIVATION activation, int batch_normalize, int xnor, int train)
-{
-    fprintf(stderr, "CRNN Layer: %d x %d x %d image, %d filters\n", h,w,c,output_filters);
-    batch = batch / steps;
-    layer l = { (LAYER_TYPE)0 };
-    l.train = train;
-    l.batch = batch;
-    l.type = CRNN;
-    l.steps = steps;
-    l.size = size;
-    l.stride = stride;
-    l.dilation = dilation;
-    l.pad = pad;
-    l.h = h;
-    l.w = w;
-    l.c = c;
-    l.groups = groups;
-    l.out_c = output_filters;
-    l.inputs = h * w * c;
-    l.hidden = h * w * hidden_filters;
-    l.xnor = xnor;
-
-    l.state = (float*)xcalloc(l.hidden * l.batch * (l.steps + 1), sizeof(float));
-
-    l.input_layer = (layer*)xcalloc(1, sizeof(layer));
-    *(l.input_layer) = make_convolutional_layer(batch, steps, h, w, c, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
-    l.input_layer->batch = batch;
-    if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size;
-
-    l.self_layer = (layer*)xcalloc(1, sizeof(layer));
-    *(l.self_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
-    l.self_layer->batch = batch;
-    if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size;
-
-    l.output_layer = (layer*)xcalloc(1, sizeof(layer));
-    *(l.output_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
-    l.output_layer->batch = batch;
-    if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size;
-
-    l.out_h = l.output_layer->out_h;
-    l.out_w = l.output_layer->out_w;
-    l.outputs = l.output_layer->outputs;
-
-    assert(l.input_layer->outputs == l.self_layer->outputs);
-    assert(l.input_layer->outputs == l.output_layer->inputs);
-
-    l.output = l.output_layer->output;
-    l.delta = l.output_layer->delta;
-
-    l.forward = forward_crnn_layer;
-    l.backward = backward_crnn_layer;
-    l.update = update_crnn_layer;
-
-#ifdef GPU
-    l.forward_gpu = forward_crnn_layer_gpu;
-    l.backward_gpu = backward_crnn_layer_gpu;
-    l.update_gpu = update_crnn_layer_gpu;
-    l.state_gpu = cuda_make_array(l.state, l.batch*l.hidden*(l.steps + 1));
-    l.output_gpu = l.output_layer->output_gpu;
-    l.delta_gpu = l.output_layer->delta_gpu;
-#endif
-
-    l.bflops = l.input_layer->bflops + l.self_layer->bflops + l.output_layer->bflops;
-
-    return l;
-}
-
-void resize_crnn_layer(layer *l, int w, int h)
-{
-    resize_convolutional_layer(l->input_layer, w, h);
-    if (l->workspace_size < l->input_layer->workspace_size) l->workspace_size = l->input_layer->workspace_size;
-
-    resize_convolutional_layer(l->self_layer, w, h);
-    if (l->workspace_size < l->self_layer->workspace_size) l->workspace_size = l->self_layer->workspace_size;
-
-    resize_convolutional_layer(l->output_layer, w, h);
-    if (l->workspace_size < l->output_layer->workspace_size) l->workspace_size = l->output_layer->workspace_size;
-
-    l->output = l->output_layer->output;
-    l->delta = l->output_layer->delta;
-
-    int hidden_filters = l->self_layer->c;
-    l->w = w;
-    l->h = h;
-    l->inputs = h * w * l->c;
-    l->hidden = h * w * hidden_filters;
-
-    l->out_h = l->output_layer->out_h;
-    l->out_w = l->output_layer->out_w;
-    l->outputs = l->output_layer->outputs;
-
-    assert(l->input_layer->inputs == l->inputs);
-    assert(l->self_layer->inputs == l->hidden);
-    assert(l->input_layer->outputs == l->self_layer->outputs);
-    assert(l->input_layer->outputs == l->output_layer->inputs);
-
-    l->state = (float*)xrealloc(l->state, l->batch*l->hidden*(l->steps + 1)*sizeof(float));
-
-#ifdef GPU
-    if (l->state_gpu) cudaFree(l->state_gpu);
-    l->state_gpu = cuda_make_array(l->state, l->batch*l->hidden*(l->steps + 1));
-
-    l->output_gpu = l->output_layer->output_gpu;
-    l->delta_gpu = l->output_layer->delta_gpu;
-#endif
-}
-
-void free_state_crnn(layer l)
-{
-    int i;
-    for (i = 0; i < l.outputs * l.batch; ++i) l.self_layer->output[i] = rand_uniform(-1, 1);
-
-#ifdef GPU
-    cuda_push_array(l.self_layer->output_gpu, l.self_layer->output, l.outputs * l.batch);
-#endif  // GPU
-}
-
-void update_crnn_layer(layer l, int batch, float learning_rate, float momentum, float decay)
-{
-    update_convolutional_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
-    update_convolutional_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
-    update_convolutional_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
-}
-
-void forward_crnn_layer(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    s.net = state.net;
-    //s.index = state.index;
-    int i;
-    layer input_layer = *(l.input_layer);
-    layer self_layer = *(l.self_layer);
-    layer output_layer = *(l.output_layer);
-
-    if (state.train) {
-        fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1);
-        fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1);
-        fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1);
-        fill_cpu(l.hidden * l.batch, 0, l.state, 1);
-    }
-
-    for (i = 0; i < l.steps; ++i) {
-        s.input = state.input;
-        forward_convolutional_layer(input_layer, s);
-
-        s.input = l.state;
-        forward_convolutional_layer(self_layer, s);
-
-        float *old_state = l.state;
-        if(state.train) l.state += l.hidden*l.batch;
-        if(l.shortcut){
-            copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1);
-        }else{
-            fill_cpu(l.hidden * l.batch, 0, l.state, 1);
-        }
-        axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1);
-        axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
-
-        s.input = l.state;
-        forward_convolutional_layer(output_layer, s);
-
-        state.input += l.inputs*l.batch;
-        increment_layer(&input_layer, 1);
-        increment_layer(&self_layer, 1);
-        increment_layer(&output_layer, 1);
-    }
-}
-
-void backward_crnn_layer(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    s.net = state.net;
-    //s.index = state.index;
-    int i;
-    layer input_layer = *(l.input_layer);
-    layer self_layer = *(l.self_layer);
-    layer output_layer = *(l.output_layer);
-
-    increment_layer(&input_layer, l.steps-1);
-    increment_layer(&self_layer, l.steps-1);
-    increment_layer(&output_layer, l.steps-1);
-
-    l.state += l.hidden*l.batch*l.steps;
-    for (i = l.steps-1; i >= 0; --i) {
-        copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
-        axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
-
-        s.input = l.state;
-        s.delta = self_layer.delta;
-        backward_convolutional_layer(output_layer, s);
-
-        l.state -= l.hidden*l.batch;
-        /*
-           if(i > 0){
-           copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1);
-           axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1);
-           }else{
-           fill_cpu(l.hidden * l.batch, 0, l.state, 1);
-           }
-         */
-
-        s.input = l.state;
-        s.delta = self_layer.delta - l.hidden*l.batch;
-        if (i == 0) s.delta = 0;
-        backward_convolutional_layer(self_layer, s);
-
-        copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1);
-        if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1);
-        s.input = state.input + i*l.inputs*l.batch;
-        if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
-        else s.delta = 0;
-        backward_convolutional_layer(input_layer, s);
-
-        increment_layer(&input_layer, -1);
-        increment_layer(&self_layer, -1);
-        increment_layer(&output_layer, -1);
-    }
-}
-
-#ifdef GPU
-
-void pull_crnn_layer(layer l)
-{
-    pull_convolutional_layer(*(l.input_layer));
-    pull_convolutional_layer(*(l.self_layer));
-    pull_convolutional_layer(*(l.output_layer));
-}
-
-void push_crnn_layer(layer l)
-{
-    push_convolutional_layer(*(l.input_layer));
-    push_convolutional_layer(*(l.self_layer));
-    push_convolutional_layer(*(l.output_layer));
-}
-
-void update_crnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
-{
-    update_convolutional_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale);
-    update_convolutional_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale);
-    update_convolutional_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale);
-}
-
-void forward_crnn_layer_gpu(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    s.net = state.net;
-    if(!state.train) s.index = state.index;  // don't use TC for training (especially without cuda_convert_f32_to_f16() )
-    int i;
-    layer input_layer = *(l.input_layer);
-    layer self_layer = *(l.self_layer);
-    layer output_layer = *(l.output_layer);
-
-/*
-#ifdef CUDNN_HALF   // slow and bad for training
-    if (!state.train && state.net.cudnn_half) {
-        s.index = state.index;
-        cuda_convert_f32_to_f16(input_layer.weights_gpu, input_layer.c*input_layer.n*input_layer.size*input_layer.size, input_layer.weights_gpu16);
-        cuda_convert_f32_to_f16(self_layer.weights_gpu, self_layer.c*self_layer.n*self_layer.size*self_layer.size, self_layer.weights_gpu16);
-        cuda_convert_f32_to_f16(output_layer.weights_gpu, output_layer.c*output_layer.n*output_layer.size*output_layer.size, output_layer.weights_gpu16);
-    }
-#endif  //CUDNN_HALF
-*/
-
-    if (state.train) {
-        fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1);
-        fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1);
-        fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1);
-        fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
-    }
-
-    for (i = 0; i < l.steps; ++i) {
-        s.input = state.input;
-        forward_convolutional_layer_gpu(input_layer, s);
-
-        s.input = l.state_gpu;
-        forward_convolutional_layer_gpu(self_layer, s);
-
-        float *old_state = l.state_gpu;
-        if(state.train) l.state_gpu += l.hidden*l.batch;
-        if(l.shortcut){
-            copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1);
-        }else{
-            fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
-        }
-        axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1);
-        axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
-
-        s.input = l.state_gpu;
-        forward_convolutional_layer_gpu(output_layer, s);
-
-        state.input += l.inputs*l.batch;
-        increment_layer(&input_layer, 1);
-        increment_layer(&self_layer, 1);
-        increment_layer(&output_layer, 1);
-    }
-}
-
-void backward_crnn_layer_gpu(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    s.net = state.net;
-    //s.index = state.index;
-    int i;
-    layer input_layer = *(l.input_layer);
-    layer self_layer = *(l.self_layer);
-    layer output_layer = *(l.output_layer);
-    increment_layer(&input_layer,  l.steps - 1);
-    increment_layer(&self_layer,   l.steps - 1);
-    increment_layer(&output_layer, l.steps - 1);
-    float *init_state_gpu = l.state_gpu;
-    l.state_gpu += l.hidden*l.batch*l.steps;
-    for (i = l.steps-1; i >= 0; --i) {
-        //copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1);   // commented in RNN
-        //axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); // commented in RNN
-
-        s.input = l.state_gpu;
-        s.delta = self_layer.delta_gpu;
-        backward_convolutional_layer_gpu(output_layer, s);
-
-        l.state_gpu -= l.hidden*l.batch;
-
-        copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
-
-        s.input = l.state_gpu;
-        s.delta = self_layer.delta_gpu - l.hidden*l.batch;
-        if (i == 0) s.delta = 0;
-        backward_convolutional_layer_gpu(self_layer, s);
-
-        if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1);
-        s.input = state.input + i*l.inputs*l.batch;
-        if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
-        else s.delta = 0;
-        backward_convolutional_layer_gpu(input_layer, s);
-
-        if (state.net.try_fix_nan) {
-            fix_nan_and_inf(output_layer.delta_gpu, output_layer.inputs * output_layer.batch);
-            fix_nan_and_inf(self_layer.delta_gpu, self_layer.inputs * self_layer.batch);
-            fix_nan_and_inf(input_layer.delta_gpu, input_layer.inputs * input_layer.batch);
-        }
-
-        increment_layer(&input_layer,  -1);
-        increment_layer(&self_layer,   -1);
-        increment_layer(&output_layer, -1);
-    }
-    fill_ongpu(l.hidden * l.batch, 0, init_state_gpu, 1); //clean l.state_gpu
-}
-#endif
+#include "crnn_layer.h"
+#include "convolutional_layer.h"
+#include "utils.h"
+#include "dark_cuda.h"
+#include "blas.h"
+#include "gemm.h"
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+static void increment_layer(layer *l, int steps)
+{
+    int num = l->outputs*l->batch*steps;
+    l->output += num;
+    l->delta += num;
+    l->x += num;
+    l->x_norm += num;
+
+#ifdef GPU
+    l->output_gpu += num;
+    l->delta_gpu += num;
+    l->x_gpu += num;
+    l->x_norm_gpu += num;
+#endif
+}
+
+layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int output_filters, int groups, int steps, int size, int stride, int dilation, int pad, ACTIVATION activation, int batch_normalize, int xnor, int train)
+{
+    fprintf(stderr, "CRNN Layer: %d x %d x %d image, %d filters\n", h,w,c,output_filters);
+    batch = batch / steps;
+    layer l = { (LAYER_TYPE)0 };
+    l.train = train;
+    l.batch = batch;
+    l.type = CRNN;
+    l.steps = steps;
+    l.size = size;
+    l.stride = stride;
+    l.dilation = dilation;
+    l.pad = pad;
+    l.h = h;
+    l.w = w;
+    l.c = c;
+    l.groups = groups;
+    l.out_c = output_filters;
+    l.inputs = h * w * c;
+    l.hidden = h * w * hidden_filters;
+    l.xnor = xnor;
+
+    l.state = (float*)xcalloc(l.hidden * l.batch * (l.steps + 1), sizeof(float));
+
+    l.input_layer = (layer*)xcalloc(1, sizeof(layer));
+    *(l.input_layer) = make_convolutional_layer(batch, steps, h, w, c, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
+    l.input_layer->batch = batch;
+    if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size;
+
+    l.self_layer = (layer*)xcalloc(1, sizeof(layer));
+    *(l.self_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
+    l.self_layer->batch = batch;
+    if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size;
+
+    l.output_layer = (layer*)xcalloc(1, sizeof(layer));
+    *(l.output_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
+    l.output_layer->batch = batch;
+    if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size;
+
+    l.out_h = l.output_layer->out_h;
+    l.out_w = l.output_layer->out_w;
+    l.outputs = l.output_layer->outputs;
+
+    assert(l.input_layer->outputs == l.self_layer->outputs);
+    assert(l.input_layer->outputs == l.output_layer->inputs);
+
+    l.output = l.output_layer->output;
+    l.delta = l.output_layer->delta;
+
+    l.forward = forward_crnn_layer;
+    l.backward = backward_crnn_layer;
+    l.update = update_crnn_layer;
+
+#ifdef GPU
+    l.forward_gpu = forward_crnn_layer_gpu;
+    l.backward_gpu = backward_crnn_layer_gpu;
+    l.update_gpu = update_crnn_layer_gpu;
+    l.state_gpu = cuda_make_array(l.state, l.batch*l.hidden*(l.steps + 1));
+    l.output_gpu = l.output_layer->output_gpu;
+    l.delta_gpu = l.output_layer->delta_gpu;
+#endif
+
+    l.bflops = l.input_layer->bflops + l.self_layer->bflops + l.output_layer->bflops;
+
+    return l;
+}
+
+void resize_crnn_layer(layer *l, int w, int h)
+{
+    resize_convolutional_layer(l->input_layer, w, h);
+    if (l->workspace_size < l->input_layer->workspace_size) l->workspace_size = l->input_layer->workspace_size;
+
+    resize_convolutional_layer(l->self_layer, w, h);
+    if (l->workspace_size < l->self_layer->workspace_size) l->workspace_size = l->self_layer->workspace_size;
+
+    resize_convolutional_layer(l->output_layer, w, h);
+    if (l->workspace_size < l->output_layer->workspace_size) l->workspace_size = l->output_layer->workspace_size;
+
+    l->output = l->output_layer->output;
+    l->delta = l->output_layer->delta;
+
+    int hidden_filters = l->self_layer->c;
+    l->w = w;
+    l->h = h;
+    l->inputs = h * w * l->c;
+    l->hidden = h * w * hidden_filters;
+
+    l->out_h = l->output_layer->out_h;
+    l->out_w = l->output_layer->out_w;
+    l->outputs = l->output_layer->outputs;
+
+    assert(l->input_layer->inputs == l->inputs);
+    assert(l->self_layer->inputs == l->hidden);
+    assert(l->input_layer->outputs == l->self_layer->outputs);
+    assert(l->input_layer->outputs == l->output_layer->inputs);
+
+    l->state = (float*)xrealloc(l->state, l->batch*l->hidden*(l->steps + 1)*sizeof(float));
+
+#ifdef GPU
+    if (l->state_gpu) cudaFree(l->state_gpu);
+    l->state_gpu = cuda_make_array(l->state, l->batch*l->hidden*(l->steps + 1));
+
+    l->output_gpu = l->output_layer->output_gpu;
+    l->delta_gpu = l->output_layer->delta_gpu;
+#endif
+}
+
+void free_state_crnn(layer l)
+{
+    int i;
+    for (i = 0; i < l.outputs * l.batch; ++i) l.self_layer->output[i] = rand_uniform(-1, 1);
+
+#ifdef GPU
+    cuda_push_array(l.self_layer->output_gpu, l.self_layer->output, l.outputs * l.batch);
+#endif  // GPU
+}
+
+void update_crnn_layer(layer l, int batch, float learning_rate, float momentum, float decay)
+{
+    update_convolutional_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
+    update_convolutional_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
+    update_convolutional_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
+}
+
+void forward_crnn_layer(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    s.net = state.net;
+    //s.index = state.index;
+    int i;
+    layer input_layer = *(l.input_layer);
+    layer self_layer = *(l.self_layer);
+    layer output_layer = *(l.output_layer);
+
+    if (state.train) {
+        fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1);
+        fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1);
+        fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1);
+        fill_cpu(l.hidden * l.batch, 0, l.state, 1);
+    }
+
+    for (i = 0; i < l.steps; ++i) {
+        s.input = state.input;
+        forward_convolutional_layer(input_layer, s);
+
+        s.input = l.state;
+        forward_convolutional_layer(self_layer, s);
+
+        float *old_state = l.state;
+        if(state.train) l.state += l.hidden*l.batch;
+        if(l.shortcut){
+            copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1);
+        }else{
+            fill_cpu(l.hidden * l.batch, 0, l.state, 1);
+        }
+        axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1);
+        axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
+
+        s.input = l.state;
+        forward_convolutional_layer(output_layer, s);
+
+        state.input += l.inputs*l.batch;
+        increment_layer(&input_layer, 1);
+        increment_layer(&self_layer, 1);
+        increment_layer(&output_layer, 1);
+    }
+}
+
+void backward_crnn_layer(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    s.net = state.net;
+    //s.index = state.index;
+    int i;
+    layer input_layer = *(l.input_layer);
+    layer self_layer = *(l.self_layer);
+    layer output_layer = *(l.output_layer);
+
+    increment_layer(&input_layer, l.steps-1);
+    increment_layer(&self_layer, l.steps-1);
+    increment_layer(&output_layer, l.steps-1);
+
+    l.state += l.hidden*l.batch*l.steps;
+    for (i = l.steps-1; i >= 0; --i) {
+        copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
+        axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
+
+        s.input = l.state;
+        s.delta = self_layer.delta;
+        backward_convolutional_layer(output_layer, s);
+
+        l.state -= l.hidden*l.batch;
+        /*
+           if(i > 0){
+           copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1);
+           axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1);
+           }else{
+           fill_cpu(l.hidden * l.batch, 0, l.state, 1);
+           }
+         */
+
+        s.input = l.state;
+        s.delta = self_layer.delta - l.hidden*l.batch;
+        if (i == 0) s.delta = 0;
+        backward_convolutional_layer(self_layer, s);
+
+        copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1);
+        if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1);
+        s.input = state.input + i*l.inputs*l.batch;
+        if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
+        else s.delta = 0;
+        backward_convolutional_layer(input_layer, s);
+
+        increment_layer(&input_layer, -1);
+        increment_layer(&self_layer, -1);
+        increment_layer(&output_layer, -1);
+    }
+}
+
+#ifdef GPU
+
+void pull_crnn_layer(layer l)
+{
+    pull_convolutional_layer(*(l.input_layer));
+    pull_convolutional_layer(*(l.self_layer));
+    pull_convolutional_layer(*(l.output_layer));
+}
+
+void push_crnn_layer(layer l)
+{
+    push_convolutional_layer(*(l.input_layer));
+    push_convolutional_layer(*(l.self_layer));
+    push_convolutional_layer(*(l.output_layer));
+}
+
+void update_crnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
+{
+    update_convolutional_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale);
+    update_convolutional_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale);
+    update_convolutional_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale);
+}
+
+void forward_crnn_layer_gpu(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    s.net = state.net;
+    if(!state.train) s.index = state.index;  // don't use TC for training (especially without cuda_convert_f32_to_f16() )
+    int i;
+    layer input_layer = *(l.input_layer);
+    layer self_layer = *(l.self_layer);
+    layer output_layer = *(l.output_layer);
+
+/*
+#ifdef CUDNN_HALF   // slow and bad for training
+    if (!state.train && state.net.cudnn_half) {
+        s.index = state.index;
+        cuda_convert_f32_to_f16(input_layer.weights_gpu, input_layer.c*input_layer.n*input_layer.size*input_layer.size, input_layer.weights_gpu16);
+        cuda_convert_f32_to_f16(self_layer.weights_gpu, self_layer.c*self_layer.n*self_layer.size*self_layer.size, self_layer.weights_gpu16);
+        cuda_convert_f32_to_f16(output_layer.weights_gpu, output_layer.c*output_layer.n*output_layer.size*output_layer.size, output_layer.weights_gpu16);
+    }
+#endif  //CUDNN_HALF
+*/
+
+    if (state.train) {
+        fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1);
+        fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1);
+        fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1);
+        fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
+    }
+
+    for (i = 0; i < l.steps; ++i) {
+        s.input = state.input;
+        forward_convolutional_layer_gpu(input_layer, s);
+
+        s.input = l.state_gpu;
+        forward_convolutional_layer_gpu(self_layer, s);
+
+        float *old_state = l.state_gpu;
+        if(state.train) l.state_gpu += l.hidden*l.batch;
+        if(l.shortcut){
+            copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1);
+        }else{
+            fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
+        }
+        axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1);
+        axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
+
+        s.input = l.state_gpu;
+        forward_convolutional_layer_gpu(output_layer, s);
+
+        state.input += l.inputs*l.batch;
+        increment_layer(&input_layer, 1);
+        increment_layer(&self_layer, 1);
+        increment_layer(&output_layer, 1);
+    }
+}
+
+void backward_crnn_layer_gpu(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    s.net = state.net;
+    //s.index = state.index;
+    int i;
+    layer input_layer = *(l.input_layer);
+    layer self_layer = *(l.self_layer);
+    layer output_layer = *(l.output_layer);
+    increment_layer(&input_layer,  l.steps - 1);
+    increment_layer(&self_layer,   l.steps - 1);
+    increment_layer(&output_layer, l.steps - 1);
+    float *init_state_gpu = l.state_gpu;
+    l.state_gpu += l.hidden*l.batch*l.steps;
+    for (i = l.steps-1; i >= 0; --i) {
+        //copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1);   // commented in RNN
+        //axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); // commented in RNN
+
+        s.input = l.state_gpu;
+        s.delta = self_layer.delta_gpu;
+        backward_convolutional_layer_gpu(output_layer, s);
+
+        l.state_gpu -= l.hidden*l.batch;
+
+        copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
+
+        s.input = l.state_gpu;
+        s.delta = self_layer.delta_gpu - l.hidden*l.batch;
+        if (i == 0) s.delta = 0;
+        backward_convolutional_layer_gpu(self_layer, s);
+
+        if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1);
+        s.input = state.input + i*l.inputs*l.batch;
+        if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
+        else s.delta = 0;
+        backward_convolutional_layer_gpu(input_layer, s);
+
+        if (state.net.try_fix_nan) {
+            fix_nan_and_inf(output_layer.delta_gpu, output_layer.inputs * output_layer.batch);
+            fix_nan_and_inf(self_layer.delta_gpu, self_layer.inputs * self_layer.batch);
+            fix_nan_and_inf(input_layer.delta_gpu, input_layer.inputs * input_layer.batch);
+        }
+
+        increment_layer(&input_layer,  -1);
+        increment_layer(&self_layer,   -1);
+        increment_layer(&output_layer, -1);
+    }
+    fill_ongpu(l.hidden * l.batch, 0, init_state_gpu, 1); //clean l.state_gpu
+}
+#endif

--
Gitblit v1.8.0