From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/detection_layer.c | 630 ++++++++++++++++++++++++++++---------------------------- 1 files changed, 315 insertions(+), 315 deletions(-) diff --git a/lib/detecter_tools/darknet/detection_layer.c b/lib/detecter_tools/darknet/detection_layer.c index b177738..3c6528a 100644 --- a/lib/detecter_tools/darknet/detection_layer.c +++ b/lib/detecter_tools/darknet/detection_layer.c @@ -1,315 +1,315 @@ -#include "detection_layer.h" -#include "activations.h" -#include "softmax_layer.h" -#include "blas.h" -#include "box.h" -#include "dark_cuda.h" -#include "utils.h" -#include <stdio.h> -#include <assert.h> -#include <string.h> -#include <stdlib.h> - -detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore) -{ - detection_layer l = { (LAYER_TYPE)0 }; - l.type = DETECTION; - - l.n = n; - l.batch = batch; - l.inputs = inputs; - l.classes = classes; - l.coords = coords; - l.rescore = rescore; - l.side = side; - l.w = side; - l.h = side; - assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs); - l.cost = (float*)xcalloc(1, sizeof(float)); - l.outputs = l.inputs; - l.truths = l.side*l.side*(1+l.coords+l.classes); - l.output = (float*)xcalloc(batch * l.outputs, sizeof(float)); - l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float)); - - l.forward = forward_detection_layer; - l.backward = backward_detection_layer; -#ifdef GPU - l.forward_gpu = forward_detection_layer_gpu; - l.backward_gpu = backward_detection_layer_gpu; - l.output_gpu = cuda_make_array(l.output, batch*l.outputs); - l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); -#endif - - fprintf(stderr, "Detection Layer\n"); - srand(time(0)); - - return l; -} - -void forward_detection_layer(const detection_layer l, network_state state) -{ - int locations = l.side*l.side; - int i,j; - memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); - //if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1); - int b; - if (l.softmax){ - for(b = 0; b < l.batch; ++b){ - int index = b*l.inputs; - for (i = 0; i < locations; ++i) { - int offset = i*l.classes; - softmax(l.output + index + offset, l.classes, 1, - l.output + index + offset, 1); - } - } - } - if(state.train){ - float avg_iou = 0; - float avg_cat = 0; - float avg_allcat = 0; - float avg_obj = 0; - float avg_anyobj = 0; - int count = 0; - *(l.cost) = 0; - int size = l.inputs * l.batch; - memset(l.delta, 0, size * sizeof(float)); - for (b = 0; b < l.batch; ++b){ - int index = b*l.inputs; - for (i = 0; i < locations; ++i) { - int truth_index = (b*locations + i)*(1+l.coords+l.classes); - int is_obj = state.truth[truth_index]; - for (j = 0; j < l.n; ++j) { - int p_index = index + locations*l.classes + i*l.n + j; - l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]); - *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2); - avg_anyobj += l.output[p_index]; - } - - int best_index = -1; - float best_iou = 0; - float best_rmse = 20; - - if (!is_obj){ - continue; - } - - int class_index = index + i*l.classes; - for(j = 0; j < l.classes; ++j) { - l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]); - *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2); - if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j]; - avg_allcat += l.output[class_index+j]; - } - - box truth = float_to_box(state.truth + truth_index + 1 + l.classes); - truth.x /= l.side; - truth.y /= l.side; - - for(j = 0; j < l.n; ++j){ - int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords; - box out = float_to_box(l.output + box_index); - out.x /= l.side; - out.y /= l.side; - - if (l.sqrt){ - out.w = out.w*out.w; - out.h = out.h*out.h; - } - - float iou = box_iou(out, truth); - //iou = 0; - float rmse = box_rmse(out, truth); - if(best_iou > 0 || iou > 0){ - if(iou > best_iou){ - best_iou = iou; - best_index = j; - } - }else{ - if(rmse < best_rmse){ - best_rmse = rmse; - best_index = j; - } - } - } - - if(l.forced){ - if(truth.w*truth.h < .1){ - best_index = 1; - }else{ - best_index = 0; - } - } - if(l.random && *(state.net.seen) < 64000){ - best_index = rand()%l.n; - } - - int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords; - int tbox_index = truth_index + 1 + l.classes; - - box out = float_to_box(l.output + box_index); - out.x /= l.side; - out.y /= l.side; - if (l.sqrt) { - out.w = out.w*out.w; - out.h = out.h*out.h; - } - float iou = box_iou(out, truth); - - //printf("%d,", best_index); - int p_index = index + locations*l.classes + i*l.n + best_index; - *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2); - *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2); - avg_obj += l.output[p_index]; - l.delta[p_index] = l.object_scale * (1.-l.output[p_index]); - - if(l.rescore){ - l.delta[p_index] = l.object_scale * (iou - l.output[p_index]); - } - - l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]); - l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]); - l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]); - l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]); - if(l.sqrt){ - l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]); - l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]); - } - - *(l.cost) += pow(1-iou, 2); - avg_iou += iou; - ++count; - } - } - - if(0){ - float* costs = (float*)xcalloc(l.batch * locations * l.n, sizeof(float)); - for (b = 0; b < l.batch; ++b) { - int index = b*l.inputs; - for (i = 0; i < locations; ++i) { - for (j = 0; j < l.n; ++j) { - int p_index = index + locations*l.classes + i*l.n + j; - costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index]; - } - } - } - int indexes[100]; - top_k(costs, l.batch*locations*l.n, 100, indexes); - float cutoff = costs[indexes[99]]; - for (b = 0; b < l.batch; ++b) { - int index = b*l.inputs; - for (i = 0; i < locations; ++i) { - for (j = 0; j < l.n; ++j) { - int p_index = index + locations*l.classes + i*l.n + j; - if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0; - } - } - } - free(costs); - } - - - *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); - - - printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); - //if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0); - } -} - -void backward_detection_layer(const detection_layer l, network_state state) -{ - axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); -} - -void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) -{ - int i,j,n; - float *predictions = l.output; - //int per_cell = 5*num+classes; - for (i = 0; i < l.side*l.side; ++i){ - int row = i / l.side; - int col = i % l.side; - for(n = 0; n < l.n; ++n){ - int index = i*l.n + n; - int p_index = l.side*l.side*l.classes + i*l.n + n; - float scale = predictions[p_index]; - int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4; - boxes[index].x = (predictions[box_index + 0] + col) / l.side * w; - boxes[index].y = (predictions[box_index + 1] + row) / l.side * h; - boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w; - boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h; - for(j = 0; j < l.classes; ++j){ - int class_index = i*l.classes; - float prob = scale*predictions[class_index+j]; - probs[index][j] = (prob > thresh) ? prob : 0; - } - if(only_objectness){ - probs[index][0] = scale; - } - } - } -} - -#ifdef GPU - -void forward_detection_layer_gpu(const detection_layer l, network_state state) -{ - if(!state.train){ - copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); - return; - } - - float* in_cpu = (float*)xcalloc(l.batch * l.inputs, sizeof(float)); - float *truth_cpu = 0; - if(state.truth){ - int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes); - truth_cpu = (float*)xcalloc(num_truth, sizeof(float)); - cuda_pull_array(state.truth, truth_cpu, num_truth); - } - cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); - network_state cpu_state = state; - cpu_state.train = state.train; - cpu_state.truth = truth_cpu; - cpu_state.input = in_cpu; - forward_detection_layer(l, cpu_state); - cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); - cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); - free(cpu_state.input); - if(cpu_state.truth) free(cpu_state.truth); -} - -void backward_detection_layer_gpu(detection_layer l, network_state state) -{ - axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1); - //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1); -} -#endif - -void get_detection_detections(layer l, int w, int h, float thresh, detection *dets) -{ - int i, j, n; - float *predictions = l.output; - //int per_cell = 5*num+classes; - for (i = 0; i < l.side*l.side; ++i) { - int row = i / l.side; - int col = i % l.side; - for (n = 0; n < l.n; ++n) { - int index = i*l.n + n; - int p_index = l.side*l.side*l.classes + i*l.n + n; - float scale = predictions[p_index]; - int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n) * 4; - box b; - b.x = (predictions[box_index + 0] + col) / l.side * w; - b.y = (predictions[box_index + 1] + row) / l.side * h; - b.w = pow(predictions[box_index + 2], (l.sqrt ? 2 : 1)) * w; - b.h = pow(predictions[box_index + 3], (l.sqrt ? 2 : 1)) * h; - dets[index].bbox = b; - dets[index].objectness = scale; - for (j = 0; j < l.classes; ++j) { - int class_index = i*l.classes; - float prob = scale*predictions[class_index + j]; - dets[index].prob[j] = (prob > thresh) ? prob : 0; - } - } - } -} +#include "detection_layer.h" +#include "activations.h" +#include "softmax_layer.h" +#include "blas.h" +#include "box.h" +#include "dark_cuda.h" +#include "utils.h" +#include <stdio.h> +#include <assert.h> +#include <string.h> +#include <stdlib.h> + +detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore) +{ + detection_layer l = { (LAYER_TYPE)0 }; + l.type = DETECTION; + + l.n = n; + l.batch = batch; + l.inputs = inputs; + l.classes = classes; + l.coords = coords; + l.rescore = rescore; + l.side = side; + l.w = side; + l.h = side; + assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs); + l.cost = (float*)xcalloc(1, sizeof(float)); + l.outputs = l.inputs; + l.truths = l.side*l.side*(1+l.coords+l.classes); + l.output = (float*)xcalloc(batch * l.outputs, sizeof(float)); + l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float)); + + l.forward = forward_detection_layer; + l.backward = backward_detection_layer; +#ifdef GPU + l.forward_gpu = forward_detection_layer_gpu; + l.backward_gpu = backward_detection_layer_gpu; + l.output_gpu = cuda_make_array(l.output, batch*l.outputs); + l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); +#endif + + fprintf(stderr, "Detection Layer\n"); + srand(time(0)); + + return l; +} + +void forward_detection_layer(const detection_layer l, network_state state) +{ + int locations = l.side*l.side; + int i,j; + memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); + //if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1); + int b; + if (l.softmax){ + for(b = 0; b < l.batch; ++b){ + int index = b*l.inputs; + for (i = 0; i < locations; ++i) { + int offset = i*l.classes; + softmax(l.output + index + offset, l.classes, 1, + l.output + index + offset, 1); + } + } + } + if(state.train){ + float avg_iou = 0; + float avg_cat = 0; + float avg_allcat = 0; + float avg_obj = 0; + float avg_anyobj = 0; + int count = 0; + *(l.cost) = 0; + int size = l.inputs * l.batch; + memset(l.delta, 0, size * sizeof(float)); + for (b = 0; b < l.batch; ++b){ + int index = b*l.inputs; + for (i = 0; i < locations; ++i) { + int truth_index = (b*locations + i)*(1+l.coords+l.classes); + int is_obj = state.truth[truth_index]; + for (j = 0; j < l.n; ++j) { + int p_index = index + locations*l.classes + i*l.n + j; + l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]); + *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2); + avg_anyobj += l.output[p_index]; + } + + int best_index = -1; + float best_iou = 0; + float best_rmse = 20; + + if (!is_obj){ + continue; + } + + int class_index = index + i*l.classes; + for(j = 0; j < l.classes; ++j) { + l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]); + *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2); + if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j]; + avg_allcat += l.output[class_index+j]; + } + + box truth = float_to_box(state.truth + truth_index + 1 + l.classes); + truth.x /= l.side; + truth.y /= l.side; + + for(j = 0; j < l.n; ++j){ + int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords; + box out = float_to_box(l.output + box_index); + out.x /= l.side; + out.y /= l.side; + + if (l.sqrt){ + out.w = out.w*out.w; + out.h = out.h*out.h; + } + + float iou = box_iou(out, truth); + //iou = 0; + float rmse = box_rmse(out, truth); + if(best_iou > 0 || iou > 0){ + if(iou > best_iou){ + best_iou = iou; + best_index = j; + } + }else{ + if(rmse < best_rmse){ + best_rmse = rmse; + best_index = j; + } + } + } + + if(l.forced){ + if(truth.w*truth.h < .1){ + best_index = 1; + }else{ + best_index = 0; + } + } + if(l.random && *(state.net.seen) < 64000){ + best_index = rand()%l.n; + } + + int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords; + int tbox_index = truth_index + 1 + l.classes; + + box out = float_to_box(l.output + box_index); + out.x /= l.side; + out.y /= l.side; + if (l.sqrt) { + out.w = out.w*out.w; + out.h = out.h*out.h; + } + float iou = box_iou(out, truth); + + //printf("%d,", best_index); + int p_index = index + locations*l.classes + i*l.n + best_index; + *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2); + *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2); + avg_obj += l.output[p_index]; + l.delta[p_index] = l.object_scale * (1.-l.output[p_index]); + + if(l.rescore){ + l.delta[p_index] = l.object_scale * (iou - l.output[p_index]); + } + + l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]); + l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]); + l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]); + l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]); + if(l.sqrt){ + l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]); + l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]); + } + + *(l.cost) += pow(1-iou, 2); + avg_iou += iou; + ++count; + } + } + + if(0){ + float* costs = (float*)xcalloc(l.batch * locations * l.n, sizeof(float)); + for (b = 0; b < l.batch; ++b) { + int index = b*l.inputs; + for (i = 0; i < locations; ++i) { + for (j = 0; j < l.n; ++j) { + int p_index = index + locations*l.classes + i*l.n + j; + costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index]; + } + } + } + int indexes[100]; + top_k(costs, l.batch*locations*l.n, 100, indexes); + float cutoff = costs[indexes[99]]; + for (b = 0; b < l.batch; ++b) { + int index = b*l.inputs; + for (i = 0; i < locations; ++i) { + for (j = 0; j < l.n; ++j) { + int p_index = index + locations*l.classes + i*l.n + j; + if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0; + } + } + } + free(costs); + } + + + *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); + + + printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); + //if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0); + } +} + +void backward_detection_layer(const detection_layer l, network_state state) +{ + axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); +} + +void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) +{ + int i,j,n; + float *predictions = l.output; + //int per_cell = 5*num+classes; + for (i = 0; i < l.side*l.side; ++i){ + int row = i / l.side; + int col = i % l.side; + for(n = 0; n < l.n; ++n){ + int index = i*l.n + n; + int p_index = l.side*l.side*l.classes + i*l.n + n; + float scale = predictions[p_index]; + int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4; + boxes[index].x = (predictions[box_index + 0] + col) / l.side * w; + boxes[index].y = (predictions[box_index + 1] + row) / l.side * h; + boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w; + boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h; + for(j = 0; j < l.classes; ++j){ + int class_index = i*l.classes; + float prob = scale*predictions[class_index+j]; + probs[index][j] = (prob > thresh) ? prob : 0; + } + if(only_objectness){ + probs[index][0] = scale; + } + } + } +} + +#ifdef GPU + +void forward_detection_layer_gpu(const detection_layer l, network_state state) +{ + if(!state.train){ + copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); + return; + } + + float* in_cpu = (float*)xcalloc(l.batch * l.inputs, sizeof(float)); + float *truth_cpu = 0; + if(state.truth){ + int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes); + truth_cpu = (float*)xcalloc(num_truth, sizeof(float)); + cuda_pull_array(state.truth, truth_cpu, num_truth); + } + cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); + network_state cpu_state = state; + cpu_state.train = state.train; + cpu_state.truth = truth_cpu; + cpu_state.input = in_cpu; + forward_detection_layer(l, cpu_state); + cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); + cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); + free(cpu_state.input); + if(cpu_state.truth) free(cpu_state.truth); +} + +void backward_detection_layer_gpu(detection_layer l, network_state state) +{ + axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1); + //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1); +} +#endif + +void get_detection_detections(layer l, int w, int h, float thresh, detection *dets) +{ + int i, j, n; + float *predictions = l.output; + //int per_cell = 5*num+classes; + for (i = 0; i < l.side*l.side; ++i) { + int row = i / l.side; + int col = i % l.side; + for (n = 0; n < l.n; ++n) { + int index = i*l.n + n; + int p_index = l.side*l.side*l.classes + i*l.n + n; + float scale = predictions[p_index]; + int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n) * 4; + box b; + b.x = (predictions[box_index + 0] + col) / l.side * w; + b.y = (predictions[box_index + 1] + row) / l.side * h; + b.w = pow(predictions[box_index + 2], (l.sqrt ? 2 : 1)) * w; + b.h = pow(predictions[box_index + 3], (l.sqrt ? 2 : 1)) * h; + dets[index].bbox = b; + dets[index].objectness = scale; + for (j = 0; j < l.classes; ++j) { + int class_index = i*l.classes; + float prob = scale*predictions[class_index + j]; + dets[index].prob[j] = (prob > thresh) ? prob : 0; + } + } + } +} -- Gitblit v1.8.0