From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/crop_layer.c |  206 +++++++++++++++++++++++++-------------------------
 1 files changed, 103 insertions(+), 103 deletions(-)

diff --git a/lib/detecter_tools/darknet/crop_layer.c b/lib/detecter_tools/darknet/crop_layer.c
index 9a7e22e..2d1fafc 100644
--- a/lib/detecter_tools/darknet/crop_layer.c
+++ b/lib/detecter_tools/darknet/crop_layer.c
@@ -1,103 +1,103 @@
-#include "utils.h"
-#include "crop_layer.h"
-#include "dark_cuda.h"
-#include <stdio.h>
-
-image get_crop_image(crop_layer l)
-{
-    int h = l.out_h;
-    int w = l.out_w;
-    int c = l.out_c;
-    return float_to_image(w,h,c,l.output);
-}
-
-void backward_crop_layer(const crop_layer l, network_state state){}
-void backward_crop_layer_gpu(const crop_layer l, network_state state){}
-
-crop_layer make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure)
-{
-    fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c);
-    crop_layer l = { (LAYER_TYPE)0 };
-    l.type = CROP;
-    l.batch = batch;
-    l.h = h;
-    l.w = w;
-    l.c = c;
-    l.scale = (float)crop_height / h;
-    l.flip = flip;
-    l.angle = angle;
-    l.saturation = saturation;
-    l.exposure = exposure;
-    l.out_w = crop_width;
-    l.out_h = crop_height;
-    l.out_c = c;
-    l.inputs = l.w * l.h * l.c;
-    l.outputs = l.out_w * l.out_h * l.out_c;
-    l.output = (float*)xcalloc(l.outputs * batch, sizeof(float));
-    l.forward = forward_crop_layer;
-    l.backward = backward_crop_layer;
-
-    #ifdef GPU
-    l.forward_gpu = forward_crop_layer_gpu;
-    l.backward_gpu = backward_crop_layer_gpu;
-    l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
-    l.rand_gpu   = cuda_make_array(0, l.batch*8);
-    #endif
-    return l;
-}
-
-void resize_crop_layer(layer *l, int w, int h)
-{
-    l->w = w;
-    l->h = h;
-
-    l->out_w =  l->scale*w;
-    l->out_h =  l->scale*h;
-
-    l->inputs = l->w * l->h * l->c;
-    l->outputs = l->out_h * l->out_w * l->out_c;
-
-    l->output = (float*)xrealloc(l->output, l->batch * l->outputs * sizeof(float));
-    #ifdef GPU
-    cuda_free(l->output_gpu);
-    l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
-    #endif
-}
-
-
-void forward_crop_layer(const crop_layer l, network_state state)
-{
-    int i,j,c,b,row,col;
-    int index;
-    int count = 0;
-    int flip = (l.flip && rand()%2);
-    int dh = rand()%(l.h - l.out_h + 1);
-    int dw = rand()%(l.w - l.out_w + 1);
-    float scale = 2;
-    float trans = -1;
-    if(l.noadjust){
-        scale = 1;
-        trans = 0;
-    }
-    if(!state.train){
-        flip = 0;
-        dh = (l.h - l.out_h)/2;
-        dw = (l.w - l.out_w)/2;
-    }
-    for(b = 0; b < l.batch; ++b){
-        for(c = 0; c < l.c; ++c){
-            for(i = 0; i < l.out_h; ++i){
-                for(j = 0; j < l.out_w; ++j){
-                    if(flip){
-                        col = l.w - dw - j - 1;
-                    }else{
-                        col = j + dw;
-                    }
-                    row = i + dh;
-                    index = col+l.w*(row+l.h*(c + l.c*b));
-                    l.output[count++] = state.input[index]*scale + trans;
-                }
-            }
-        }
-    }
-}
+#include "utils.h"
+#include "crop_layer.h"
+#include "dark_cuda.h"
+#include <stdio.h>
+
+image get_crop_image(crop_layer l)
+{
+    int h = l.out_h;
+    int w = l.out_w;
+    int c = l.out_c;
+    return float_to_image(w,h,c,l.output);
+}
+
+void backward_crop_layer(const crop_layer l, network_state state){}
+void backward_crop_layer_gpu(const crop_layer l, network_state state){}
+
+crop_layer make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure)
+{
+    fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c);
+    crop_layer l = { (LAYER_TYPE)0 };
+    l.type = CROP;
+    l.batch = batch;
+    l.h = h;
+    l.w = w;
+    l.c = c;
+    l.scale = (float)crop_height / h;
+    l.flip = flip;
+    l.angle = angle;
+    l.saturation = saturation;
+    l.exposure = exposure;
+    l.out_w = crop_width;
+    l.out_h = crop_height;
+    l.out_c = c;
+    l.inputs = l.w * l.h * l.c;
+    l.outputs = l.out_w * l.out_h * l.out_c;
+    l.output = (float*)xcalloc(l.outputs * batch, sizeof(float));
+    l.forward = forward_crop_layer;
+    l.backward = backward_crop_layer;
+
+    #ifdef GPU
+    l.forward_gpu = forward_crop_layer_gpu;
+    l.backward_gpu = backward_crop_layer_gpu;
+    l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
+    l.rand_gpu   = cuda_make_array(0, l.batch*8);
+    #endif
+    return l;
+}
+
+void resize_crop_layer(layer *l, int w, int h)
+{
+    l->w = w;
+    l->h = h;
+
+    l->out_w =  l->scale*w;
+    l->out_h =  l->scale*h;
+
+    l->inputs = l->w * l->h * l->c;
+    l->outputs = l->out_h * l->out_w * l->out_c;
+
+    l->output = (float*)xrealloc(l->output, l->batch * l->outputs * sizeof(float));
+    #ifdef GPU
+    cuda_free(l->output_gpu);
+    l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
+    #endif
+}
+
+
+void forward_crop_layer(const crop_layer l, network_state state)
+{
+    int i,j,c,b,row,col;
+    int index;
+    int count = 0;
+    int flip = (l.flip && rand()%2);
+    int dh = rand()%(l.h - l.out_h + 1);
+    int dw = rand()%(l.w - l.out_w + 1);
+    float scale = 2;
+    float trans = -1;
+    if(l.noadjust){
+        scale = 1;
+        trans = 0;
+    }
+    if(!state.train){
+        flip = 0;
+        dh = (l.h - l.out_h)/2;
+        dw = (l.w - l.out_w)/2;
+    }
+    for(b = 0; b < l.batch; ++b){
+        for(c = 0; c < l.c; ++c){
+            for(i = 0; i < l.out_h; ++i){
+                for(j = 0; j < l.out_w; ++j){
+                    if(flip){
+                        col = l.w - dw - j - 1;
+                    }else{
+                        col = j + dw;
+                    }
+                    row = i + dh;
+                    index = col+l.w*(row+l.h*(c + l.c*b));
+                    l.output[count++] = state.input[index]*scale + trans;
+                }
+            }
+        }
+    }
+}

--
Gitblit v1.8.0