From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/deconvolutional_layer.c |  406 +++++++++++++++++++++++++++++-----------------------------
 1 files changed, 203 insertions(+), 203 deletions(-)

diff --git a/lib/detecter_tools/darknet/deconvolutional_layer.c b/lib/detecter_tools/darknet/deconvolutional_layer.c
index 512b94f..4f4e4cc 100644
--- a/lib/detecter_tools/darknet/deconvolutional_layer.c
+++ b/lib/detecter_tools/darknet/deconvolutional_layer.c
@@ -1,203 +1,203 @@
-#include "deconvolutional_layer.h"
-#include "convolutional_layer.h"
-#include "utils.h"
-#include "im2col.h"
-#include "col2im.h"
-#include "blas.h"
-#include "gemm.h"
-#include <stdio.h>
-#include <time.h>
-
-int deconvolutional_out_height(deconvolutional_layer l)
-{
-    int h = l.stride*(l.h - 1) + l.size;
-    return h;
-}
-
-int deconvolutional_out_width(deconvolutional_layer l)
-{
-    int w = l.stride*(l.w - 1) + l.size;
-    return w;
-}
-
-int deconvolutional_out_size(deconvolutional_layer l)
-{
-    return deconvolutional_out_height(l) * deconvolutional_out_width(l);
-}
-
-image get_deconvolutional_image(deconvolutional_layer l)
-{
-    int h,w,c;
-    h = deconvolutional_out_height(l);
-    w = deconvolutional_out_width(l);
-    c = l.n;
-    return float_to_image(w,h,c,l.output);
-}
-
-image get_deconvolutional_delta(deconvolutional_layer l)
-{
-    int h,w,c;
-    h = deconvolutional_out_height(l);
-    w = deconvolutional_out_width(l);
-    c = l.n;
-    return float_to_image(w,h,c,l.delta);
-}
-
-deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
-{
-    int i;
-    deconvolutional_layer l = { (LAYER_TYPE)0 };
-    l.type = DECONVOLUTIONAL;
-
-    l.h = h;
-    l.w = w;
-    l.c = c;
-    l.n = n;
-    l.batch = batch;
-    l.stride = stride;
-    l.size = size;
-
-    l.weights = (float*)xcalloc(c * n * size * size, sizeof(float));
-    l.weight_updates = (float*)xcalloc(c * n * size * size, sizeof(float));
-
-    l.biases = (float*)xcalloc(n, sizeof(float));
-    l.bias_updates = (float*)xcalloc(n, sizeof(float));
-    float scale = 1./sqrt(size*size*c);
-    for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_normal();
-    for(i = 0; i < n; ++i){
-        l.biases[i] = scale;
-    }
-    int out_h = deconvolutional_out_height(l);
-    int out_w = deconvolutional_out_width(l);
-
-    l.out_h = out_h;
-    l.out_w = out_w;
-    l.out_c = n;
-    l.outputs = l.out_w * l.out_h * l.out_c;
-    l.inputs = l.w * l.h * l.c;
-
-    l.col_image = (float*)xcalloc(h * w * size * size * n, sizeof(float));
-    l.output = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float));
-    l.delta = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float));
-
-    l.forward = forward_deconvolutional_layer;
-    l.backward = backward_deconvolutional_layer;
-    l.update = update_deconvolutional_layer;
-
-    #ifdef GPU
-    l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
-    l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
-
-    l.biases_gpu = cuda_make_array(l.biases, n);
-    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
-
-    l.col_image_gpu = cuda_make_array(l.col_image, h*w*size*size*n);
-    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
-    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
-    #endif
-
-    l.activation = activation;
-
-    fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
-
-    return l;
-}
-
-void resize_deconvolutional_layer(deconvolutional_layer *l, int h, int w)
-{
-    l->h = h;
-    l->w = w;
-    int out_h = deconvolutional_out_height(*l);
-    int out_w = deconvolutional_out_width(*l);
-
-    l->col_image = (float*)xrealloc(l->col_image,
-                                out_h*out_w*l->size*l->size*l->c*sizeof(float));
-    l->output = (float*)xrealloc(l->output,
-                                l->batch*out_h * out_w * l->n*sizeof(float));
-    l->delta = (float*)xrealloc(l->delta,
-                                l->batch*out_h * out_w * l->n*sizeof(float));
-    #ifdef GPU
-    cuda_free(l->col_image_gpu);
-    cuda_free(l->delta_gpu);
-    cuda_free(l->output_gpu);
-
-    l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
-    l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
-    l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
-    #endif
-}
-
-void forward_deconvolutional_layer(const deconvolutional_layer l, network_state state)
-{
-    int i;
-    int out_h = deconvolutional_out_height(l);
-    int out_w = deconvolutional_out_width(l);
-    int size = out_h*out_w;
-
-    int m = l.size*l.size*l.n;
-    int n = l.h*l.w;
-    int k = l.c;
-
-    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
-
-    for(i = 0; i < l.batch; ++i){
-        float *a = l.weights;
-        float *b = state.input + i*l.c*l.h*l.w;
-        float *c = l.col_image;
-
-        gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
-
-        col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size);
-    }
-    add_bias(l.output, l.biases, l.batch, l.n, size);
-    activate_array(l.output, l.batch*l.n*size, l.activation);
-}
-
-void backward_deconvolutional_layer(deconvolutional_layer l, network_state state)
-{
-    float alpha = 1./l.batch;
-    int out_h = deconvolutional_out_height(l);
-    int out_w = deconvolutional_out_width(l);
-    int size = out_h*out_w;
-    int i;
-
-    gradient_array(l.output, size*l.n*l.batch, l.activation, l.delta);
-    backward_bias(l.bias_updates, l.delta, l.batch, l.n, size);
-
-    for(i = 0; i < l.batch; ++i){
-        int m = l.c;
-        int n = l.size*l.size*l.n;
-        int k = l.h*l.w;
-
-        float *a = state.input + i*m*n;
-        float *b = l.col_image;
-        float *c = l.weight_updates;
-
-        im2col_cpu(l.delta + i*l.n*size, l.n, out_h, out_w,
-                l.size, l.stride, 0, b);
-        gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
-
-        if(state.delta){
-            int m = l.c;
-            int n = l.h*l.w;
-            int k = l.size*l.size*l.n;
-
-            float *a = l.weights;
-            float *b = l.col_image;
-            float *c = state.delta + i*n*m;
-
-            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-        }
-    }
-}
-
-void update_deconvolutional_layer(deconvolutional_layer l, int skip, float learning_rate, float momentum, float decay)
-{
-    int size = l.size*l.size*l.c*l.n;
-    axpy_cpu(l.n, learning_rate, l.bias_updates, 1, l.biases, 1);
-    scal_cpu(l.n, momentum, l.bias_updates, 1);
-
-    axpy_cpu(size, -decay, l.weights, 1, l.weight_updates, 1);
-    axpy_cpu(size, learning_rate, l.weight_updates, 1, l.weights, 1);
-    scal_cpu(size, momentum, l.weight_updates, 1);
-}
+#include "deconvolutional_layer.h"
+#include "convolutional_layer.h"
+#include "utils.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
+#include <stdio.h>
+#include <time.h>
+
+int deconvolutional_out_height(deconvolutional_layer l)
+{
+    int h = l.stride*(l.h - 1) + l.size;
+    return h;
+}
+
+int deconvolutional_out_width(deconvolutional_layer l)
+{
+    int w = l.stride*(l.w - 1) + l.size;
+    return w;
+}
+
+int deconvolutional_out_size(deconvolutional_layer l)
+{
+    return deconvolutional_out_height(l) * deconvolutional_out_width(l);
+}
+
+image get_deconvolutional_image(deconvolutional_layer l)
+{
+    int h,w,c;
+    h = deconvolutional_out_height(l);
+    w = deconvolutional_out_width(l);
+    c = l.n;
+    return float_to_image(w,h,c,l.output);
+}
+
+image get_deconvolutional_delta(deconvolutional_layer l)
+{
+    int h,w,c;
+    h = deconvolutional_out_height(l);
+    w = deconvolutional_out_width(l);
+    c = l.n;
+    return float_to_image(w,h,c,l.delta);
+}
+
+deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
+{
+    int i;
+    deconvolutional_layer l = { (LAYER_TYPE)0 };
+    l.type = DECONVOLUTIONAL;
+
+    l.h = h;
+    l.w = w;
+    l.c = c;
+    l.n = n;
+    l.batch = batch;
+    l.stride = stride;
+    l.size = size;
+
+    l.weights = (float*)xcalloc(c * n * size * size, sizeof(float));
+    l.weight_updates = (float*)xcalloc(c * n * size * size, sizeof(float));
+
+    l.biases = (float*)xcalloc(n, sizeof(float));
+    l.bias_updates = (float*)xcalloc(n, sizeof(float));
+    float scale = 1./sqrt(size*size*c);
+    for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_normal();
+    for(i = 0; i < n; ++i){
+        l.biases[i] = scale;
+    }
+    int out_h = deconvolutional_out_height(l);
+    int out_w = deconvolutional_out_width(l);
+
+    l.out_h = out_h;
+    l.out_w = out_w;
+    l.out_c = n;
+    l.outputs = l.out_w * l.out_h * l.out_c;
+    l.inputs = l.w * l.h * l.c;
+
+    l.col_image = (float*)xcalloc(h * w * size * size * n, sizeof(float));
+    l.output = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float));
+    l.delta = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float));
+
+    l.forward = forward_deconvolutional_layer;
+    l.backward = backward_deconvolutional_layer;
+    l.update = update_deconvolutional_layer;
+
+    #ifdef GPU
+    l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
+    l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
+
+    l.biases_gpu = cuda_make_array(l.biases, n);
+    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
+
+    l.col_image_gpu = cuda_make_array(l.col_image, h*w*size*size*n);
+    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
+    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+    #endif
+
+    l.activation = activation;
+
+    fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+
+    return l;
+}
+
+void resize_deconvolutional_layer(deconvolutional_layer *l, int h, int w)
+{
+    l->h = h;
+    l->w = w;
+    int out_h = deconvolutional_out_height(*l);
+    int out_w = deconvolutional_out_width(*l);
+
+    l->col_image = (float*)xrealloc(l->col_image,
+                                out_h*out_w*l->size*l->size*l->c*sizeof(float));
+    l->output = (float*)xrealloc(l->output,
+                                l->batch*out_h * out_w * l->n*sizeof(float));
+    l->delta = (float*)xrealloc(l->delta,
+                                l->batch*out_h * out_w * l->n*sizeof(float));
+    #ifdef GPU
+    cuda_free(l->col_image_gpu);
+    cuda_free(l->delta_gpu);
+    cuda_free(l->output_gpu);
+
+    l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
+    l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
+    l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
+    #endif
+}
+
+void forward_deconvolutional_layer(const deconvolutional_layer l, network_state state)
+{
+    int i;
+    int out_h = deconvolutional_out_height(l);
+    int out_w = deconvolutional_out_width(l);
+    int size = out_h*out_w;
+
+    int m = l.size*l.size*l.n;
+    int n = l.h*l.w;
+    int k = l.c;
+
+    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
+
+    for(i = 0; i < l.batch; ++i){
+        float *a = l.weights;
+        float *b = state.input + i*l.c*l.h*l.w;
+        float *c = l.col_image;
+
+        gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
+
+        col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size);
+    }
+    add_bias(l.output, l.biases, l.batch, l.n, size);
+    activate_array(l.output, l.batch*l.n*size, l.activation);
+}
+
+void backward_deconvolutional_layer(deconvolutional_layer l, network_state state)
+{
+    float alpha = 1./l.batch;
+    int out_h = deconvolutional_out_height(l);
+    int out_w = deconvolutional_out_width(l);
+    int size = out_h*out_w;
+    int i;
+
+    gradient_array(l.output, size*l.n*l.batch, l.activation, l.delta);
+    backward_bias(l.bias_updates, l.delta, l.batch, l.n, size);
+
+    for(i = 0; i < l.batch; ++i){
+        int m = l.c;
+        int n = l.size*l.size*l.n;
+        int k = l.h*l.w;
+
+        float *a = state.input + i*m*n;
+        float *b = l.col_image;
+        float *c = l.weight_updates;
+
+        im2col_cpu(l.delta + i*l.n*size, l.n, out_h, out_w,
+                l.size, l.stride, 0, b);
+        gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
+
+        if(state.delta){
+            int m = l.c;
+            int n = l.h*l.w;
+            int k = l.size*l.size*l.n;
+
+            float *a = l.weights;
+            float *b = l.col_image;
+            float *c = state.delta + i*n*m;
+
+            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        }
+    }
+}
+
+void update_deconvolutional_layer(deconvolutional_layer l, int skip, float learning_rate, float momentum, float decay)
+{
+    int size = l.size*l.size*l.c*l.n;
+    axpy_cpu(l.n, learning_rate, l.bias_updates, 1, l.biases, 1);
+    scal_cpu(l.n, momentum, l.bias_updates, 1);
+
+    axpy_cpu(size, -decay, l.weights, 1, l.weight_updates, 1);
+    axpy_cpu(size, learning_rate, l.weight_updates, 1, l.weights, 1);
+    scal_cpu(size, momentum, l.weight_updates, 1);
+}

--
Gitblit v1.8.0