From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/darknet.c | 1118 +++++++++++++++++++++++++++++----------------------------- 1 files changed, 559 insertions(+), 559 deletions(-) diff --git a/lib/detecter_tools/darknet/darknet.c b/lib/detecter_tools/darknet/darknet.c index d6500ed..6c52b10 100644 --- a/lib/detecter_tools/darknet/darknet.c +++ b/lib/detecter_tools/darknet/darknet.c @@ -1,559 +1,559 @@ -#include "darknet.h" -#include <time.h> -#include <stdlib.h> -#include <stdio.h> -#if defined(_MSC_VER) && defined(_DEBUG) -#include <crtdbg.h> -#endif - -#include "parser.h" -#include "utils.h" -#include "dark_cuda.h" -#include "blas.h" -#include "connected_layer.h" - - -extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top); -extern void run_voxel(int argc, char **argv); -extern void run_yolo(int argc, char **argv); -extern void run_detector(int argc, char **argv); -extern void run_coco(int argc, char **argv); -extern void run_writing(int argc, char **argv); -extern void run_captcha(int argc, char **argv); -extern void run_nightmare(int argc, char **argv); -extern void run_dice(int argc, char **argv); -extern void run_compare(int argc, char **argv); -extern void run_classifier(int argc, char **argv); -extern void run_char_rnn(int argc, char **argv); -extern void run_vid_rnn(int argc, char **argv); -extern void run_tag(int argc, char **argv); -extern void run_cifar(int argc, char **argv); -extern void run_go(int argc, char **argv); -extern void run_art(int argc, char **argv); -extern void run_super(int argc, char **argv); - -void average(int argc, char *argv[]) -{ - char *cfgfile = argv[2]; - char *outfile = argv[3]; - gpu_index = -1; - network net = parse_network_cfg(cfgfile); - network sum = parse_network_cfg(cfgfile); - - char *weightfile = argv[4]; - load_weights(&sum, weightfile); - - int i, j; - int n = argc - 5; - for(i = 0; i < n; ++i){ - weightfile = argv[i+5]; - load_weights(&net, weightfile); - for(j = 0; j < net.n; ++j){ - layer l = net.layers[j]; - layer out = sum.layers[j]; - if(l.type == CONVOLUTIONAL){ - int num = l.n*l.c*l.size*l.size; - axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1); - axpy_cpu(num, 1, l.weights, 1, out.weights, 1); - if(l.batch_normalize){ - axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1); - axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1); - axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1); - } - } - if(l.type == CONNECTED){ - axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1); - axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1); - } - } - } - n = n+1; - for(j = 0; j < net.n; ++j){ - layer l = sum.layers[j]; - if(l.type == CONVOLUTIONAL){ - int num = l.n*l.c*l.size*l.size; - scal_cpu(l.n, 1./n, l.biases, 1); - scal_cpu(num, 1./n, l.weights, 1); - if(l.batch_normalize){ - scal_cpu(l.n, 1./n, l.scales, 1); - scal_cpu(l.n, 1./n, l.rolling_mean, 1); - scal_cpu(l.n, 1./n, l.rolling_variance, 1); - } - } - if(l.type == CONNECTED){ - scal_cpu(l.outputs, 1./n, l.biases, 1); - scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1); - } - } - save_weights(sum, outfile); -} - -void speed(char *cfgfile, int tics) -{ - if (tics == 0) tics = 1000; - network net = parse_network_cfg(cfgfile); - set_batch_network(&net, 1); - int i; - time_t start = time(0); - image im = make_image(net.w, net.h, net.c); - for(i = 0; i < tics; ++i){ - network_predict(net, im.data); - } - double t = difftime(time(0), start); - printf("\n%d evals, %f Seconds\n", tics, t); - printf("Speed: %f sec/eval\n", t/tics); - printf("Speed: %f Hz\n", tics/t); -} - -void operations(char *cfgfile) -{ - gpu_index = -1; - network net = parse_network_cfg(cfgfile); - int i; - long ops = 0; - for(i = 0; i < net.n; ++i){ - layer l = net.layers[i]; - if(l.type == CONVOLUTIONAL){ - ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w; - } else if(l.type == CONNECTED){ - ops += 2l * l.inputs * l.outputs; - } else if (l.type == RNN){ - ops += 2l * l.input_layer->inputs * l.input_layer->outputs; - ops += 2l * l.self_layer->inputs * l.self_layer->outputs; - ops += 2l * l.output_layer->inputs * l.output_layer->outputs; - } else if (l.type == GRU){ - ops += 2l * l.uz->inputs * l.uz->outputs; - ops += 2l * l.uh->inputs * l.uh->outputs; - ops += 2l * l.ur->inputs * l.ur->outputs; - ops += 2l * l.wz->inputs * l.wz->outputs; - ops += 2l * l.wh->inputs * l.wh->outputs; - ops += 2l * l.wr->inputs * l.wr->outputs; - } else if (l.type == LSTM){ - ops += 2l * l.uf->inputs * l.uf->outputs; - ops += 2l * l.ui->inputs * l.ui->outputs; - ops += 2l * l.ug->inputs * l.ug->outputs; - ops += 2l * l.uo->inputs * l.uo->outputs; - ops += 2l * l.wf->inputs * l.wf->outputs; - ops += 2l * l.wi->inputs * l.wi->outputs; - ops += 2l * l.wg->inputs * l.wg->outputs; - ops += 2l * l.wo->inputs * l.wo->outputs; - } - } - printf("Floating Point Operations: %ld\n", ops); - printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.); -} - -void oneoff(char *cfgfile, char *weightfile, char *outfile) -{ - gpu_index = -1; - network net = parse_network_cfg(cfgfile); - int oldn = net.layers[net.n - 2].n; - int c = net.layers[net.n - 2].c; - net.layers[net.n - 2].n = 9372; - net.layers[net.n - 2].biases += 5; - net.layers[net.n - 2].weights += 5*c; - if(weightfile){ - load_weights(&net, weightfile); - } - net.layers[net.n - 2].biases -= 5; - net.layers[net.n - 2].weights -= 5*c; - net.layers[net.n - 2].n = oldn; - printf("%d\n", oldn); - layer l = net.layers[net.n - 2]; - copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1); - copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1); - copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1); - copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1); - *net.seen = 0; - *net.cur_iteration = 0; - save_weights(net, outfile); -} - -void partial(char *cfgfile, char *weightfile, char *outfile, int max) -{ - gpu_index = -1; - network net = parse_network_cfg_custom(cfgfile, 1, 1); - if(weightfile){ - load_weights_upto(&net, weightfile, max); - } - *net.seen = 0; - *net.cur_iteration = 0; - save_weights_upto(net, outfile, max); -} - -#include "convolutional_layer.h" -void rescale_net(char *cfgfile, char *weightfile, char *outfile) -{ - gpu_index = -1; - network net = parse_network_cfg(cfgfile); - if(weightfile){ - load_weights(&net, weightfile); - } - int i; - for(i = 0; i < net.n; ++i){ - layer l = net.layers[i]; - if(l.type == CONVOLUTIONAL){ - rescale_weights(l, 2, -.5); - break; - } - } - save_weights(net, outfile); -} - -void rgbgr_net(char *cfgfile, char *weightfile, char *outfile) -{ - gpu_index = -1; - network net = parse_network_cfg(cfgfile); - if(weightfile){ - load_weights(&net, weightfile); - } - int i; - for(i = 0; i < net.n; ++i){ - layer l = net.layers[i]; - if(l.type == CONVOLUTIONAL){ - rgbgr_weights(l); - break; - } - } - save_weights(net, outfile); -} - -void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile) -{ - gpu_index = -1; - network net = parse_network_cfg(cfgfile); - if (weightfile) { - load_weights(&net, weightfile); - } - int i; - for (i = 0; i < net.n; ++i) { - layer l = net.layers[i]; - if (l.type == CONVOLUTIONAL && l.batch_normalize) { - denormalize_convolutional_layer(l); - } - if (l.type == CONNECTED && l.batch_normalize) { - denormalize_connected_layer(l); - } - if (l.type == GRU && l.batch_normalize) { - denormalize_connected_layer(*l.input_z_layer); - denormalize_connected_layer(*l.input_r_layer); - denormalize_connected_layer(*l.input_h_layer); - denormalize_connected_layer(*l.state_z_layer); - denormalize_connected_layer(*l.state_r_layer); - denormalize_connected_layer(*l.state_h_layer); - } - if (l.type == LSTM && l.batch_normalize) { - denormalize_connected_layer(*l.wf); - denormalize_connected_layer(*l.wi); - denormalize_connected_layer(*l.wg); - denormalize_connected_layer(*l.wo); - denormalize_connected_layer(*l.uf); - denormalize_connected_layer(*l.ui); - denormalize_connected_layer(*l.ug); - denormalize_connected_layer(*l.uo); - } - } - save_weights(net, outfile); -} - -layer normalize_layer(layer l, int n) -{ - int j; - l.batch_normalize=1; - l.scales = (float*)xcalloc(n, sizeof(float)); - for(j = 0; j < n; ++j){ - l.scales[j] = 1; - } - l.rolling_mean = (float*)xcalloc(n, sizeof(float)); - l.rolling_variance = (float*)xcalloc(n, sizeof(float)); - return l; -} - -void normalize_net(char *cfgfile, char *weightfile, char *outfile) -{ - gpu_index = -1; - network net = parse_network_cfg(cfgfile); - if(weightfile){ - load_weights(&net, weightfile); - } - int i; - for(i = 0; i < net.n; ++i){ - layer l = net.layers[i]; - if(l.type == CONVOLUTIONAL && !l.batch_normalize){ - net.layers[i] = normalize_layer(l, l.n); - } - if (l.type == CONNECTED && !l.batch_normalize) { - net.layers[i] = normalize_layer(l, l.outputs); - } - if (l.type == GRU && l.batch_normalize) { - *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs); - *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs); - *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs); - *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs); - *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs); - *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs); - net.layers[i].batch_normalize=1; - } - if (l.type == LSTM && l.batch_normalize) { - *l.wf = normalize_layer(*l.wf, l.wf->outputs); - *l.wi = normalize_layer(*l.wi, l.wi->outputs); - *l.wg = normalize_layer(*l.wg, l.wg->outputs); - *l.wo = normalize_layer(*l.wo, l.wo->outputs); - *l.uf = normalize_layer(*l.uf, l.uf->outputs); - *l.ui = normalize_layer(*l.ui, l.ui->outputs); - *l.ug = normalize_layer(*l.ug, l.ug->outputs); - *l.uo = normalize_layer(*l.uo, l.uo->outputs); - net.layers[i].batch_normalize=1; - } - } - save_weights(net, outfile); -} - -void statistics_net(char *cfgfile, char *weightfile) -{ - gpu_index = -1; - network net = parse_network_cfg(cfgfile); - if (weightfile) { - load_weights(&net, weightfile); - } - int i; - for (i = 0; i < net.n; ++i) { - layer l = net.layers[i]; - if (l.type == CONNECTED && l.batch_normalize) { - printf("Connected Layer %d\n", i); - statistics_connected_layer(l); - } - if (l.type == GRU && l.batch_normalize) { - printf("GRU Layer %d\n", i); - printf("Input Z\n"); - statistics_connected_layer(*l.input_z_layer); - printf("Input R\n"); - statistics_connected_layer(*l.input_r_layer); - printf("Input H\n"); - statistics_connected_layer(*l.input_h_layer); - printf("State Z\n"); - statistics_connected_layer(*l.state_z_layer); - printf("State R\n"); - statistics_connected_layer(*l.state_r_layer); - printf("State H\n"); - statistics_connected_layer(*l.state_h_layer); - } - if (l.type == LSTM && l.batch_normalize) { - printf("LSTM Layer %d\n", i); - printf("wf\n"); - statistics_connected_layer(*l.wf); - printf("wi\n"); - statistics_connected_layer(*l.wi); - printf("wg\n"); - statistics_connected_layer(*l.wg); - printf("wo\n"); - statistics_connected_layer(*l.wo); - printf("uf\n"); - statistics_connected_layer(*l.uf); - printf("ui\n"); - statistics_connected_layer(*l.ui); - printf("ug\n"); - statistics_connected_layer(*l.ug); - printf("uo\n"); - statistics_connected_layer(*l.uo); - } - printf("\n"); - } -} - -void denormalize_net(char *cfgfile, char *weightfile, char *outfile) -{ - gpu_index = -1; - network net = parse_network_cfg(cfgfile); - if (weightfile) { - load_weights(&net, weightfile); - } - int i; - for (i = 0; i < net.n; ++i) { - layer l = net.layers[i]; - if (l.type == CONVOLUTIONAL && l.batch_normalize) { - denormalize_convolutional_layer(l); - net.layers[i].batch_normalize=0; - } - if (l.type == CONNECTED && l.batch_normalize) { - denormalize_connected_layer(l); - net.layers[i].batch_normalize=0; - } - if (l.type == GRU && l.batch_normalize) { - denormalize_connected_layer(*l.input_z_layer); - denormalize_connected_layer(*l.input_r_layer); - denormalize_connected_layer(*l.input_h_layer); - denormalize_connected_layer(*l.state_z_layer); - denormalize_connected_layer(*l.state_r_layer); - denormalize_connected_layer(*l.state_h_layer); - l.input_z_layer->batch_normalize = 0; - l.input_r_layer->batch_normalize = 0; - l.input_h_layer->batch_normalize = 0; - l.state_z_layer->batch_normalize = 0; - l.state_r_layer->batch_normalize = 0; - l.state_h_layer->batch_normalize = 0; - net.layers[i].batch_normalize=0; - } - if (l.type == GRU && l.batch_normalize) { - denormalize_connected_layer(*l.wf); - denormalize_connected_layer(*l.wi); - denormalize_connected_layer(*l.wg); - denormalize_connected_layer(*l.wo); - denormalize_connected_layer(*l.uf); - denormalize_connected_layer(*l.ui); - denormalize_connected_layer(*l.ug); - denormalize_connected_layer(*l.uo); - l.wf->batch_normalize = 0; - l.wi->batch_normalize = 0; - l.wg->batch_normalize = 0; - l.wo->batch_normalize = 0; - l.uf->batch_normalize = 0; - l.ui->batch_normalize = 0; - l.ug->batch_normalize = 0; - l.uo->batch_normalize = 0; - net.layers[i].batch_normalize=0; - } - } - save_weights(net, outfile); -} - -void visualize(char *cfgfile, char *weightfile) -{ - network net = parse_network_cfg(cfgfile); - if(weightfile){ - load_weights(&net, weightfile); - } - visualize_network(net); -#ifdef OPENCV - wait_until_press_key_cv(); -#endif -} - -//int main(int argc, char **argv) -//{ -//#ifdef _DEBUG -// _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF); -// printf(" _DEBUG is used \n"); -//#endif -// -//#ifdef DEBUG -// printf(" DEBUG=1 \n"); -//#endif -// -// int i; -// for (i = 0; i < argc; ++i) { -// if (!argv[i]) continue; -// strip_args(argv[i]); -// } -// -// //test_resize("data/bad.jpg"); -// //test_box(); -// //test_convolutional_layer(); -// if(argc < 2){ -// fprintf(stderr, "usage: %s <function>\n", argv[0]); -// return 0; -// } -// gpu_index = find_int_arg(argc, argv, "-i", 0); -// if(find_arg(argc, argv, "-nogpu")) { -// gpu_index = -1; -// printf("\n Currently Darknet doesn't support -nogpu flag. If you want to use CPU - please compile Darknet with GPU=0 in the Makefile, or compile darknet_no_gpu.sln on Windows.\n"); -// exit(-1); -// } -// -//#ifndef GPU -// gpu_index = -1; -// printf(" GPU isn't used \n"); -// init_cpu(); -//#else // GPU -// if(gpu_index >= 0){ -// cuda_set_device(gpu_index); -// CHECK_CUDA(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync)); -// } -// -// show_cuda_cudnn_info(); -// cuda_debug_sync = find_arg(argc, argv, "-cuda_debug_sync"); -// -//#ifdef CUDNN_HALF -// printf(" CUDNN_HALF=1 \n"); -//#endif // CUDNN_HALF -// -//#endif // GPU -// -// show_opencv_info(); -// -// if (0 == strcmp(argv[1], "average")){ -// average(argc, argv); -// } else if (0 == strcmp(argv[1], "yolo")){ -// run_yolo(argc, argv); -// } else if (0 == strcmp(argv[1], "voxel")){ -// run_voxel(argc, argv); -// } else if (0 == strcmp(argv[1], "super")){ -// run_super(argc, argv); -// } else if (0 == strcmp(argv[1], "detector")){ -// run_detector(argc, argv); -// } else if (0 == strcmp(argv[1], "detect")){ -// float thresh = find_float_arg(argc, argv, "-thresh", .24); -// int ext_output = find_arg(argc, argv, "-ext_output"); -// char *filename = (argc > 4) ? argv[4]: 0; -// test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, 0.5, 0, ext_output, 0, NULL, 0, 0); -// } else if (0 == strcmp(argv[1], "cifar")){ -// run_cifar(argc, argv); -// } else if (0 == strcmp(argv[1], "go")){ -// run_go(argc, argv); -// } else if (0 == strcmp(argv[1], "rnn")){ -// run_char_rnn(argc, argv); -// } else if (0 == strcmp(argv[1], "vid")){ -// run_vid_rnn(argc, argv); -// } else if (0 == strcmp(argv[1], "coco")){ -// run_coco(argc, argv); -// } else if (0 == strcmp(argv[1], "classify")){ -// predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5); -// } else if (0 == strcmp(argv[1], "classifier")){ -// run_classifier(argc, argv); -// } else if (0 == strcmp(argv[1], "art")){ -// run_art(argc, argv); -// } else if (0 == strcmp(argv[1], "tag")){ -// run_tag(argc, argv); -// } else if (0 == strcmp(argv[1], "compare")){ -// run_compare(argc, argv); -// } else if (0 == strcmp(argv[1], "dice")){ -// run_dice(argc, argv); -// } else if (0 == strcmp(argv[1], "writing")){ -// run_writing(argc, argv); -// } else if (0 == strcmp(argv[1], "3d")){ -// composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0); -// } else if (0 == strcmp(argv[1], "test")){ -// test_resize(argv[2]); -// } else if (0 == strcmp(argv[1], "captcha")){ -// run_captcha(argc, argv); -// } else if (0 == strcmp(argv[1], "nightmare")){ -// run_nightmare(argc, argv); -// } else if (0 == strcmp(argv[1], "rgbgr")){ -// rgbgr_net(argv[2], argv[3], argv[4]); -// } else if (0 == strcmp(argv[1], "reset")){ -// reset_normalize_net(argv[2], argv[3], argv[4]); -// } else if (0 == strcmp(argv[1], "denormalize")){ -// denormalize_net(argv[2], argv[3], argv[4]); -// } else if (0 == strcmp(argv[1], "statistics")){ -// statistics_net(argv[2], argv[3]); -// } else if (0 == strcmp(argv[1], "normalize")){ -// normalize_net(argv[2], argv[3], argv[4]); -// } else if (0 == strcmp(argv[1], "rescale")){ -// rescale_net(argv[2], argv[3], argv[4]); -// } else if (0 == strcmp(argv[1], "ops")){ -// operations(argv[2]); -// } else if (0 == strcmp(argv[1], "speed")){ -// speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0); -// } else if (0 == strcmp(argv[1], "oneoff")){ -// oneoff(argv[2], argv[3], argv[4]); -// } else if (0 == strcmp(argv[1], "partial")){ -// partial(argv[2], argv[3], argv[4], atoi(argv[5])); -// } else if (0 == strcmp(argv[1], "visualize")){ -// visualize(argv[2], (argc > 3) ? argv[3] : 0); -// } else if (0 == strcmp(argv[1], "imtest")){ -// test_resize(argv[2]); -// } else { -// fprintf(stderr, "Not an option: %s\n", argv[1]); -// } -// return 0; -//} +#include "darknet.h" +#include <time.h> +#include <stdlib.h> +#include <stdio.h> +#if defined(_MSC_VER) && defined(_DEBUG) +#include <crtdbg.h> +#endif + +#include "parser.h" +#include "utils.h" +#include "dark_cuda.h" +#include "blas.h" +#include "connected_layer.h" + + +extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top); +extern void run_voxel(int argc, char **argv); +extern void run_yolo(int argc, char **argv); +extern void run_detector(int argc, char **argv); +extern void run_coco(int argc, char **argv); +extern void run_writing(int argc, char **argv); +extern void run_captcha(int argc, char **argv); +extern void run_nightmare(int argc, char **argv); +extern void run_dice(int argc, char **argv); +extern void run_compare(int argc, char **argv); +extern void run_classifier(int argc, char **argv); +extern void run_char_rnn(int argc, char **argv); +extern void run_vid_rnn(int argc, char **argv); +extern void run_tag(int argc, char **argv); +extern void run_cifar(int argc, char **argv); +extern void run_go(int argc, char **argv); +extern void run_art(int argc, char **argv); +extern void run_super(int argc, char **argv); + +void average(int argc, char *argv[]) +{ + char *cfgfile = argv[2]; + char *outfile = argv[3]; + gpu_index = -1; + network net = parse_network_cfg(cfgfile); + network sum = parse_network_cfg(cfgfile); + + char *weightfile = argv[4]; + load_weights(&sum, weightfile); + + int i, j; + int n = argc - 5; + for(i = 0; i < n; ++i){ + weightfile = argv[i+5]; + load_weights(&net, weightfile); + for(j = 0; j < net.n; ++j){ + layer l = net.layers[j]; + layer out = sum.layers[j]; + if(l.type == CONVOLUTIONAL){ + int num = l.n*l.c*l.size*l.size; + axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1); + axpy_cpu(num, 1, l.weights, 1, out.weights, 1); + if(l.batch_normalize){ + axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1); + axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1); + axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1); + } + } + if(l.type == CONNECTED){ + axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1); + axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1); + } + } + } + n = n+1; + for(j = 0; j < net.n; ++j){ + layer l = sum.layers[j]; + if(l.type == CONVOLUTIONAL){ + int num = l.n*l.c*l.size*l.size; + scal_cpu(l.n, 1./n, l.biases, 1); + scal_cpu(num, 1./n, l.weights, 1); + if(l.batch_normalize){ + scal_cpu(l.n, 1./n, l.scales, 1); + scal_cpu(l.n, 1./n, l.rolling_mean, 1); + scal_cpu(l.n, 1./n, l.rolling_variance, 1); + } + } + if(l.type == CONNECTED){ + scal_cpu(l.outputs, 1./n, l.biases, 1); + scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1); + } + } + save_weights(sum, outfile); +} + +void speed(char *cfgfile, int tics) +{ + if (tics == 0) tics = 1000; + network net = parse_network_cfg(cfgfile); + set_batch_network(&net, 1); + int i; + time_t start = time(0); + image im = make_image(net.w, net.h, net.c); + for(i = 0; i < tics; ++i){ + network_predict(net, im.data); + } + double t = difftime(time(0), start); + printf("\n%d evals, %f Seconds\n", tics, t); + printf("Speed: %f sec/eval\n", t/tics); + printf("Speed: %f Hz\n", tics/t); +} + +void operations(char *cfgfile) +{ + gpu_index = -1; + network net = parse_network_cfg(cfgfile); + int i; + long ops = 0; + for(i = 0; i < net.n; ++i){ + layer l = net.layers[i]; + if(l.type == CONVOLUTIONAL){ + ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w; + } else if(l.type == CONNECTED){ + ops += 2l * l.inputs * l.outputs; + } else if (l.type == RNN){ + ops += 2l * l.input_layer->inputs * l.input_layer->outputs; + ops += 2l * l.self_layer->inputs * l.self_layer->outputs; + ops += 2l * l.output_layer->inputs * l.output_layer->outputs; + } else if (l.type == GRU){ + ops += 2l * l.uz->inputs * l.uz->outputs; + ops += 2l * l.uh->inputs * l.uh->outputs; + ops += 2l * l.ur->inputs * l.ur->outputs; + ops += 2l * l.wz->inputs * l.wz->outputs; + ops += 2l * l.wh->inputs * l.wh->outputs; + ops += 2l * l.wr->inputs * l.wr->outputs; + } else if (l.type == LSTM){ + ops += 2l * l.uf->inputs * l.uf->outputs; + ops += 2l * l.ui->inputs * l.ui->outputs; + ops += 2l * l.ug->inputs * l.ug->outputs; + ops += 2l * l.uo->inputs * l.uo->outputs; + ops += 2l * l.wf->inputs * l.wf->outputs; + ops += 2l * l.wi->inputs * l.wi->outputs; + ops += 2l * l.wg->inputs * l.wg->outputs; + ops += 2l * l.wo->inputs * l.wo->outputs; + } + } + printf("Floating Point Operations: %ld\n", ops); + printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.); +} + +void oneoff(char *cfgfile, char *weightfile, char *outfile) +{ + gpu_index = -1; + network net = parse_network_cfg(cfgfile); + int oldn = net.layers[net.n - 2].n; + int c = net.layers[net.n - 2].c; + net.layers[net.n - 2].n = 9372; + net.layers[net.n - 2].biases += 5; + net.layers[net.n - 2].weights += 5*c; + if(weightfile){ + load_weights(&net, weightfile); + } + net.layers[net.n - 2].biases -= 5; + net.layers[net.n - 2].weights -= 5*c; + net.layers[net.n - 2].n = oldn; + printf("%d\n", oldn); + layer l = net.layers[net.n - 2]; + copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1); + copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1); + copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1); + copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1); + *net.seen = 0; + *net.cur_iteration = 0; + save_weights(net, outfile); +} + +void partial(char *cfgfile, char *weightfile, char *outfile, int max) +{ + gpu_index = -1; + network net = parse_network_cfg_custom(cfgfile, 1, 1); + if(weightfile){ + load_weights_upto(&net, weightfile, max); + } + *net.seen = 0; + *net.cur_iteration = 0; + save_weights_upto(net, outfile, max, 0); +} + +#include "convolutional_layer.h" +void rescale_net(char *cfgfile, char *weightfile, char *outfile) +{ + gpu_index = -1; + network net = parse_network_cfg(cfgfile); + if(weightfile){ + load_weights(&net, weightfile); + } + int i; + for(i = 0; i < net.n; ++i){ + layer l = net.layers[i]; + if(l.type == CONVOLUTIONAL){ + rescale_weights(l, 2, -.5); + break; + } + } + save_weights(net, outfile); +} + +void rgbgr_net(char *cfgfile, char *weightfile, char *outfile) +{ + gpu_index = -1; + network net = parse_network_cfg(cfgfile); + if(weightfile){ + load_weights(&net, weightfile); + } + int i; + for(i = 0; i < net.n; ++i){ + layer l = net.layers[i]; + if(l.type == CONVOLUTIONAL){ + rgbgr_weights(l); + break; + } + } + save_weights(net, outfile); +} + +void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile) +{ + gpu_index = -1; + network net = parse_network_cfg(cfgfile); + if (weightfile) { + load_weights(&net, weightfile); + } + int i; + for (i = 0; i < net.n; ++i) { + layer l = net.layers[i]; + if (l.type == CONVOLUTIONAL && l.batch_normalize) { + denormalize_convolutional_layer(l); + } + if (l.type == CONNECTED && l.batch_normalize) { + denormalize_connected_layer(l); + } + if (l.type == GRU && l.batch_normalize) { + denormalize_connected_layer(*l.input_z_layer); + denormalize_connected_layer(*l.input_r_layer); + denormalize_connected_layer(*l.input_h_layer); + denormalize_connected_layer(*l.state_z_layer); + denormalize_connected_layer(*l.state_r_layer); + denormalize_connected_layer(*l.state_h_layer); + } + if (l.type == LSTM && l.batch_normalize) { + denormalize_connected_layer(*l.wf); + denormalize_connected_layer(*l.wi); + denormalize_connected_layer(*l.wg); + denormalize_connected_layer(*l.wo); + denormalize_connected_layer(*l.uf); + denormalize_connected_layer(*l.ui); + denormalize_connected_layer(*l.ug); + denormalize_connected_layer(*l.uo); + } + } + save_weights(net, outfile); +} + +layer normalize_layer(layer l, int n) +{ + int j; + l.batch_normalize=1; + l.scales = (float*)xcalloc(n, sizeof(float)); + for(j = 0; j < n; ++j){ + l.scales[j] = 1; + } + l.rolling_mean = (float*)xcalloc(n, sizeof(float)); + l.rolling_variance = (float*)xcalloc(n, sizeof(float)); + return l; +} + +void normalize_net(char *cfgfile, char *weightfile, char *outfile) +{ + gpu_index = -1; + network net = parse_network_cfg(cfgfile); + if(weightfile){ + load_weights(&net, weightfile); + } + int i; + for(i = 0; i < net.n; ++i){ + layer l = net.layers[i]; + if(l.type == CONVOLUTIONAL && !l.batch_normalize){ + net.layers[i] = normalize_layer(l, l.n); + } + if (l.type == CONNECTED && !l.batch_normalize) { + net.layers[i] = normalize_layer(l, l.outputs); + } + if (l.type == GRU && l.batch_normalize) { + *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs); + *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs); + *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs); + *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs); + *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs); + *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs); + net.layers[i].batch_normalize=1; + } + if (l.type == LSTM && l.batch_normalize) { + *l.wf = normalize_layer(*l.wf, l.wf->outputs); + *l.wi = normalize_layer(*l.wi, l.wi->outputs); + *l.wg = normalize_layer(*l.wg, l.wg->outputs); + *l.wo = normalize_layer(*l.wo, l.wo->outputs); + *l.uf = normalize_layer(*l.uf, l.uf->outputs); + *l.ui = normalize_layer(*l.ui, l.ui->outputs); + *l.ug = normalize_layer(*l.ug, l.ug->outputs); + *l.uo = normalize_layer(*l.uo, l.uo->outputs); + net.layers[i].batch_normalize=1; + } + } + save_weights(net, outfile); +} + +void statistics_net(char *cfgfile, char *weightfile) +{ + gpu_index = -1; + network net = parse_network_cfg(cfgfile); + if (weightfile) { + load_weights(&net, weightfile); + } + int i; + for (i = 0; i < net.n; ++i) { + layer l = net.layers[i]; + if (l.type == CONNECTED && l.batch_normalize) { + printf("Connected Layer %d\n", i); + statistics_connected_layer(l); + } + if (l.type == GRU && l.batch_normalize) { + printf("GRU Layer %d\n", i); + printf("Input Z\n"); + statistics_connected_layer(*l.input_z_layer); + printf("Input R\n"); + statistics_connected_layer(*l.input_r_layer); + printf("Input H\n"); + statistics_connected_layer(*l.input_h_layer); + printf("State Z\n"); + statistics_connected_layer(*l.state_z_layer); + printf("State R\n"); + statistics_connected_layer(*l.state_r_layer); + printf("State H\n"); + statistics_connected_layer(*l.state_h_layer); + } + if (l.type == LSTM && l.batch_normalize) { + printf("LSTM Layer %d\n", i); + printf("wf\n"); + statistics_connected_layer(*l.wf); + printf("wi\n"); + statistics_connected_layer(*l.wi); + printf("wg\n"); + statistics_connected_layer(*l.wg); + printf("wo\n"); + statistics_connected_layer(*l.wo); + printf("uf\n"); + statistics_connected_layer(*l.uf); + printf("ui\n"); + statistics_connected_layer(*l.ui); + printf("ug\n"); + statistics_connected_layer(*l.ug); + printf("uo\n"); + statistics_connected_layer(*l.uo); + } + printf("\n"); + } +} + +void denormalize_net(char *cfgfile, char *weightfile, char *outfile) +{ + gpu_index = -1; + network net = parse_network_cfg(cfgfile); + if (weightfile) { + load_weights(&net, weightfile); + } + int i; + for (i = 0; i < net.n; ++i) { + layer l = net.layers[i]; + if (l.type == CONVOLUTIONAL && l.batch_normalize) { + denormalize_convolutional_layer(l); + net.layers[i].batch_normalize=0; + } + if (l.type == CONNECTED && l.batch_normalize) { + denormalize_connected_layer(l); + net.layers[i].batch_normalize=0; + } + if (l.type == GRU && l.batch_normalize) { + denormalize_connected_layer(*l.input_z_layer); + denormalize_connected_layer(*l.input_r_layer); + denormalize_connected_layer(*l.input_h_layer); + denormalize_connected_layer(*l.state_z_layer); + denormalize_connected_layer(*l.state_r_layer); + denormalize_connected_layer(*l.state_h_layer); + l.input_z_layer->batch_normalize = 0; + l.input_r_layer->batch_normalize = 0; + l.input_h_layer->batch_normalize = 0; + l.state_z_layer->batch_normalize = 0; + l.state_r_layer->batch_normalize = 0; + l.state_h_layer->batch_normalize = 0; + net.layers[i].batch_normalize=0; + } + if (l.type == GRU && l.batch_normalize) { + denormalize_connected_layer(*l.wf); + denormalize_connected_layer(*l.wi); + denormalize_connected_layer(*l.wg); + denormalize_connected_layer(*l.wo); + denormalize_connected_layer(*l.uf); + denormalize_connected_layer(*l.ui); + denormalize_connected_layer(*l.ug); + denormalize_connected_layer(*l.uo); + l.wf->batch_normalize = 0; + l.wi->batch_normalize = 0; + l.wg->batch_normalize = 0; + l.wo->batch_normalize = 0; + l.uf->batch_normalize = 0; + l.ui->batch_normalize = 0; + l.ug->batch_normalize = 0; + l.uo->batch_normalize = 0; + net.layers[i].batch_normalize=0; + } + } + save_weights(net, outfile); +} + +void visualize(char *cfgfile, char *weightfile) +{ + network net = parse_network_cfg(cfgfile); + if(weightfile){ + load_weights(&net, weightfile); + } + visualize_network(net); +#ifdef OPENCV + wait_until_press_key_cv(); +#endif +} + +//int main(int argc, char **argv) +//{ +//#ifdef _DEBUG +// _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF); +// printf(" _DEBUG is used \n"); +//#endif +// +//#ifdef DEBUG +// printf(" DEBUG=1 \n"); +//#endif +// +// int i; +// for (i = 0; i < argc; ++i) { +// if (!argv[i]) continue; +// strip_args(argv[i]); +// } +// +// //test_resize("data/bad.jpg"); +// //test_box(); +// //test_convolutional_layer(); +// if(argc < 2){ +// fprintf(stderr, "usage: %s <function>\n", argv[0]); +// return 0; +// } +// gpu_index = find_int_arg(argc, argv, "-i", 0); +// if(find_arg(argc, argv, "-nogpu")) { +// gpu_index = -1; +// printf("\n Currently Darknet doesn't support -nogpu flag. If you want to use CPU - please compile Darknet with GPU=0 in the Makefile, or compile darknet_no_gpu.sln on Windows.\n"); +// exit(-1); +// } +// +//#ifndef GPU +// gpu_index = -1; +// printf(" GPU isn't used \n"); +// init_cpu(); +//#else // GPU +// if(gpu_index >= 0){ +// cuda_set_device(gpu_index); +// CHECK_CUDA(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync)); +// } +// +// show_cuda_cudnn_info(); +// cuda_debug_sync = find_arg(argc, argv, "-cuda_debug_sync"); +// +//#ifdef CUDNN_HALF +// printf(" CUDNN_HALF=1 \n"); +//#endif // CUDNN_HALF +// +//#endif // GPU +// +// show_opencv_info(); +// +// if (0 == strcmp(argv[1], "average")){ +// average(argc, argv); +// } else if (0 == strcmp(argv[1], "yolo")){ +// run_yolo(argc, argv); +// } else if (0 == strcmp(argv[1], "voxel")){ +// run_voxel(argc, argv); +// } else if (0 == strcmp(argv[1], "super")){ +// run_super(argc, argv); +// } else if (0 == strcmp(argv[1], "detector")){ +// run_detector(argc, argv); +// } else if (0 == strcmp(argv[1], "detect")){ +// float thresh = find_float_arg(argc, argv, "-thresh", .24); +// int ext_output = find_arg(argc, argv, "-ext_output"); +// char *filename = (argc > 4) ? argv[4]: 0; +// test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, 0.5, 0, ext_output, 0, NULL, 0, 0); +// } else if (0 == strcmp(argv[1], "cifar")){ +// run_cifar(argc, argv); +// } else if (0 == strcmp(argv[1], "go")){ +// run_go(argc, argv); +// } else if (0 == strcmp(argv[1], "rnn")){ +// run_char_rnn(argc, argv); +// } else if (0 == strcmp(argv[1], "vid")){ +// run_vid_rnn(argc, argv); +// } else if (0 == strcmp(argv[1], "coco")){ +// run_coco(argc, argv); +// } else if (0 == strcmp(argv[1], "classify")){ +// predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5); +// } else if (0 == strcmp(argv[1], "classifier")){ +// run_classifier(argc, argv); +// } else if (0 == strcmp(argv[1], "art")){ +// run_art(argc, argv); +// } else if (0 == strcmp(argv[1], "tag")){ +// run_tag(argc, argv); +// } else if (0 == strcmp(argv[1], "compare")){ +// run_compare(argc, argv); +// } else if (0 == strcmp(argv[1], "dice")){ +// run_dice(argc, argv); +// } else if (0 == strcmp(argv[1], "writing")){ +// run_writing(argc, argv); +// } else if (0 == strcmp(argv[1], "3d")){ +// composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0); +// } else if (0 == strcmp(argv[1], "test")){ +// test_resize(argv[2]); +// } else if (0 == strcmp(argv[1], "captcha")){ +// run_captcha(argc, argv); +// } else if (0 == strcmp(argv[1], "nightmare")){ +// run_nightmare(argc, argv); +// } else if (0 == strcmp(argv[1], "rgbgr")){ +// rgbgr_net(argv[2], argv[3], argv[4]); +// } else if (0 == strcmp(argv[1], "reset")){ +// reset_normalize_net(argv[2], argv[3], argv[4]); +// } else if (0 == strcmp(argv[1], "denormalize")){ +// denormalize_net(argv[2], argv[3], argv[4]); +// } else if (0 == strcmp(argv[1], "statistics")){ +// statistics_net(argv[2], argv[3]); +// } else if (0 == strcmp(argv[1], "normalize")){ +// normalize_net(argv[2], argv[3], argv[4]); +// } else if (0 == strcmp(argv[1], "rescale")){ +// rescale_net(argv[2], argv[3], argv[4]); +// } else if (0 == strcmp(argv[1], "ops")){ +// operations(argv[2]); +// } else if (0 == strcmp(argv[1], "speed")){ +// speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0); +// } else if (0 == strcmp(argv[1], "oneoff")){ +// oneoff(argv[2], argv[3], argv[4]); +// } else if (0 == strcmp(argv[1], "partial")){ +// partial(argv[2], argv[3], argv[4], atoi(argv[5])); +// } else if (0 == strcmp(argv[1], "visualize")){ +// visualize(argv[2], (argc > 3) ? argv[3] : 0); +// } else if (0 == strcmp(argv[1], "imtest")){ +// test_resize(argv[2]); +// } else { +// fprintf(stderr, "Not an option: %s\n", argv[1]); +// } +// return 0; +//} -- Gitblit v1.8.0