From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/deconvolutional_kernels.cu | 212 ++++++++++++++++++++++++++-------------------------- 1 files changed, 106 insertions(+), 106 deletions(-) diff --git a/lib/detecter_tools/darknet/deconvolutional_kernels.cu b/lib/detecter_tools/darknet/deconvolutional_kernels.cu index cc71cfc..6af65eb 100644 --- a/lib/detecter_tools/darknet/deconvolutional_kernels.cu +++ b/lib/detecter_tools/darknet/deconvolutional_kernels.cu @@ -1,106 +1,106 @@ -#include <cuda_runtime.h> -#include <curand.h> -#include <cublas_v2.h> - -#include "convolutional_layer.h" -#include "deconvolutional_layer.h" -#include "gemm.h" -#include "blas.h" -#include "im2col.h" -#include "col2im.h" -#include "utils.h" -#include "dark_cuda.h" - -extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state) -{ - int i; - int out_h = deconvolutional_out_height(layer); - int out_w = deconvolutional_out_width(layer); - int size = out_h*out_w; - - int m = layer.size*layer.size*layer.n; - int n = layer.h*layer.w; - int k = layer.c; - - fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1); - - for(i = 0; i < layer.batch; ++i){ - float *a = layer.weights_gpu; - float *b = state.input + i*layer.c*layer.h*layer.w; - float *c = layer.col_image_gpu; - - gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n); - - col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size); - } - add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size); - activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation); -} - -extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state) -{ - float alpha = 1./layer.batch; - int out_h = deconvolutional_out_height(layer); - int out_w = deconvolutional_out_width(layer); - int size = out_h*out_w; - int i; - - gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu); - backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size); - - if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); - - for(i = 0; i < layer.batch; ++i){ - int m = layer.c; - int n = layer.size*layer.size*layer.n; - int k = layer.h*layer.w; - - float *a = state.input + i*m*n; - float *b = layer.col_image_gpu; - float *c = layer.weight_updates_gpu; - - im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w, - layer.size, layer.stride, 0, b); - gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n); - - if(state.delta){ - int m = layer.c; - int n = layer.h*layer.w; - int k = layer.size*layer.size*layer.n; - - float *a = layer.weights_gpu; - float *b = layer.col_image_gpu; - float *c = state.delta + i*n*m; - - gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); - } - } -} - -extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer) -{ - cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); - cuda_pull_array(layer.biases_gpu, layer.biases, layer.n); - cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); - cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); -} - -extern "C" void push_deconvolutional_layer(deconvolutional_layer layer) -{ - cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); - cuda_push_array(layer.biases_gpu, layer.biases, layer.n); - cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); - cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); -} - -extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, int skip, float learning_rate, float momentum, float decay) -{ - int size = layer.size*layer.size*layer.c*layer.n; - - axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); - scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); - - axpy_ongpu(size, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); - axpy_ongpu(size, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); - scal_ongpu(size, momentum, layer.weight_updates_gpu, 1); -} +#include <cuda_runtime.h> +#include <curand.h> +#include <cublas_v2.h> + +#include "convolutional_layer.h" +#include "deconvolutional_layer.h" +#include "gemm.h" +#include "blas.h" +#include "im2col.h" +#include "col2im.h" +#include "utils.h" +#include "dark_cuda.h" + +extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state) +{ + int i; + int out_h = deconvolutional_out_height(layer); + int out_w = deconvolutional_out_width(layer); + int size = out_h*out_w; + + int m = layer.size*layer.size*layer.n; + int n = layer.h*layer.w; + int k = layer.c; + + fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1); + + for(i = 0; i < layer.batch; ++i){ + float *a = layer.weights_gpu; + float *b = state.input + i*layer.c*layer.h*layer.w; + float *c = layer.col_image_gpu; + + gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n); + + col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size); + } + add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size); + activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation); +} + +extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state) +{ + float alpha = 1./layer.batch; + int out_h = deconvolutional_out_height(layer); + int out_w = deconvolutional_out_width(layer); + int size = out_h*out_w; + int i; + + gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu); + backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size); + + if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); + + for(i = 0; i < layer.batch; ++i){ + int m = layer.c; + int n = layer.size*layer.size*layer.n; + int k = layer.h*layer.w; + + float *a = state.input + i*m*n; + float *b = layer.col_image_gpu; + float *c = layer.weight_updates_gpu; + + im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w, + layer.size, layer.stride, 0, b); + gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n); + + if(state.delta){ + int m = layer.c; + int n = layer.h*layer.w; + int k = layer.size*layer.size*layer.n; + + float *a = layer.weights_gpu; + float *b = layer.col_image_gpu; + float *c = state.delta + i*n*m; + + gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); + } + } +} + +extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer) +{ + cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); + cuda_pull_array(layer.biases_gpu, layer.biases, layer.n); + cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); + cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); +} + +extern "C" void push_deconvolutional_layer(deconvolutional_layer layer) +{ + cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); + cuda_push_array(layer.biases_gpu, layer.biases, layer.n); + cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); + cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); +} + +extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, int skip, float learning_rate, float momentum, float decay) +{ + int size = layer.size*layer.size*layer.c*layer.n; + + axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); + scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); + + axpy_ongpu(size, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); + axpy_ongpu(size, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); + scal_ongpu(size, momentum, layer.weight_updates_gpu, 1); +} -- Gitblit v1.8.0