From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/deconvolutional_kernels.cu |  212 ++++++++++++++++++++++++++--------------------------
 1 files changed, 106 insertions(+), 106 deletions(-)

diff --git a/lib/detecter_tools/darknet/deconvolutional_kernels.cu b/lib/detecter_tools/darknet/deconvolutional_kernels.cu
index cc71cfc..6af65eb 100644
--- a/lib/detecter_tools/darknet/deconvolutional_kernels.cu
+++ b/lib/detecter_tools/darknet/deconvolutional_kernels.cu
@@ -1,106 +1,106 @@
-#include <cuda_runtime.h>
-#include <curand.h>
-#include <cublas_v2.h>
-
-#include "convolutional_layer.h"
-#include "deconvolutional_layer.h"
-#include "gemm.h"
-#include "blas.h"
-#include "im2col.h"
-#include "col2im.h"
-#include "utils.h"
-#include "dark_cuda.h"
-
-extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
-{
-    int i;
-    int out_h = deconvolutional_out_height(layer);
-    int out_w = deconvolutional_out_width(layer);
-    int size = out_h*out_w;
-
-    int m = layer.size*layer.size*layer.n;
-    int n = layer.h*layer.w;
-    int k = layer.c;
-
-    fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1);
-
-    for(i = 0; i < layer.batch; ++i){
-        float *a = layer.weights_gpu;
-        float *b = state.input + i*layer.c*layer.h*layer.w;
-        float *c = layer.col_image_gpu;
-
-        gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
-
-        col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size);
-    }
-    add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
-    activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
-}
-
-extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
-{
-    float alpha = 1./layer.batch;
-    int out_h = deconvolutional_out_height(layer);
-    int out_w = deconvolutional_out_width(layer);
-    int size = out_h*out_w;
-    int i;
-
-    gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu);
-    backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size);
-
-    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
-
-    for(i = 0; i < layer.batch; ++i){
-        int m = layer.c;
-        int n = layer.size*layer.size*layer.n;
-        int k = layer.h*layer.w;
-
-        float *a = state.input + i*m*n;
-        float *b = layer.col_image_gpu;
-        float *c = layer.weight_updates_gpu;
-
-        im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w,
-                layer.size, layer.stride, 0, b);
-        gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
-
-        if(state.delta){
-            int m = layer.c;
-            int n = layer.h*layer.w;
-            int k = layer.size*layer.size*layer.n;
-
-            float *a = layer.weights_gpu;
-            float *b = layer.col_image_gpu;
-            float *c = state.delta + i*n*m;
-
-            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-        }
-    }
-}
-
-extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer)
-{
-    cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
-    cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
-    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
-    cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
-}
-
-extern "C" void push_deconvolutional_layer(deconvolutional_layer layer)
-{
-    cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
-    cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
-    cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
-    cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
-}
-
-extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, int skip, float learning_rate, float momentum, float decay)
-{
-    int size = layer.size*layer.size*layer.c*layer.n;
-
-    axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
-    scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
-
-    axpy_ongpu(size, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
-    axpy_ongpu(size, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
-    scal_ongpu(size, momentum, layer.weight_updates_gpu, 1);
-}
+#include <cuda_runtime.h>
+#include <curand.h>
+#include <cublas_v2.h>
+
+#include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
+#include "gemm.h"
+#include "blas.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "utils.h"
+#include "dark_cuda.h"
+
+extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
+{
+    int i;
+    int out_h = deconvolutional_out_height(layer);
+    int out_w = deconvolutional_out_width(layer);
+    int size = out_h*out_w;
+
+    int m = layer.size*layer.size*layer.n;
+    int n = layer.h*layer.w;
+    int k = layer.c;
+
+    fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1);
+
+    for(i = 0; i < layer.batch; ++i){
+        float *a = layer.weights_gpu;
+        float *b = state.input + i*layer.c*layer.h*layer.w;
+        float *c = layer.col_image_gpu;
+
+        gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
+
+        col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size);
+    }
+    add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
+    activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
+}
+
+extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
+{
+    float alpha = 1./layer.batch;
+    int out_h = deconvolutional_out_height(layer);
+    int out_w = deconvolutional_out_width(layer);
+    int size = out_h*out_w;
+    int i;
+
+    gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu);
+    backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size);
+
+    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+
+    for(i = 0; i < layer.batch; ++i){
+        int m = layer.c;
+        int n = layer.size*layer.size*layer.n;
+        int k = layer.h*layer.w;
+
+        float *a = state.input + i*m*n;
+        float *b = layer.col_image_gpu;
+        float *c = layer.weight_updates_gpu;
+
+        im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w,
+                layer.size, layer.stride, 0, b);
+        gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
+
+        if(state.delta){
+            int m = layer.c;
+            int n = layer.h*layer.w;
+            int k = layer.size*layer.size*layer.n;
+
+            float *a = layer.weights_gpu;
+            float *b = layer.col_image_gpu;
+            float *c = state.delta + i*n*m;
+
+            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        }
+    }
+}
+
+extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer)
+{
+    cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
+    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+}
+
+extern "C" void push_deconvolutional_layer(deconvolutional_layer layer)
+{
+    cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
+    cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+}
+
+extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, int skip, float learning_rate, float momentum, float decay)
+{
+    int size = layer.size*layer.size*layer.c*layer.n;
+
+    axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
+    scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
+
+    axpy_ongpu(size, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
+    axpy_ongpu(size, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
+    scal_ongpu(size, momentum, layer.weight_updates_gpu, 1);
+}

--
Gitblit v1.8.0