From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/detection_layer.c |  630 ++++++++++++++++++++++++++++----------------------------
 1 files changed, 315 insertions(+), 315 deletions(-)

diff --git a/lib/detecter_tools/darknet/detection_layer.c b/lib/detecter_tools/darknet/detection_layer.c
index b177738..3c6528a 100644
--- a/lib/detecter_tools/darknet/detection_layer.c
+++ b/lib/detecter_tools/darknet/detection_layer.c
@@ -1,315 +1,315 @@
-#include "detection_layer.h"
-#include "activations.h"
-#include "softmax_layer.h"
-#include "blas.h"
-#include "box.h"
-#include "dark_cuda.h"
-#include "utils.h"
-#include <stdio.h>
-#include <assert.h>
-#include <string.h>
-#include <stdlib.h>
-
-detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
-{
-    detection_layer l = { (LAYER_TYPE)0 };
-    l.type = DETECTION;
-
-    l.n = n;
-    l.batch = batch;
-    l.inputs = inputs;
-    l.classes = classes;
-    l.coords = coords;
-    l.rescore = rescore;
-    l.side = side;
-    l.w = side;
-    l.h = side;
-    assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
-    l.cost = (float*)xcalloc(1, sizeof(float));
-    l.outputs = l.inputs;
-    l.truths = l.side*l.side*(1+l.coords+l.classes);
-    l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
-    l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
-
-    l.forward = forward_detection_layer;
-    l.backward = backward_detection_layer;
-#ifdef GPU
-    l.forward_gpu = forward_detection_layer_gpu;
-    l.backward_gpu = backward_detection_layer_gpu;
-    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
-    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
-#endif
-
-    fprintf(stderr, "Detection Layer\n");
-    srand(time(0));
-
-    return l;
-}
-
-void forward_detection_layer(const detection_layer l, network_state state)
-{
-    int locations = l.side*l.side;
-    int i,j;
-    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
-    //if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
-    int b;
-    if (l.softmax){
-        for(b = 0; b < l.batch; ++b){
-            int index = b*l.inputs;
-            for (i = 0; i < locations; ++i) {
-                int offset = i*l.classes;
-                softmax(l.output + index + offset, l.classes, 1,
-                        l.output + index + offset, 1);
-            }
-        }
-    }
-    if(state.train){
-        float avg_iou = 0;
-        float avg_cat = 0;
-        float avg_allcat = 0;
-        float avg_obj = 0;
-        float avg_anyobj = 0;
-        int count = 0;
-        *(l.cost) = 0;
-        int size = l.inputs * l.batch;
-        memset(l.delta, 0, size * sizeof(float));
-        for (b = 0; b < l.batch; ++b){
-            int index = b*l.inputs;
-            for (i = 0; i < locations; ++i) {
-                int truth_index = (b*locations + i)*(1+l.coords+l.classes);
-                int is_obj = state.truth[truth_index];
-                for (j = 0; j < l.n; ++j) {
-                    int p_index = index + locations*l.classes + i*l.n + j;
-                    l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);
-                    *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);
-                    avg_anyobj += l.output[p_index];
-                }
-
-                int best_index = -1;
-                float best_iou = 0;
-                float best_rmse = 20;
-
-                if (!is_obj){
-                    continue;
-                }
-
-                int class_index = index + i*l.classes;
-                for(j = 0; j < l.classes; ++j) {
-                    l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]);
-                    *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
-                    if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
-                    avg_allcat += l.output[class_index+j];
-                }
-
-                box truth = float_to_box(state.truth + truth_index + 1 + l.classes);
-                truth.x /= l.side;
-                truth.y /= l.side;
-
-                for(j = 0; j < l.n; ++j){
-                    int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords;
-                    box out = float_to_box(l.output + box_index);
-                    out.x /= l.side;
-                    out.y /= l.side;
-
-                    if (l.sqrt){
-                        out.w = out.w*out.w;
-                        out.h = out.h*out.h;
-                    }
-
-                    float iou  = box_iou(out, truth);
-                    //iou = 0;
-                    float rmse = box_rmse(out, truth);
-                    if(best_iou > 0 || iou > 0){
-                        if(iou > best_iou){
-                            best_iou = iou;
-                            best_index = j;
-                        }
-                    }else{
-                        if(rmse < best_rmse){
-                            best_rmse = rmse;
-                            best_index = j;
-                        }
-                    }
-                }
-
-                if(l.forced){
-                    if(truth.w*truth.h < .1){
-                        best_index = 1;
-                    }else{
-                        best_index = 0;
-                    }
-                }
-                if(l.random && *(state.net.seen) < 64000){
-                    best_index = rand()%l.n;
-                }
-
-                int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
-                int tbox_index = truth_index + 1 + l.classes;
-
-                box out = float_to_box(l.output + box_index);
-                out.x /= l.side;
-                out.y /= l.side;
-                if (l.sqrt) {
-                    out.w = out.w*out.w;
-                    out.h = out.h*out.h;
-                }
-                float iou  = box_iou(out, truth);
-
-                //printf("%d,", best_index);
-                int p_index = index + locations*l.classes + i*l.n + best_index;
-                *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
-                *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
-                avg_obj += l.output[p_index];
-                l.delta[p_index] = l.object_scale * (1.-l.output[p_index]);
-
-                if(l.rescore){
-                    l.delta[p_index] = l.object_scale * (iou - l.output[p_index]);
-                }
-
-                l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]);
-                l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]);
-                l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]);
-                l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]);
-                if(l.sqrt){
-                    l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]);
-                    l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]);
-                }
-
-                *(l.cost) += pow(1-iou, 2);
-                avg_iou += iou;
-                ++count;
-            }
-        }
-
-        if(0){
-            float* costs = (float*)xcalloc(l.batch * locations * l.n, sizeof(float));
-            for (b = 0; b < l.batch; ++b) {
-                int index = b*l.inputs;
-                for (i = 0; i < locations; ++i) {
-                    for (j = 0; j < l.n; ++j) {
-                        int p_index = index + locations*l.classes + i*l.n + j;
-                        costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index];
-                    }
-                }
-            }
-            int indexes[100];
-            top_k(costs, l.batch*locations*l.n, 100, indexes);
-            float cutoff = costs[indexes[99]];
-            for (b = 0; b < l.batch; ++b) {
-                int index = b*l.inputs;
-                for (i = 0; i < locations; ++i) {
-                    for (j = 0; j < l.n; ++j) {
-                        int p_index = index + locations*l.classes + i*l.n + j;
-                        if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0;
-                    }
-                }
-            }
-            free(costs);
-        }
-
-
-        *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
-
-
-        printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
-        //if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
-    }
-}
-
-void backward_detection_layer(const detection_layer l, network_state state)
-{
-    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
-}
-
-void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
-{
-    int i,j,n;
-    float *predictions = l.output;
-    //int per_cell = 5*num+classes;
-    for (i = 0; i < l.side*l.side; ++i){
-        int row = i / l.side;
-        int col = i % l.side;
-        for(n = 0; n < l.n; ++n){
-            int index = i*l.n + n;
-            int p_index = l.side*l.side*l.classes + i*l.n + n;
-            float scale = predictions[p_index];
-            int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4;
-            boxes[index].x = (predictions[box_index + 0] + col) / l.side * w;
-            boxes[index].y = (predictions[box_index + 1] + row) / l.side * h;
-            boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w;
-            boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h;
-            for(j = 0; j < l.classes; ++j){
-                int class_index = i*l.classes;
-                float prob = scale*predictions[class_index+j];
-                probs[index][j] = (prob > thresh) ? prob : 0;
-            }
-            if(only_objectness){
-                probs[index][0] = scale;
-            }
-        }
-    }
-}
-
-#ifdef GPU
-
-void forward_detection_layer_gpu(const detection_layer l, network_state state)
-{
-    if(!state.train){
-        copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
-        return;
-    }
-
-    float* in_cpu = (float*)xcalloc(l.batch * l.inputs, sizeof(float));
-    float *truth_cpu = 0;
-    if(state.truth){
-        int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes);
-        truth_cpu = (float*)xcalloc(num_truth, sizeof(float));
-        cuda_pull_array(state.truth, truth_cpu, num_truth);
-    }
-    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
-    network_state cpu_state = state;
-    cpu_state.train = state.train;
-    cpu_state.truth = truth_cpu;
-    cpu_state.input = in_cpu;
-    forward_detection_layer(l, cpu_state);
-    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
-    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
-    free(cpu_state.input);
-    if(cpu_state.truth) free(cpu_state.truth);
-}
-
-void backward_detection_layer_gpu(detection_layer l, network_state state)
-{
-    axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
-    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
-}
-#endif
-
-void get_detection_detections(layer l, int w, int h, float thresh, detection *dets)
-{
-	int i, j, n;
-	float *predictions = l.output;
-	//int per_cell = 5*num+classes;
-	for (i = 0; i < l.side*l.side; ++i) {
-		int row = i / l.side;
-		int col = i % l.side;
-		for (n = 0; n < l.n; ++n) {
-			int index = i*l.n + n;
-			int p_index = l.side*l.side*l.classes + i*l.n + n;
-			float scale = predictions[p_index];
-			int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n) * 4;
-			box b;
-			b.x = (predictions[box_index + 0] + col) / l.side * w;
-			b.y = (predictions[box_index + 1] + row) / l.side * h;
-			b.w = pow(predictions[box_index + 2], (l.sqrt ? 2 : 1)) * w;
-			b.h = pow(predictions[box_index + 3], (l.sqrt ? 2 : 1)) * h;
-			dets[index].bbox = b;
-			dets[index].objectness = scale;
-			for (j = 0; j < l.classes; ++j) {
-				int class_index = i*l.classes;
-				float prob = scale*predictions[class_index + j];
-				dets[index].prob[j] = (prob > thresh) ? prob : 0;
-			}
-		}
-	}
-}
+#include "detection_layer.h"
+#include "activations.h"
+#include "softmax_layer.h"
+#include "blas.h"
+#include "box.h"
+#include "dark_cuda.h"
+#include "utils.h"
+#include <stdio.h>
+#include <assert.h>
+#include <string.h>
+#include <stdlib.h>
+
+detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
+{
+    detection_layer l = { (LAYER_TYPE)0 };
+    l.type = DETECTION;
+
+    l.n = n;
+    l.batch = batch;
+    l.inputs = inputs;
+    l.classes = classes;
+    l.coords = coords;
+    l.rescore = rescore;
+    l.side = side;
+    l.w = side;
+    l.h = side;
+    assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
+    l.cost = (float*)xcalloc(1, sizeof(float));
+    l.outputs = l.inputs;
+    l.truths = l.side*l.side*(1+l.coords+l.classes);
+    l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
+    l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
+
+    l.forward = forward_detection_layer;
+    l.backward = backward_detection_layer;
+#ifdef GPU
+    l.forward_gpu = forward_detection_layer_gpu;
+    l.backward_gpu = backward_detection_layer_gpu;
+    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
+    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
+#endif
+
+    fprintf(stderr, "Detection Layer\n");
+    srand(time(0));
+
+    return l;
+}
+
+void forward_detection_layer(const detection_layer l, network_state state)
+{
+    int locations = l.side*l.side;
+    int i,j;
+    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
+    //if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
+    int b;
+    if (l.softmax){
+        for(b = 0; b < l.batch; ++b){
+            int index = b*l.inputs;
+            for (i = 0; i < locations; ++i) {
+                int offset = i*l.classes;
+                softmax(l.output + index + offset, l.classes, 1,
+                        l.output + index + offset, 1);
+            }
+        }
+    }
+    if(state.train){
+        float avg_iou = 0;
+        float avg_cat = 0;
+        float avg_allcat = 0;
+        float avg_obj = 0;
+        float avg_anyobj = 0;
+        int count = 0;
+        *(l.cost) = 0;
+        int size = l.inputs * l.batch;
+        memset(l.delta, 0, size * sizeof(float));
+        for (b = 0; b < l.batch; ++b){
+            int index = b*l.inputs;
+            for (i = 0; i < locations; ++i) {
+                int truth_index = (b*locations + i)*(1+l.coords+l.classes);
+                int is_obj = state.truth[truth_index];
+                for (j = 0; j < l.n; ++j) {
+                    int p_index = index + locations*l.classes + i*l.n + j;
+                    l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);
+                    *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);
+                    avg_anyobj += l.output[p_index];
+                }
+
+                int best_index = -1;
+                float best_iou = 0;
+                float best_rmse = 20;
+
+                if (!is_obj){
+                    continue;
+                }
+
+                int class_index = index + i*l.classes;
+                for(j = 0; j < l.classes; ++j) {
+                    l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]);
+                    *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
+                    if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
+                    avg_allcat += l.output[class_index+j];
+                }
+
+                box truth = float_to_box(state.truth + truth_index + 1 + l.classes);
+                truth.x /= l.side;
+                truth.y /= l.side;
+
+                for(j = 0; j < l.n; ++j){
+                    int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords;
+                    box out = float_to_box(l.output + box_index);
+                    out.x /= l.side;
+                    out.y /= l.side;
+
+                    if (l.sqrt){
+                        out.w = out.w*out.w;
+                        out.h = out.h*out.h;
+                    }
+
+                    float iou  = box_iou(out, truth);
+                    //iou = 0;
+                    float rmse = box_rmse(out, truth);
+                    if(best_iou > 0 || iou > 0){
+                        if(iou > best_iou){
+                            best_iou = iou;
+                            best_index = j;
+                        }
+                    }else{
+                        if(rmse < best_rmse){
+                            best_rmse = rmse;
+                            best_index = j;
+                        }
+                    }
+                }
+
+                if(l.forced){
+                    if(truth.w*truth.h < .1){
+                        best_index = 1;
+                    }else{
+                        best_index = 0;
+                    }
+                }
+                if(l.random && *(state.net.seen) < 64000){
+                    best_index = rand()%l.n;
+                }
+
+                int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
+                int tbox_index = truth_index + 1 + l.classes;
+
+                box out = float_to_box(l.output + box_index);
+                out.x /= l.side;
+                out.y /= l.side;
+                if (l.sqrt) {
+                    out.w = out.w*out.w;
+                    out.h = out.h*out.h;
+                }
+                float iou  = box_iou(out, truth);
+
+                //printf("%d,", best_index);
+                int p_index = index + locations*l.classes + i*l.n + best_index;
+                *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
+                *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
+                avg_obj += l.output[p_index];
+                l.delta[p_index] = l.object_scale * (1.-l.output[p_index]);
+
+                if(l.rescore){
+                    l.delta[p_index] = l.object_scale * (iou - l.output[p_index]);
+                }
+
+                l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]);
+                l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]);
+                l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]);
+                l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]);
+                if(l.sqrt){
+                    l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]);
+                    l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]);
+                }
+
+                *(l.cost) += pow(1-iou, 2);
+                avg_iou += iou;
+                ++count;
+            }
+        }
+
+        if(0){
+            float* costs = (float*)xcalloc(l.batch * locations * l.n, sizeof(float));
+            for (b = 0; b < l.batch; ++b) {
+                int index = b*l.inputs;
+                for (i = 0; i < locations; ++i) {
+                    for (j = 0; j < l.n; ++j) {
+                        int p_index = index + locations*l.classes + i*l.n + j;
+                        costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index];
+                    }
+                }
+            }
+            int indexes[100];
+            top_k(costs, l.batch*locations*l.n, 100, indexes);
+            float cutoff = costs[indexes[99]];
+            for (b = 0; b < l.batch; ++b) {
+                int index = b*l.inputs;
+                for (i = 0; i < locations; ++i) {
+                    for (j = 0; j < l.n; ++j) {
+                        int p_index = index + locations*l.classes + i*l.n + j;
+                        if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0;
+                    }
+                }
+            }
+            free(costs);
+        }
+
+
+        *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
+
+
+        printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
+        //if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
+    }
+}
+
+void backward_detection_layer(const detection_layer l, network_state state)
+{
+    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
+}
+
+void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
+{
+    int i,j,n;
+    float *predictions = l.output;
+    //int per_cell = 5*num+classes;
+    for (i = 0; i < l.side*l.side; ++i){
+        int row = i / l.side;
+        int col = i % l.side;
+        for(n = 0; n < l.n; ++n){
+            int index = i*l.n + n;
+            int p_index = l.side*l.side*l.classes + i*l.n + n;
+            float scale = predictions[p_index];
+            int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4;
+            boxes[index].x = (predictions[box_index + 0] + col) / l.side * w;
+            boxes[index].y = (predictions[box_index + 1] + row) / l.side * h;
+            boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w;
+            boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h;
+            for(j = 0; j < l.classes; ++j){
+                int class_index = i*l.classes;
+                float prob = scale*predictions[class_index+j];
+                probs[index][j] = (prob > thresh) ? prob : 0;
+            }
+            if(only_objectness){
+                probs[index][0] = scale;
+            }
+        }
+    }
+}
+
+#ifdef GPU
+
+void forward_detection_layer_gpu(const detection_layer l, network_state state)
+{
+    if(!state.train){
+        copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
+        return;
+    }
+
+    float* in_cpu = (float*)xcalloc(l.batch * l.inputs, sizeof(float));
+    float *truth_cpu = 0;
+    if(state.truth){
+        int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes);
+        truth_cpu = (float*)xcalloc(num_truth, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, num_truth);
+    }
+    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+    network_state cpu_state = state;
+    cpu_state.train = state.train;
+    cpu_state.truth = truth_cpu;
+    cpu_state.input = in_cpu;
+    forward_detection_layer(l, cpu_state);
+    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
+    free(cpu_state.input);
+    if(cpu_state.truth) free(cpu_state.truth);
+}
+
+void backward_detection_layer_gpu(detection_layer l, network_state state)
+{
+    axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
+    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
+}
+#endif
+
+void get_detection_detections(layer l, int w, int h, float thresh, detection *dets)
+{
+	int i, j, n;
+	float *predictions = l.output;
+	//int per_cell = 5*num+classes;
+	for (i = 0; i < l.side*l.side; ++i) {
+		int row = i / l.side;
+		int col = i % l.side;
+		for (n = 0; n < l.n; ++n) {
+			int index = i*l.n + n;
+			int p_index = l.side*l.side*l.classes + i*l.n + n;
+			float scale = predictions[p_index];
+			int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n) * 4;
+			box b;
+			b.x = (predictions[box_index + 0] + col) / l.side * w;
+			b.y = (predictions[box_index + 1] + row) / l.side * h;
+			b.w = pow(predictions[box_index + 2], (l.sqrt ? 2 : 1)) * w;
+			b.h = pow(predictions[box_index + 3], (l.sqrt ? 2 : 1)) * h;
+			dets[index].bbox = b;
+			dets[index].objectness = scale;
+			for (j = 0; j < l.classes; ++j) {
+				int class_index = i*l.classes;
+				float prob = scale*predictions[class_index + j];
+				dets[index].prob[j] = (prob > thresh) ? prob : 0;
+			}
+		}
+	}
+}

--
Gitblit v1.8.0