From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/darknet.c | 1118 +++++++++++++++++++++++++++++-----------------------------
 1 files changed, 559 insertions(+), 559 deletions(-)

diff --git a/lib/detecter_tools/darknet/darknet.c b/lib/detecter_tools/darknet/darknet.c
index d6500ed..6c52b10 100644
--- a/lib/detecter_tools/darknet/darknet.c
+++ b/lib/detecter_tools/darknet/darknet.c
@@ -1,559 +1,559 @@
-#include "darknet.h"
-#include <time.h>
-#include <stdlib.h>
-#include <stdio.h>
-#if defined(_MSC_VER) && defined(_DEBUG)
-#include <crtdbg.h>
-#endif
-
-#include "parser.h"
-#include "utils.h"
-#include "dark_cuda.h"
-#include "blas.h"
-#include "connected_layer.h"
-
-
-extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
-extern void run_voxel(int argc, char **argv);
-extern void run_yolo(int argc, char **argv);
-extern void run_detector(int argc, char **argv);
-extern void run_coco(int argc, char **argv);
-extern void run_writing(int argc, char **argv);
-extern void run_captcha(int argc, char **argv);
-extern void run_nightmare(int argc, char **argv);
-extern void run_dice(int argc, char **argv);
-extern void run_compare(int argc, char **argv);
-extern void run_classifier(int argc, char **argv);
-extern void run_char_rnn(int argc, char **argv);
-extern void run_vid_rnn(int argc, char **argv);
-extern void run_tag(int argc, char **argv);
-extern void run_cifar(int argc, char **argv);
-extern void run_go(int argc, char **argv);
-extern void run_art(int argc, char **argv);
-extern void run_super(int argc, char **argv);
-
-void average(int argc, char *argv[])
-{
-    char *cfgfile = argv[2];
-    char *outfile = argv[3];
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    network sum = parse_network_cfg(cfgfile);
-
-    char *weightfile = argv[4];
-    load_weights(&sum, weightfile);
-
-    int i, j;
-    int n = argc - 5;
-    for(i = 0; i < n; ++i){
-        weightfile = argv[i+5];
-        load_weights(&net, weightfile);
-        for(j = 0; j < net.n; ++j){
-            layer l = net.layers[j];
-            layer out = sum.layers[j];
-            if(l.type == CONVOLUTIONAL){
-                int num = l.n*l.c*l.size*l.size;
-                axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
-                axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
-                if(l.batch_normalize){
-                    axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
-                    axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
-                    axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
-                }
-            }
-            if(l.type == CONNECTED){
-                axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
-                axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
-            }
-        }
-    }
-    n = n+1;
-    for(j = 0; j < net.n; ++j){
-        layer l = sum.layers[j];
-        if(l.type == CONVOLUTIONAL){
-            int num = l.n*l.c*l.size*l.size;
-            scal_cpu(l.n, 1./n, l.biases, 1);
-            scal_cpu(num, 1./n, l.weights, 1);
-                if(l.batch_normalize){
-                    scal_cpu(l.n, 1./n, l.scales, 1);
-                    scal_cpu(l.n, 1./n, l.rolling_mean, 1);
-                    scal_cpu(l.n, 1./n, l.rolling_variance, 1);
-                }
-        }
-        if(l.type == CONNECTED){
-            scal_cpu(l.outputs, 1./n, l.biases, 1);
-            scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
-        }
-    }
-    save_weights(sum, outfile);
-}
-
-void speed(char *cfgfile, int tics)
-{
-    if (tics == 0) tics = 1000;
-    network net = parse_network_cfg(cfgfile);
-    set_batch_network(&net, 1);
-    int i;
-    time_t start = time(0);
-    image im = make_image(net.w, net.h, net.c);
-    for(i = 0; i < tics; ++i){
-        network_predict(net, im.data);
-    }
-    double t = difftime(time(0), start);
-    printf("\n%d evals, %f Seconds\n", tics, t);
-    printf("Speed: %f sec/eval\n", t/tics);
-    printf("Speed: %f Hz\n", tics/t);
-}
-
-void operations(char *cfgfile)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    int i;
-    long ops = 0;
-    for(i = 0; i < net.n; ++i){
-        layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
-        } else if(l.type == CONNECTED){
-            ops += 2l * l.inputs * l.outputs;
-		} else if (l.type == RNN){
-            ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
-            ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
-            ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
-        } else if (l.type == GRU){
-            ops += 2l * l.uz->inputs * l.uz->outputs;
-            ops += 2l * l.uh->inputs * l.uh->outputs;
-            ops += 2l * l.ur->inputs * l.ur->outputs;
-            ops += 2l * l.wz->inputs * l.wz->outputs;
-            ops += 2l * l.wh->inputs * l.wh->outputs;
-            ops += 2l * l.wr->inputs * l.wr->outputs;
-        } else if (l.type == LSTM){
-            ops += 2l * l.uf->inputs * l.uf->outputs;
-            ops += 2l * l.ui->inputs * l.ui->outputs;
-            ops += 2l * l.ug->inputs * l.ug->outputs;
-            ops += 2l * l.uo->inputs * l.uo->outputs;
-            ops += 2l * l.wf->inputs * l.wf->outputs;
-            ops += 2l * l.wi->inputs * l.wi->outputs;
-            ops += 2l * l.wg->inputs * l.wg->outputs;
-            ops += 2l * l.wo->inputs * l.wo->outputs;
-        }
-    }
-    printf("Floating Point Operations: %ld\n", ops);
-    printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
-}
-
-void oneoff(char *cfgfile, char *weightfile, char *outfile)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    int oldn = net.layers[net.n - 2].n;
-    int c = net.layers[net.n - 2].c;
-    net.layers[net.n - 2].n = 9372;
-    net.layers[net.n - 2].biases += 5;
-    net.layers[net.n - 2].weights += 5*c;
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    net.layers[net.n - 2].biases -= 5;
-    net.layers[net.n - 2].weights -= 5*c;
-    net.layers[net.n - 2].n = oldn;
-    printf("%d\n", oldn);
-    layer l = net.layers[net.n - 2];
-    copy_cpu(l.n/3, l.biases, 1, l.biases +   l.n/3, 1);
-    copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
-    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights +   l.n/3*l.c, 1);
-    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
-    *net.seen = 0;
-    *net.cur_iteration = 0;
-    save_weights(net, outfile);
-}
-
-void partial(char *cfgfile, char *weightfile, char *outfile, int max)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg_custom(cfgfile, 1, 1);
-    if(weightfile){
-        load_weights_upto(&net, weightfile, max);
-    }
-    *net.seen = 0;
-    *net.cur_iteration = 0;
-    save_weights_upto(net, outfile, max);
-}
-
-#include "convolutional_layer.h"
-void rescale_net(char *cfgfile, char *weightfile, char *outfile)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    int i;
-    for(i = 0; i < net.n; ++i){
-        layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            rescale_weights(l, 2, -.5);
-            break;
-        }
-    }
-    save_weights(net, outfile);
-}
-
-void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    int i;
-    for(i = 0; i < net.n; ++i){
-        layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            rgbgr_weights(l);
-            break;
-        }
-    }
-    save_weights(net, outfile);
-}
-
-void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    if (weightfile) {
-        load_weights(&net, weightfile);
-    }
-    int i;
-    for (i = 0; i < net.n; ++i) {
-        layer l = net.layers[i];
-        if (l.type == CONVOLUTIONAL && l.batch_normalize) {
-            denormalize_convolutional_layer(l);
-        }
-        if (l.type == CONNECTED && l.batch_normalize) {
-            denormalize_connected_layer(l);
-        }
-        if (l.type == GRU && l.batch_normalize) {
-            denormalize_connected_layer(*l.input_z_layer);
-            denormalize_connected_layer(*l.input_r_layer);
-            denormalize_connected_layer(*l.input_h_layer);
-            denormalize_connected_layer(*l.state_z_layer);
-            denormalize_connected_layer(*l.state_r_layer);
-            denormalize_connected_layer(*l.state_h_layer);
-        }
-        if (l.type == LSTM && l.batch_normalize) {
-            denormalize_connected_layer(*l.wf);
-            denormalize_connected_layer(*l.wi);
-            denormalize_connected_layer(*l.wg);
-            denormalize_connected_layer(*l.wo);
-            denormalize_connected_layer(*l.uf);
-            denormalize_connected_layer(*l.ui);
-            denormalize_connected_layer(*l.ug);
-            denormalize_connected_layer(*l.uo);
-		}
-    }
-    save_weights(net, outfile);
-}
-
-layer normalize_layer(layer l, int n)
-{
-    int j;
-    l.batch_normalize=1;
-    l.scales = (float*)xcalloc(n, sizeof(float));
-    for(j = 0; j < n; ++j){
-        l.scales[j] = 1;
-    }
-    l.rolling_mean = (float*)xcalloc(n, sizeof(float));
-    l.rolling_variance = (float*)xcalloc(n, sizeof(float));
-    return l;
-}
-
-void normalize_net(char *cfgfile, char *weightfile, char *outfile)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    int i;
-    for(i = 0; i < net.n; ++i){
-        layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL && !l.batch_normalize){
-            net.layers[i] = normalize_layer(l, l.n);
-        }
-        if (l.type == CONNECTED && !l.batch_normalize) {
-            net.layers[i] = normalize_layer(l, l.outputs);
-        }
-        if (l.type == GRU && l.batch_normalize) {
-            *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
-            *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
-            *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
-            *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
-            *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
-            *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
-            net.layers[i].batch_normalize=1;
-        }
-        if (l.type == LSTM && l.batch_normalize) {
-            *l.wf = normalize_layer(*l.wf, l.wf->outputs);
-            *l.wi = normalize_layer(*l.wi, l.wi->outputs);
-            *l.wg = normalize_layer(*l.wg, l.wg->outputs);
-            *l.wo = normalize_layer(*l.wo, l.wo->outputs);
-            *l.uf = normalize_layer(*l.uf, l.uf->outputs);
-            *l.ui = normalize_layer(*l.ui, l.ui->outputs);
-            *l.ug = normalize_layer(*l.ug, l.ug->outputs);
-            *l.uo = normalize_layer(*l.uo, l.uo->outputs);
-            net.layers[i].batch_normalize=1;
-        }
-    }
-    save_weights(net, outfile);
-}
-
-void statistics_net(char *cfgfile, char *weightfile)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    if (weightfile) {
-        load_weights(&net, weightfile);
-    }
-    int i;
-    for (i = 0; i < net.n; ++i) {
-        layer l = net.layers[i];
-        if (l.type == CONNECTED && l.batch_normalize) {
-            printf("Connected Layer %d\n", i);
-            statistics_connected_layer(l);
-        }
-        if (l.type == GRU && l.batch_normalize) {
-            printf("GRU Layer %d\n", i);
-            printf("Input Z\n");
-            statistics_connected_layer(*l.input_z_layer);
-            printf("Input R\n");
-            statistics_connected_layer(*l.input_r_layer);
-            printf("Input H\n");
-            statistics_connected_layer(*l.input_h_layer);
-            printf("State Z\n");
-            statistics_connected_layer(*l.state_z_layer);
-            printf("State R\n");
-            statistics_connected_layer(*l.state_r_layer);
-            printf("State H\n");
-            statistics_connected_layer(*l.state_h_layer);
-        }
-        if (l.type == LSTM && l.batch_normalize) {
-            printf("LSTM Layer %d\n", i);
-            printf("wf\n");
-            statistics_connected_layer(*l.wf);
-            printf("wi\n");
-            statistics_connected_layer(*l.wi);
-            printf("wg\n");
-            statistics_connected_layer(*l.wg);
-            printf("wo\n");
-            statistics_connected_layer(*l.wo);
-            printf("uf\n");
-            statistics_connected_layer(*l.uf);
-            printf("ui\n");
-            statistics_connected_layer(*l.ui);
-            printf("ug\n");
-            statistics_connected_layer(*l.ug);
-            printf("uo\n");
-            statistics_connected_layer(*l.uo);
-        }
-        printf("\n");
-    }
-}
-
-void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    if (weightfile) {
-        load_weights(&net, weightfile);
-    }
-    int i;
-    for (i = 0; i < net.n; ++i) {
-        layer l = net.layers[i];
-        if (l.type == CONVOLUTIONAL && l.batch_normalize) {
-            denormalize_convolutional_layer(l);
-            net.layers[i].batch_normalize=0;
-        }
-        if (l.type == CONNECTED && l.batch_normalize) {
-            denormalize_connected_layer(l);
-            net.layers[i].batch_normalize=0;
-        }
-        if (l.type == GRU && l.batch_normalize) {
-            denormalize_connected_layer(*l.input_z_layer);
-            denormalize_connected_layer(*l.input_r_layer);
-            denormalize_connected_layer(*l.input_h_layer);
-            denormalize_connected_layer(*l.state_z_layer);
-            denormalize_connected_layer(*l.state_r_layer);
-            denormalize_connected_layer(*l.state_h_layer);
-            l.input_z_layer->batch_normalize = 0;
-            l.input_r_layer->batch_normalize = 0;
-            l.input_h_layer->batch_normalize = 0;
-            l.state_z_layer->batch_normalize = 0;
-            l.state_r_layer->batch_normalize = 0;
-            l.state_h_layer->batch_normalize = 0;
-            net.layers[i].batch_normalize=0;
-        }
-        if (l.type == GRU && l.batch_normalize) {
-            denormalize_connected_layer(*l.wf);
-            denormalize_connected_layer(*l.wi);
-            denormalize_connected_layer(*l.wg);
-            denormalize_connected_layer(*l.wo);
-            denormalize_connected_layer(*l.uf);
-            denormalize_connected_layer(*l.ui);
-            denormalize_connected_layer(*l.ug);
-            denormalize_connected_layer(*l.uo);
-            l.wf->batch_normalize = 0;
-            l.wi->batch_normalize = 0;
-            l.wg->batch_normalize = 0;
-            l.wo->batch_normalize = 0;
-            l.uf->batch_normalize = 0;
-            l.ui->batch_normalize = 0;
-            l.ug->batch_normalize = 0;
-            l.uo->batch_normalize = 0;
-            net.layers[i].batch_normalize=0;
-		}
-    }
-    save_weights(net, outfile);
-}
-
-void visualize(char *cfgfile, char *weightfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    visualize_network(net);
-#ifdef OPENCV
-    wait_until_press_key_cv();
-#endif
-}
-
-//int main(int argc, char **argv)
-//{
-//#ifdef _DEBUG
-//	_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
-//    printf(" _DEBUG is used \n");
-//#endif
-//
-//#ifdef DEBUG
-//    printf(" DEBUG=1 \n");
-//#endif
-//
-//	int i;
-//	for (i = 0; i < argc; ++i) {
-//		if (!argv[i]) continue;
-//		strip_args(argv[i]);
-//	}
-//
-//    //test_resize("data/bad.jpg");
-//    //test_box();
-//    //test_convolutional_layer();
-//    if(argc < 2){
-//        fprintf(stderr, "usage: %s <function>\n", argv[0]);
-//        return 0;
-//    }
-//    gpu_index = find_int_arg(argc, argv, "-i", 0);
-//    if(find_arg(argc, argv, "-nogpu")) {
-//        gpu_index = -1;
-//        printf("\n Currently Darknet doesn't support -nogpu flag. If you want to use CPU - please compile Darknet with GPU=0 in the Makefile, or compile darknet_no_gpu.sln on Windows.\n");
-//        exit(-1);
-//    }
-//
-//#ifndef GPU
-//    gpu_index = -1;
-//    printf(" GPU isn't used \n");
-//    init_cpu();
-//#else   // GPU
-//    if(gpu_index >= 0){
-//        cuda_set_device(gpu_index);
-//        CHECK_CUDA(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync));
-//    }
-//
-//    show_cuda_cudnn_info();
-//    cuda_debug_sync = find_arg(argc, argv, "-cuda_debug_sync");
-//
-//#ifdef CUDNN_HALF
-//    printf(" CUDNN_HALF=1 \n");
-//#endif  // CUDNN_HALF
-//
-//#endif  // GPU
-//
-//    show_opencv_info();
-//
-//    if (0 == strcmp(argv[1], "average")){
-//        average(argc, argv);
-//    } else if (0 == strcmp(argv[1], "yolo")){
-//        run_yolo(argc, argv);
-//    } else if (0 == strcmp(argv[1], "voxel")){
-//        run_voxel(argc, argv);
-//    } else if (0 == strcmp(argv[1], "super")){
-//        run_super(argc, argv);
-//    } else if (0 == strcmp(argv[1], "detector")){
-//        run_detector(argc, argv);
-//    } else if (0 == strcmp(argv[1], "detect")){
-//        float thresh = find_float_arg(argc, argv, "-thresh", .24);
-//		int ext_output = find_arg(argc, argv, "-ext_output");
-//        char *filename = (argc > 4) ? argv[4]: 0;
-//        test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, 0.5, 0, ext_output, 0, NULL, 0, 0);
-//    } else if (0 == strcmp(argv[1], "cifar")){
-//        run_cifar(argc, argv);
-//    } else if (0 == strcmp(argv[1], "go")){
-//        run_go(argc, argv);
-//    } else if (0 == strcmp(argv[1], "rnn")){
-//        run_char_rnn(argc, argv);
-//    } else if (0 == strcmp(argv[1], "vid")){
-//        run_vid_rnn(argc, argv);
-//    } else if (0 == strcmp(argv[1], "coco")){
-//        run_coco(argc, argv);
-//    } else if (0 == strcmp(argv[1], "classify")){
-//        predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
-//    } else if (0 == strcmp(argv[1], "classifier")){
-//        run_classifier(argc, argv);
-//    } else if (0 == strcmp(argv[1], "art")){
-//        run_art(argc, argv);
-//    } else if (0 == strcmp(argv[1], "tag")){
-//        run_tag(argc, argv);
-//    } else if (0 == strcmp(argv[1], "compare")){
-//        run_compare(argc, argv);
-//    } else if (0 == strcmp(argv[1], "dice")){
-//        run_dice(argc, argv);
-//    } else if (0 == strcmp(argv[1], "writing")){
-//        run_writing(argc, argv);
-//    } else if (0 == strcmp(argv[1], "3d")){
-//        composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
-//    } else if (0 == strcmp(argv[1], "test")){
-//        test_resize(argv[2]);
-//    } else if (0 == strcmp(argv[1], "captcha")){
-//        run_captcha(argc, argv);
-//    } else if (0 == strcmp(argv[1], "nightmare")){
-//        run_nightmare(argc, argv);
-//    } else if (0 == strcmp(argv[1], "rgbgr")){
-//        rgbgr_net(argv[2], argv[3], argv[4]);
-//    } else if (0 == strcmp(argv[1], "reset")){
-//        reset_normalize_net(argv[2], argv[3], argv[4]);
-//    } else if (0 == strcmp(argv[1], "denormalize")){
-//        denormalize_net(argv[2], argv[3], argv[4]);
-//    } else if (0 == strcmp(argv[1], "statistics")){
-//        statistics_net(argv[2], argv[3]);
-//    } else if (0 == strcmp(argv[1], "normalize")){
-//        normalize_net(argv[2], argv[3], argv[4]);
-//    } else if (0 == strcmp(argv[1], "rescale")){
-//        rescale_net(argv[2], argv[3], argv[4]);
-//    } else if (0 == strcmp(argv[1], "ops")){
-//        operations(argv[2]);
-//    } else if (0 == strcmp(argv[1], "speed")){
-//        speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
-//    } else if (0 == strcmp(argv[1], "oneoff")){
-//        oneoff(argv[2], argv[3], argv[4]);
-//    } else if (0 == strcmp(argv[1], "partial")){
-//        partial(argv[2], argv[3], argv[4], atoi(argv[5]));
-//    } else if (0 == strcmp(argv[1], "visualize")){
-//        visualize(argv[2], (argc > 3) ? argv[3] : 0);
-//    } else if (0 == strcmp(argv[1], "imtest")){
-//        test_resize(argv[2]);
-//    } else {
-//        fprintf(stderr, "Not an option: %s\n", argv[1]);
-//    }
-//    return 0;
-//}
+#include "darknet.h"
+#include <time.h>
+#include <stdlib.h>
+#include <stdio.h>
+#if defined(_MSC_VER) && defined(_DEBUG)
+#include <crtdbg.h>
+#endif
+
+#include "parser.h"
+#include "utils.h"
+#include "dark_cuda.h"
+#include "blas.h"
+#include "connected_layer.h"
+
+
+extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
+extern void run_voxel(int argc, char **argv);
+extern void run_yolo(int argc, char **argv);
+extern void run_detector(int argc, char **argv);
+extern void run_coco(int argc, char **argv);
+extern void run_writing(int argc, char **argv);
+extern void run_captcha(int argc, char **argv);
+extern void run_nightmare(int argc, char **argv);
+extern void run_dice(int argc, char **argv);
+extern void run_compare(int argc, char **argv);
+extern void run_classifier(int argc, char **argv);
+extern void run_char_rnn(int argc, char **argv);
+extern void run_vid_rnn(int argc, char **argv);
+extern void run_tag(int argc, char **argv);
+extern void run_cifar(int argc, char **argv);
+extern void run_go(int argc, char **argv);
+extern void run_art(int argc, char **argv);
+extern void run_super(int argc, char **argv);
+
+void average(int argc, char *argv[])
+{
+    char *cfgfile = argv[2];
+    char *outfile = argv[3];
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    network sum = parse_network_cfg(cfgfile);
+
+    char *weightfile = argv[4];
+    load_weights(&sum, weightfile);
+
+    int i, j;
+    int n = argc - 5;
+    for(i = 0; i < n; ++i){
+        weightfile = argv[i+5];
+        load_weights(&net, weightfile);
+        for(j = 0; j < net.n; ++j){
+            layer l = net.layers[j];
+            layer out = sum.layers[j];
+            if(l.type == CONVOLUTIONAL){
+                int num = l.n*l.c*l.size*l.size;
+                axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
+                axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
+                if(l.batch_normalize){
+                    axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
+                    axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
+                    axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
+                }
+            }
+            if(l.type == CONNECTED){
+                axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
+                axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
+            }
+        }
+    }
+    n = n+1;
+    for(j = 0; j < net.n; ++j){
+        layer l = sum.layers[j];
+        if(l.type == CONVOLUTIONAL){
+            int num = l.n*l.c*l.size*l.size;
+            scal_cpu(l.n, 1./n, l.biases, 1);
+            scal_cpu(num, 1./n, l.weights, 1);
+                if(l.batch_normalize){
+                    scal_cpu(l.n, 1./n, l.scales, 1);
+                    scal_cpu(l.n, 1./n, l.rolling_mean, 1);
+                    scal_cpu(l.n, 1./n, l.rolling_variance, 1);
+                }
+        }
+        if(l.type == CONNECTED){
+            scal_cpu(l.outputs, 1./n, l.biases, 1);
+            scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
+        }
+    }
+    save_weights(sum, outfile);
+}
+
+void speed(char *cfgfile, int tics)
+{
+    if (tics == 0) tics = 1000;
+    network net = parse_network_cfg(cfgfile);
+    set_batch_network(&net, 1);
+    int i;
+    time_t start = time(0);
+    image im = make_image(net.w, net.h, net.c);
+    for(i = 0; i < tics; ++i){
+        network_predict(net, im.data);
+    }
+    double t = difftime(time(0), start);
+    printf("\n%d evals, %f Seconds\n", tics, t);
+    printf("Speed: %f sec/eval\n", t/tics);
+    printf("Speed: %f Hz\n", tics/t);
+}
+
+void operations(char *cfgfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    int i;
+    long ops = 0;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
+        } else if(l.type == CONNECTED){
+            ops += 2l * l.inputs * l.outputs;
+		} else if (l.type == RNN){
+            ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
+            ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
+            ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
+        } else if (l.type == GRU){
+            ops += 2l * l.uz->inputs * l.uz->outputs;
+            ops += 2l * l.uh->inputs * l.uh->outputs;
+            ops += 2l * l.ur->inputs * l.ur->outputs;
+            ops += 2l * l.wz->inputs * l.wz->outputs;
+            ops += 2l * l.wh->inputs * l.wh->outputs;
+            ops += 2l * l.wr->inputs * l.wr->outputs;
+        } else if (l.type == LSTM){
+            ops += 2l * l.uf->inputs * l.uf->outputs;
+            ops += 2l * l.ui->inputs * l.ui->outputs;
+            ops += 2l * l.ug->inputs * l.ug->outputs;
+            ops += 2l * l.uo->inputs * l.uo->outputs;
+            ops += 2l * l.wf->inputs * l.wf->outputs;
+            ops += 2l * l.wi->inputs * l.wi->outputs;
+            ops += 2l * l.wg->inputs * l.wg->outputs;
+            ops += 2l * l.wo->inputs * l.wo->outputs;
+        }
+    }
+    printf("Floating Point Operations: %ld\n", ops);
+    printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
+}
+
+void oneoff(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    int oldn = net.layers[net.n - 2].n;
+    int c = net.layers[net.n - 2].c;
+    net.layers[net.n - 2].n = 9372;
+    net.layers[net.n - 2].biases += 5;
+    net.layers[net.n - 2].weights += 5*c;
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    net.layers[net.n - 2].biases -= 5;
+    net.layers[net.n - 2].weights -= 5*c;
+    net.layers[net.n - 2].n = oldn;
+    printf("%d\n", oldn);
+    layer l = net.layers[net.n - 2];
+    copy_cpu(l.n/3, l.biases, 1, l.biases +   l.n/3, 1);
+    copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
+    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights +   l.n/3*l.c, 1);
+    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
+    *net.seen = 0;
+    *net.cur_iteration = 0;
+    save_weights(net, outfile);
+}
+
+void partial(char *cfgfile, char *weightfile, char *outfile, int max)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg_custom(cfgfile, 1, 1);
+    if(weightfile){
+        load_weights_upto(&net, weightfile, max);
+    }
+    *net.seen = 0;
+    *net.cur_iteration = 0;
+    save_weights_upto(net, outfile, max, 0);
+}
+
+#include "convolutional_layer.h"
+void rescale_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            rescale_weights(l, 2, -.5);
+            break;
+        }
+    }
+    save_weights(net, outfile);
+}
+
+void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            rgbgr_weights(l);
+            break;
+        }
+    }
+    save_weights(net, outfile);
+}
+
+void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        layer l = net.layers[i];
+        if (l.type == CONVOLUTIONAL && l.batch_normalize) {
+            denormalize_convolutional_layer(l);
+        }
+        if (l.type == CONNECTED && l.batch_normalize) {
+            denormalize_connected_layer(l);
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            denormalize_connected_layer(*l.input_z_layer);
+            denormalize_connected_layer(*l.input_r_layer);
+            denormalize_connected_layer(*l.input_h_layer);
+            denormalize_connected_layer(*l.state_z_layer);
+            denormalize_connected_layer(*l.state_r_layer);
+            denormalize_connected_layer(*l.state_h_layer);
+        }
+        if (l.type == LSTM && l.batch_normalize) {
+            denormalize_connected_layer(*l.wf);
+            denormalize_connected_layer(*l.wi);
+            denormalize_connected_layer(*l.wg);
+            denormalize_connected_layer(*l.wo);
+            denormalize_connected_layer(*l.uf);
+            denormalize_connected_layer(*l.ui);
+            denormalize_connected_layer(*l.ug);
+            denormalize_connected_layer(*l.uo);
+		}
+    }
+    save_weights(net, outfile);
+}
+
+layer normalize_layer(layer l, int n)
+{
+    int j;
+    l.batch_normalize=1;
+    l.scales = (float*)xcalloc(n, sizeof(float));
+    for(j = 0; j < n; ++j){
+        l.scales[j] = 1;
+    }
+    l.rolling_mean = (float*)xcalloc(n, sizeof(float));
+    l.rolling_variance = (float*)xcalloc(n, sizeof(float));
+    return l;
+}
+
+void normalize_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL && !l.batch_normalize){
+            net.layers[i] = normalize_layer(l, l.n);
+        }
+        if (l.type == CONNECTED && !l.batch_normalize) {
+            net.layers[i] = normalize_layer(l, l.outputs);
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
+            *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
+            *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
+            *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
+            *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
+            *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
+            net.layers[i].batch_normalize=1;
+        }
+        if (l.type == LSTM && l.batch_normalize) {
+            *l.wf = normalize_layer(*l.wf, l.wf->outputs);
+            *l.wi = normalize_layer(*l.wi, l.wi->outputs);
+            *l.wg = normalize_layer(*l.wg, l.wg->outputs);
+            *l.wo = normalize_layer(*l.wo, l.wo->outputs);
+            *l.uf = normalize_layer(*l.uf, l.uf->outputs);
+            *l.ui = normalize_layer(*l.ui, l.ui->outputs);
+            *l.ug = normalize_layer(*l.ug, l.ug->outputs);
+            *l.uo = normalize_layer(*l.uo, l.uo->outputs);
+            net.layers[i].batch_normalize=1;
+        }
+    }
+    save_weights(net, outfile);
+}
+
+void statistics_net(char *cfgfile, char *weightfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        layer l = net.layers[i];
+        if (l.type == CONNECTED && l.batch_normalize) {
+            printf("Connected Layer %d\n", i);
+            statistics_connected_layer(l);
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            printf("GRU Layer %d\n", i);
+            printf("Input Z\n");
+            statistics_connected_layer(*l.input_z_layer);
+            printf("Input R\n");
+            statistics_connected_layer(*l.input_r_layer);
+            printf("Input H\n");
+            statistics_connected_layer(*l.input_h_layer);
+            printf("State Z\n");
+            statistics_connected_layer(*l.state_z_layer);
+            printf("State R\n");
+            statistics_connected_layer(*l.state_r_layer);
+            printf("State H\n");
+            statistics_connected_layer(*l.state_h_layer);
+        }
+        if (l.type == LSTM && l.batch_normalize) {
+            printf("LSTM Layer %d\n", i);
+            printf("wf\n");
+            statistics_connected_layer(*l.wf);
+            printf("wi\n");
+            statistics_connected_layer(*l.wi);
+            printf("wg\n");
+            statistics_connected_layer(*l.wg);
+            printf("wo\n");
+            statistics_connected_layer(*l.wo);
+            printf("uf\n");
+            statistics_connected_layer(*l.uf);
+            printf("ui\n");
+            statistics_connected_layer(*l.ui);
+            printf("ug\n");
+            statistics_connected_layer(*l.ug);
+            printf("uo\n");
+            statistics_connected_layer(*l.uo);
+        }
+        printf("\n");
+    }
+}
+
+void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        layer l = net.layers[i];
+        if (l.type == CONVOLUTIONAL && l.batch_normalize) {
+            denormalize_convolutional_layer(l);
+            net.layers[i].batch_normalize=0;
+        }
+        if (l.type == CONNECTED && l.batch_normalize) {
+            denormalize_connected_layer(l);
+            net.layers[i].batch_normalize=0;
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            denormalize_connected_layer(*l.input_z_layer);
+            denormalize_connected_layer(*l.input_r_layer);
+            denormalize_connected_layer(*l.input_h_layer);
+            denormalize_connected_layer(*l.state_z_layer);
+            denormalize_connected_layer(*l.state_r_layer);
+            denormalize_connected_layer(*l.state_h_layer);
+            l.input_z_layer->batch_normalize = 0;
+            l.input_r_layer->batch_normalize = 0;
+            l.input_h_layer->batch_normalize = 0;
+            l.state_z_layer->batch_normalize = 0;
+            l.state_r_layer->batch_normalize = 0;
+            l.state_h_layer->batch_normalize = 0;
+            net.layers[i].batch_normalize=0;
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            denormalize_connected_layer(*l.wf);
+            denormalize_connected_layer(*l.wi);
+            denormalize_connected_layer(*l.wg);
+            denormalize_connected_layer(*l.wo);
+            denormalize_connected_layer(*l.uf);
+            denormalize_connected_layer(*l.ui);
+            denormalize_connected_layer(*l.ug);
+            denormalize_connected_layer(*l.uo);
+            l.wf->batch_normalize = 0;
+            l.wi->batch_normalize = 0;
+            l.wg->batch_normalize = 0;
+            l.wo->batch_normalize = 0;
+            l.uf->batch_normalize = 0;
+            l.ui->batch_normalize = 0;
+            l.ug->batch_normalize = 0;
+            l.uo->batch_normalize = 0;
+            net.layers[i].batch_normalize=0;
+		}
+    }
+    save_weights(net, outfile);
+}
+
+void visualize(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    visualize_network(net);
+#ifdef OPENCV
+    wait_until_press_key_cv();
+#endif
+}
+
+//int main(int argc, char **argv)
+//{
+//#ifdef _DEBUG
+//	_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
+//    printf(" _DEBUG is used \n");
+//#endif
+//
+//#ifdef DEBUG
+//    printf(" DEBUG=1 \n");
+//#endif
+//
+//	int i;
+//	for (i = 0; i < argc; ++i) {
+//		if (!argv[i]) continue;
+//		strip_args(argv[i]);
+//	}
+//
+//    //test_resize("data/bad.jpg");
+//    //test_box();
+//    //test_convolutional_layer();
+//    if(argc < 2){
+//        fprintf(stderr, "usage: %s <function>\n", argv[0]);
+//        return 0;
+//    }
+//    gpu_index = find_int_arg(argc, argv, "-i", 0);
+//    if(find_arg(argc, argv, "-nogpu")) {
+//        gpu_index = -1;
+//        printf("\n Currently Darknet doesn't support -nogpu flag. If you want to use CPU - please compile Darknet with GPU=0 in the Makefile, or compile darknet_no_gpu.sln on Windows.\n");
+//        exit(-1);
+//    }
+//
+//#ifndef GPU
+//    gpu_index = -1;
+//    printf(" GPU isn't used \n");
+//    init_cpu();
+//#else   // GPU
+//    if(gpu_index >= 0){
+//        cuda_set_device(gpu_index);
+//        CHECK_CUDA(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync));
+//    }
+//
+//    show_cuda_cudnn_info();
+//    cuda_debug_sync = find_arg(argc, argv, "-cuda_debug_sync");
+//
+//#ifdef CUDNN_HALF
+//    printf(" CUDNN_HALF=1 \n");
+//#endif  // CUDNN_HALF
+//
+//#endif  // GPU
+//
+//    show_opencv_info();
+//
+//    if (0 == strcmp(argv[1], "average")){
+//        average(argc, argv);
+//    } else if (0 == strcmp(argv[1], "yolo")){
+//        run_yolo(argc, argv);
+//    } else if (0 == strcmp(argv[1], "voxel")){
+//        run_voxel(argc, argv);
+//    } else if (0 == strcmp(argv[1], "super")){
+//        run_super(argc, argv);
+//    } else if (0 == strcmp(argv[1], "detector")){
+//        run_detector(argc, argv);
+//    } else if (0 == strcmp(argv[1], "detect")){
+//        float thresh = find_float_arg(argc, argv, "-thresh", .24);
+//		int ext_output = find_arg(argc, argv, "-ext_output");
+//        char *filename = (argc > 4) ? argv[4]: 0;
+//        test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, 0.5, 0, ext_output, 0, NULL, 0, 0);
+//    } else if (0 == strcmp(argv[1], "cifar")){
+//        run_cifar(argc, argv);
+//    } else if (0 == strcmp(argv[1], "go")){
+//        run_go(argc, argv);
+//    } else if (0 == strcmp(argv[1], "rnn")){
+//        run_char_rnn(argc, argv);
+//    } else if (0 == strcmp(argv[1], "vid")){
+//        run_vid_rnn(argc, argv);
+//    } else if (0 == strcmp(argv[1], "coco")){
+//        run_coco(argc, argv);
+//    } else if (0 == strcmp(argv[1], "classify")){
+//        predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
+//    } else if (0 == strcmp(argv[1], "classifier")){
+//        run_classifier(argc, argv);
+//    } else if (0 == strcmp(argv[1], "art")){
+//        run_art(argc, argv);
+//    } else if (0 == strcmp(argv[1], "tag")){
+//        run_tag(argc, argv);
+//    } else if (0 == strcmp(argv[1], "compare")){
+//        run_compare(argc, argv);
+//    } else if (0 == strcmp(argv[1], "dice")){
+//        run_dice(argc, argv);
+//    } else if (0 == strcmp(argv[1], "writing")){
+//        run_writing(argc, argv);
+//    } else if (0 == strcmp(argv[1], "3d")){
+//        composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
+//    } else if (0 == strcmp(argv[1], "test")){
+//        test_resize(argv[2]);
+//    } else if (0 == strcmp(argv[1], "captcha")){
+//        run_captcha(argc, argv);
+//    } else if (0 == strcmp(argv[1], "nightmare")){
+//        run_nightmare(argc, argv);
+//    } else if (0 == strcmp(argv[1], "rgbgr")){
+//        rgbgr_net(argv[2], argv[3], argv[4]);
+//    } else if (0 == strcmp(argv[1], "reset")){
+//        reset_normalize_net(argv[2], argv[3], argv[4]);
+//    } else if (0 == strcmp(argv[1], "denormalize")){
+//        denormalize_net(argv[2], argv[3], argv[4]);
+//    } else if (0 == strcmp(argv[1], "statistics")){
+//        statistics_net(argv[2], argv[3]);
+//    } else if (0 == strcmp(argv[1], "normalize")){
+//        normalize_net(argv[2], argv[3], argv[4]);
+//    } else if (0 == strcmp(argv[1], "rescale")){
+//        rescale_net(argv[2], argv[3], argv[4]);
+//    } else if (0 == strcmp(argv[1], "ops")){
+//        operations(argv[2]);
+//    } else if (0 == strcmp(argv[1], "speed")){
+//        speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
+//    } else if (0 == strcmp(argv[1], "oneoff")){
+//        oneoff(argv[2], argv[3], argv[4]);
+//    } else if (0 == strcmp(argv[1], "partial")){
+//        partial(argv[2], argv[3], argv[4], atoi(argv[5]));
+//    } else if (0 == strcmp(argv[1], "visualize")){
+//        visualize(argv[2], (argc > 3) ? argv[3] : 0);
+//    } else if (0 == strcmp(argv[1], "imtest")){
+//        test_resize(argv[2]);
+//    } else {
+//        fprintf(stderr, "Not an option: %s\n", argv[1]);
+//    }
+//    return 0;
+//}

--
Gitblit v1.8.0