From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/gaussian_yolo_layer.c | 1798 +++++++++++++++++++++++++++++----------------------------- 1 files changed, 899 insertions(+), 899 deletions(-) diff --git a/lib/detecter_tools/darknet/gaussian_yolo_layer.c b/lib/detecter_tools/darknet/gaussian_yolo_layer.c index 5742e29..bd99a89 100644 --- a/lib/detecter_tools/darknet/gaussian_yolo_layer.c +++ b/lib/detecter_tools/darknet/gaussian_yolo_layer.c @@ -1,899 +1,899 @@ -// Gaussian YOLOv3 implementation -// Author: Jiwoong Choi -// ICCV 2019 Paper: http://openaccess.thecvf.com/content_ICCV_2019/html/Choi_Gaussian_YOLOv3_An_Accurate_and_Fast_Object_Detector_Using_Localization_ICCV_2019_paper.html -// arxiv.org: https://arxiv.org/abs/1904.04620v2 -// source code: https://github.com/jwchoi384/Gaussian_YOLOv3 - -#include "gaussian_yolo_layer.h" -#include "activations.h" -#include "blas.h" -#include "box.h" -#include "dark_cuda.h" -#include "utils.h" - -#include <stdio.h> -#include <assert.h> -#include <string.h> -#include <stdlib.h> - -#ifndef M_PI -#define M_PI 3.141592 -#endif - -extern int check_mistakes; - -layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes) -{ - int i; - layer l = { (LAYER_TYPE)0 }; - l.type = GAUSSIAN_YOLO; - - l.n = n; - l.total = total; - l.batch = batch; - l.h = h; - l.w = w; - l.c = n*(classes + 8 + 1); - l.out_w = l.w; - l.out_h = l.h; - l.out_c = l.c; - l.classes = classes; - l.cost = (float*)calloc(1, sizeof(float)); - l.biases = (float*)calloc(total*2, sizeof(float)); - if(mask) l.mask = mask; - else{ - l.mask = (int*)calloc(n, sizeof(int)); - for(i = 0; i < n; ++i){ - l.mask[i] = i; - } - } - l.bias_updates = (float*)calloc(n*2, sizeof(float)); - l.outputs = h*w*n*(classes + 8 + 1); - l.inputs = l.outputs; - l.max_boxes = max_boxes; - l.truths = l.max_boxes*(4 + 1); - l.delta = (float*)calloc(batch*l.outputs, sizeof(float)); - l.output = (float*)calloc(batch*l.outputs, sizeof(float)); - for(i = 0; i < total*2; ++i){ - l.biases[i] = .5; - } - - l.forward = forward_gaussian_yolo_layer; - l.backward = backward_gaussian_yolo_layer; -#ifdef GPU - l.forward_gpu = forward_gaussian_yolo_layer_gpu; - l.backward_gpu = backward_gaussian_yolo_layer_gpu; - l.output_gpu = cuda_make_array(l.output, batch*l.outputs); - l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); - - - free(l.output); - if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1; - else { - cudaGetLastError(); // reset CUDA-error - l.output = (float*)calloc(batch * l.outputs, sizeof(float)); - } - - free(l.delta); - if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1; - else { - cudaGetLastError(); // reset CUDA-error - l.delta = (float*)calloc(batch * l.outputs, sizeof(float)); - } - -#endif - - //fprintf(stderr, "Gaussian_yolo\n"); - srand(time(0)); - - return l; -} - -void resize_gaussian_yolo_layer(layer *l, int w, int h) -{ - l->w = w; - l->h = h; - - l->outputs = h*w*l->n*(l->classes + 8 + 1); - l->inputs = l->outputs; - - //l->output = (float *)realloc(l->output, l->batch*l->outputs * sizeof(float)); - //l->delta = (float *)realloc(l->delta, l->batch*l->outputs * sizeof(float)); - - if (!l->output_pinned) l->output = (float*)realloc(l->output, l->batch*l->outputs * sizeof(float)); - if (!l->delta_pinned) l->delta = (float*)realloc(l->delta, l->batch*l->outputs * sizeof(float)); - -#ifdef GPU - - if (l->output_pinned) { - CHECK_CUDA(cudaFreeHost(l->output)); - if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) { - cudaGetLastError(); // reset CUDA-error - l->output = (float*)calloc(l->batch * l->outputs, sizeof(float)); - l->output_pinned = 0; - } - } - - if (l->delta_pinned) { - CHECK_CUDA(cudaFreeHost(l->delta)); - if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) { - cudaGetLastError(); // reset CUDA-error - l->delta = (float*)calloc(l->batch * l->outputs, sizeof(float)); - l->delta_pinned = 0; - } - } - - - cuda_free(l->delta_gpu); - cuda_free(l->output_gpu); - - l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); - l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); -#endif -} - -box get_gaussian_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride, YOLO_POINT yolo_point) -{ - box b; - - b.w = exp(x[index + 4 * stride]) * biases[2 * n] / w; - b.h = exp(x[index + 6 * stride]) * biases[2 * n + 1] / h; - b.x = (i + x[index + 0 * stride]) / lw; - b.y = (j + x[index + 2 * stride]) / lh; - - if (yolo_point == YOLO_CENTER) { - } - else if (yolo_point == YOLO_LEFT_TOP) { - b.x = (i + x[index + 0 * stride]) / lw + b.w / 2; - b.y = (j + x[index + 2 * stride]) / lh + b.h / 2; - } - else if (yolo_point == YOLO_RIGHT_BOTTOM) { - b.x = (i + x[index + 0 * stride]) / lw - b.w / 2; - b.y = (j + x[index + 2 * stride]) / lh - b.h / 2; - } - - return b; -} - -static inline float fix_nan_inf(float val) -{ - if (isnan(val) || isinf(val)) val = 0; - return val; -} - -static inline float clip_value(float val, const float max_val) -{ - if (val > max_val) val = max_val; - else if (val < -max_val) val = -max_val; - return val; -} - -float delta_gaussian_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, - float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, float uc_normalizer, int accumulate, YOLO_POINT yolo_point, float max_delta) -{ - box pred = get_gaussian_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride, yolo_point); - - float iou; - ious all_ious = { 0 }; - all_ious.iou = box_iou(pred, truth); - all_ious.giou = box_giou(pred, truth); - all_ious.diou = box_diou(pred, truth); - all_ious.ciou = box_ciou(pred, truth); - if (pred.w == 0) { pred.w = 1.0; } - if (pred.h == 0) { pred.h = 1.0; } - - float sigma_const = 0.3; - float epsi = pow(10,-9); - - float dx, dy, dw, dh; - - iou = all_ious.iou; - - float tx, ty, tw, th; - - tx = (truth.x*lw - i); - ty = (truth.y*lh - j); - tw = log(truth.w*w / biases[2 * n]); - th = log(truth.h*h / biases[2 * n + 1]); - - if (yolo_point == YOLO_CENTER) { - } - else if (yolo_point == YOLO_LEFT_TOP) { - tx = ((truth.x - truth.w / 2)*lw - i); - ty = ((truth.y - truth.h / 2)*lh - j); - } - else if (yolo_point == YOLO_RIGHT_BOTTOM) { - tx = ((truth.x + truth.w / 2)*lw - i); - ty = ((truth.y + truth.h / 2)*lh - j); - } - - dx = (tx - x[index + 0 * stride]); - dy = (ty - x[index + 2 * stride]); - dw = (tw - x[index + 4 * stride]); - dh = (th - x[index + 6 * stride]); - - // Gaussian - float in_exp_x = dx / x[index+1*stride]; - float in_exp_x_2 = pow(in_exp_x, 2); - float normal_dist_x = exp(in_exp_x_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+1*stride]+sigma_const)); - - float in_exp_y = dy / x[index+3*stride]; - float in_exp_y_2 = pow(in_exp_y, 2); - float normal_dist_y = exp(in_exp_y_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+3*stride]+sigma_const)); - - float in_exp_w = dw / x[index+5*stride]; - float in_exp_w_2 = pow(in_exp_w, 2); - float normal_dist_w = exp(in_exp_w_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+5*stride]+sigma_const)); - - float in_exp_h = dh / x[index+7*stride]; - float in_exp_h_2 = pow(in_exp_h, 2); - float normal_dist_h = exp(in_exp_h_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+7*stride]+sigma_const)); - - float temp_x = (1./2.) * 1./(normal_dist_x+epsi) * normal_dist_x * scale; - float temp_y = (1./2.) * 1./(normal_dist_y+epsi) * normal_dist_y * scale; - float temp_w = (1./2.) * 1./(normal_dist_w+epsi) * normal_dist_w * scale; - float temp_h = (1./2.) * 1./(normal_dist_h+epsi) * normal_dist_h * scale; - - if (!accumulate) { - delta[index + 0 * stride] = 0; - delta[index + 1 * stride] = 0; - delta[index + 2 * stride] = 0; - delta[index + 3 * stride] = 0; - delta[index + 4 * stride] = 0; - delta[index + 5 * stride] = 0; - delta[index + 6 * stride] = 0; - delta[index + 7 * stride] = 0; - } - - float delta_x = temp_x * in_exp_x * (1. / x[index + 1 * stride]); - float delta_y = temp_y * in_exp_y * (1. / x[index + 3 * stride]); - float delta_w = temp_w * in_exp_w * (1. / x[index + 5 * stride]); - float delta_h = temp_h * in_exp_h * (1. / x[index + 7 * stride]); - - float delta_ux = temp_x * (in_exp_x_2 / x[index + 1 * stride] - 1. / (x[index + 1 * stride] + sigma_const)); - float delta_uy = temp_y * (in_exp_y_2 / x[index + 3 * stride] - 1. / (x[index + 3 * stride] + sigma_const)); - float delta_uw = temp_w * (in_exp_w_2 / x[index + 5 * stride] - 1. / (x[index + 5 * stride] + sigma_const)); - float delta_uh = temp_h * (in_exp_h_2 / x[index + 7 * stride] - 1. / (x[index + 7 * stride] + sigma_const)); - - if (iou_loss != MSE) { - // GIoU - iou = all_ious.giou; - - // https://github.com/generalized-iou/g-darknet - // https://arxiv.org/abs/1902.09630v2 - // https://giou.stanford.edu/ - // https://arxiv.org/abs/1911.08287v1 - // https://github.com/Zzh-tju/DIoU-darknet - all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss); - - float dx, dy, dw, dh; - - dx = all_ious.dx_iou.dt; - dy = all_ious.dx_iou.db; - dw = all_ious.dx_iou.dl; - dh = all_ious.dx_iou.dr; - - if (yolo_point == YOLO_CENTER) { - } - else if (yolo_point == YOLO_LEFT_TOP) { - dx = dx - dw/2; - dy = dy - dh/2; - } - else if (yolo_point == YOLO_RIGHT_BOTTOM) { - dx = dx + dw / 2; - dy = dy + dh / 2; - } - - // jacobian^t (transpose) - //float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr); - //float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db); - //float dw = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr)); - //float dh = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db)); - - // predict exponential, apply gradient of e^delta_t ONLY for w,h - dw *= exp(x[index + 4 * stride]); - dh *= exp(x[index + 6 * stride]); - - delta_x = dx; - delta_y = dy; - delta_w = dw; - delta_h = dh; - } - - // normalize iou weight, for GIoU - delta_x *= iou_normalizer; - delta_y *= iou_normalizer; - delta_w *= iou_normalizer; - delta_h *= iou_normalizer; - - // normalize Uncertainty weight - delta_ux *= uc_normalizer; - delta_uy *= uc_normalizer; - delta_uw *= uc_normalizer; - delta_uh *= uc_normalizer; - - delta_x = fix_nan_inf(delta_x); - delta_y = fix_nan_inf(delta_y); - delta_w = fix_nan_inf(delta_w); - delta_h = fix_nan_inf(delta_h); - - delta_ux = fix_nan_inf(delta_ux); - delta_uy = fix_nan_inf(delta_uy); - delta_uw = fix_nan_inf(delta_uw); - delta_uh = fix_nan_inf(delta_uh); - - if (max_delta != FLT_MAX) { - delta_x = clip_value(delta_x, max_delta); - delta_y = clip_value(delta_y, max_delta); - delta_w = clip_value(delta_w, max_delta); - delta_h = clip_value(delta_h, max_delta); - - delta_ux = clip_value(delta_ux, max_delta); - delta_uy = clip_value(delta_uy, max_delta); - delta_uw = clip_value(delta_uw, max_delta); - delta_uh = clip_value(delta_uh, max_delta); - } - - delta[index + 0 * stride] += delta_x; - delta[index + 2 * stride] += delta_y; - delta[index + 4 * stride] += delta_w; - delta[index + 6 * stride] += delta_h; - - delta[index + 1 * stride] += delta_ux; - delta[index + 3 * stride] += delta_uy; - delta[index + 5 * stride] += delta_uw; - delta[index + 7 * stride] += delta_uh; - return iou; -} - -void averages_gaussian_yolo_deltas(int class_index, int box_index, int stride, int classes, float *delta) -{ - - int classes_in_one_box = 0; - int c; - for (c = 0; c < classes; ++c) { - if (delta[class_index + stride*c] > 0) classes_in_one_box++; - } - - if (classes_in_one_box > 0) { - delta[box_index + 0 * stride] /= classes_in_one_box; - delta[box_index + 1 * stride] /= classes_in_one_box; - delta[box_index + 2 * stride] /= classes_in_one_box; - delta[box_index + 3 * stride] /= classes_in_one_box; - delta[box_index + 4 * stride] /= classes_in_one_box; - delta[box_index + 5 * stride] /= classes_in_one_box; - delta[box_index + 6 * stride] /= classes_in_one_box; - delta[box_index + 7 * stride] /= classes_in_one_box; - } -} - -void delta_gaussian_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, float label_smooth_eps, float *classes_multipliers) -{ - int n; - if (delta[index]){ - float y_true = 1; - if (label_smooth_eps) y_true = y_true * (1 - label_smooth_eps) + 0.5*label_smooth_eps; - delta[index + stride*class_id] = y_true - output[index + stride*class_id]; - //delta[index + stride*class_id] = 1 - output[index + stride*class_id]; - - if (classes_multipliers) delta[index + stride*class_id] *= classes_multipliers[class_id]; - if(avg_cat) *avg_cat += output[index + stride*class_id]; - return; - } - for(n = 0; n < classes; ++n){ - float y_true = ((n == class_id) ? 1 : 0); - if (label_smooth_eps) y_true = y_true * (1 - label_smooth_eps) + 0.5*label_smooth_eps; - delta[index + stride*n] = y_true - output[index + stride*n]; - - if (classes_multipliers && n == class_id) delta[index + stride*class_id] *= classes_multipliers[class_id]; - if(n == class_id && avg_cat) *avg_cat += output[index + stride*n]; - } -} - -int compare_gaussian_yolo_class(float *output, int classes, int class_index, int stride, float objectness, int class_id, float conf_thresh) -{ - int j; - for (j = 0; j < classes; ++j) { - //float prob = objectness * output[class_index + stride*j]; - float prob = output[class_index + stride*j]; - if (prob > conf_thresh) { - return 1; - } - } - return 0; -} - -static int entry_gaussian_index(layer l, int batch, int location, int entry) -{ - int n = location / (l.w*l.h); - int loc = location % (l.w*l.h); - return batch*l.outputs + n*l.w*l.h*(8+l.classes+1) + entry*l.w*l.h + loc; -} - -void forward_gaussian_yolo_layer(const layer l, network_state state) -{ - int i,j,b,t,n; - memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); - -#ifndef GPU - for (b = 0; b < l.batch; ++b){ - for(n = 0; n < l.n; ++n){ - // x : mu, sigma - int index = entry_gaussian_index(l, b, n*l.w*l.h, 0); - activate_array(l.output + index, 2*l.w*l.h, LOGISTIC); - scal_add_cpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1); // scale x - // y : mu, sigma - index = entry_gaussian_index(l, b, n*l.w*l.h, 2); - activate_array(l.output + index, 2*l.w*l.h, LOGISTIC); - scal_add_cpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1); // scale y - // w : sigma - index = entry_gaussian_index(l, b, n*l.w*l.h, 5); - activate_array(l.output + index, l.w*l.h, LOGISTIC); - // h : sigma - index = entry_gaussian_index(l, b, n*l.w*l.h, 7); - activate_array(l.output + index, l.w*l.h, LOGISTIC); - // objectness & class - index = entry_gaussian_index(l, b, n*l.w*l.h, 8); - activate_array(l.output + index, (1+l.classes)*l.w*l.h, LOGISTIC); - } - } -#endif - - memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); - if (!state.train) return; - float avg_iou = 0; - float recall = 0; - float recall75 = 0; - float avg_cat = 0; - float avg_obj = 0; - float avg_anyobj = 0; - int count = 0; - int class_count = 0; - *(l.cost) = 0; - for (b = 0; b < l.batch; ++b) { - for (j = 0; j < l.h; ++j) { - for (i = 0; i < l.w; ++i) { - for (n = 0; n < l.n; ++n) { - const int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9); - const int obj_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 8); - const int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0); - const int stride = l.w*l.h; - box pred = get_gaussian_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h, l.yolo_point); - float best_match_iou = 0; - int best_match_t = 0; - float best_iou = 0; - int best_t = 0; - for(t = 0; t < l.max_boxes; ++t){ - box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1); - int class_id = state.truth[t*(4 + 1) + b*l.truths + 4]; - if (class_id >= l.classes) { - printf("\n Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1); - printf(" truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f, class_id = %d \n", truth.x, truth.y, truth.w, truth.h, class_id); - if (check_mistakes) getchar(); - continue; // if label contains class_id more than number of classes in the cfg-file - } - if(!truth.x) break; - - - float objectness = l.output[obj_index]; - int class_id_match = compare_gaussian_yolo_class(l.output, l.classes, class_index, l.w*l.h, objectness, class_id, 0.25f); - - float iou = box_iou(pred, truth); - if (iou > best_match_iou && class_id_match == 1) { - best_match_iou = iou; - best_match_t = t; - } - if (iou > best_iou) { - best_iou = iou; - best_t = t; - } - } - - avg_anyobj += l.output[obj_index]; - l.delta[obj_index] = l.cls_normalizer * (0 - l.output[obj_index]); - if (best_match_iou > l.ignore_thresh) { - const float iou_multiplier = best_match_iou*best_match_iou;// (best_match_iou - l.ignore_thresh) / (1.0 - l.ignore_thresh); - if (l.objectness_smooth) { - l.delta[obj_index] = l.cls_normalizer * (iou_multiplier - l.output[obj_index]); - - int class_id = state.truth[best_match_t*(4 + 1) + b*l.truths + 4]; - if (l.map) class_id = l.map[class_id]; - const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; - l.delta[class_index + stride*class_id] = class_multiplier * (iou_multiplier - l.output[class_index + stride*class_id]); - } - else l.delta[obj_index] = 0; - } - else if (state.net.adversarial) { - float scale = pred.w * pred.h; - if (scale > 0) scale = sqrt(scale); - l.delta[obj_index] = scale * l.cls_normalizer * (0 - l.output[obj_index]); - int cl_id; - for (cl_id = 0; cl_id < l.classes; ++cl_id) { - if (l.output[class_index + stride*cl_id] * l.output[obj_index] > 0.25) - l.delta[class_index + stride*cl_id] = scale * (0 - l.output[class_index + stride*cl_id]); - } - } - if (best_iou > l.truth_thresh) { - const float iou_multiplier = best_iou*best_iou;// (best_iou - l.truth_thresh) / (1.0 - l.truth_thresh); - if (l.objectness_smooth) l.delta[obj_index] = l.cls_normalizer * (iou_multiplier - l.output[obj_index]); - else l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]); - //l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]); - - int class_id = state.truth[best_t*(4 + 1) + b*l.truths + 4]; - if (l.map) class_id = l.map[class_id]; - delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.label_smooth_eps, l.classes_multipliers); - const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; - if (l.objectness_smooth) l.delta[class_index + stride*class_id] = class_multiplier * (iou_multiplier - l.output[class_index + stride*class_id]); - box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1); - delta_gaussian_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta); - } - } - } - } - for(t = 0; t < l.max_boxes; ++t){ - box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1); - - if(!truth.x) break; - float best_iou = 0; - int best_n = 0; - i = (truth.x * l.w); - j = (truth.y * l.h); - - if (l.yolo_point == YOLO_CENTER) { - } - else if (l.yolo_point == YOLO_LEFT_TOP) { - i = min_val_cmp(l.w-1, max_val_cmp(0, ((truth.x - truth.w / 2) * l.w))); - j = min_val_cmp(l.h-1, max_val_cmp(0, ((truth.y - truth.h / 2) * l.h))); - } - else if (l.yolo_point == YOLO_RIGHT_BOTTOM) { - i = min_val_cmp(l.w-1, max_val_cmp(0, ((truth.x + truth.w / 2) * l.w))); - j = min_val_cmp(l.h-1, max_val_cmp(0, ((truth.y + truth.h / 2) * l.h))); - } - - box truth_shift = truth; - truth_shift.x = truth_shift.y = 0; - for(n = 0; n < l.total; ++n){ - box pred = {0}; - pred.w = l.biases[2*n]/ state.net.w; - pred.h = l.biases[2*n+1]/ state.net.h; - float iou = box_iou(pred, truth_shift); - if (iou > best_iou){ - best_iou = iou; - best_n = n; - } - } - - int mask_n = int_index(l.mask, best_n, l.n); - if(mask_n >= 0){ - int class_id = state.truth[t*(4 + 1) + b*l.truths + 4]; - if (l.map) class_id = l.map[class_id]; - - int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0); - const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; - float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta); - - int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8); - avg_obj += l.output[obj_index]; - l.delta[obj_index] = class_multiplier * l.cls_normalizer * (1 - l.output[obj_index]); - - int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9); - delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.label_smooth_eps, l.classes_multipliers); - - ++count; - ++class_count; - if(iou > .5) recall += 1; - if(iou > .75) recall75 += 1; - avg_iou += iou; - } - - - // iou_thresh - for (n = 0; n < l.total; ++n) { - int mask_n = int_index(l.mask, n, l.n); - if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) { - box pred = { 0 }; - pred.w = l.biases[2 * n] / state.net.w; - pred.h = l.biases[2 * n + 1] / state.net.h; - float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU - // iou, n - - if (iou > l.iou_thresh) { - int class_id = state.truth[t*(4 + 1) + b*l.truths + 4]; - if (l.map) class_id = l.map[class_id]; - - int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0); - const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; - float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta); - - int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8); - avg_obj += l.output[obj_index]; - l.delta[obj_index] = class_multiplier * l.cls_normalizer * (1 - l.output[obj_index]); - - int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9); - delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.label_smooth_eps, l.classes_multipliers); - - ++count; - ++class_count; - if (iou > .5) recall += 1; - if (iou > .75) recall75 += 1; - avg_iou += iou; - } - } - } - } - - // averages the deltas obtained by the function: delta_yolo_box()_accumulate - for (j = 0; j < l.h; ++j) { - for (i = 0; i < l.w; ++i) { - for (n = 0; n < l.n; ++n) { - int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0); - int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9); - const int stride = l.w*l.h; - - averages_gaussian_yolo_deltas(class_index, box_index, stride, l.classes, l.delta); - } - } - } - } - - - // calculate: Classification-loss, IoU-loss and Uncertainty-loss - const int stride = l.w*l.h; - float* classification_lost = (float *)calloc(l.batch * l.outputs, sizeof(float)); - memcpy(classification_lost, l.delta, l.batch * l.outputs * sizeof(float)); - - - for (b = 0; b < l.batch; ++b) { - for (j = 0; j < l.h; ++j) { - for (i = 0; i < l.w; ++i) { - for (n = 0; n < l.n; ++n) { - int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0); - - classification_lost[box_index + 0 * stride] = 0; - classification_lost[box_index + 1 * stride] = 0; - classification_lost[box_index + 2 * stride] = 0; - classification_lost[box_index + 3 * stride] = 0; - classification_lost[box_index + 4 * stride] = 0; - classification_lost[box_index + 5 * stride] = 0; - classification_lost[box_index + 6 * stride] = 0; - classification_lost[box_index + 7 * stride] = 0; - } - } - } - } - float class_loss = pow(mag_array(classification_lost, l.outputs * l.batch), 2); - free(classification_lost); - - - float* except_uncertainty_lost = (float *)calloc(l.batch * l.outputs, sizeof(float)); - memcpy(except_uncertainty_lost, l.delta, l.batch * l.outputs * sizeof(float)); - for (b = 0; b < l.batch; ++b) { - for (j = 0; j < l.h; ++j) { - for (i = 0; i < l.w; ++i) { - for (n = 0; n < l.n; ++n) { - int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0); - except_uncertainty_lost[box_index + 4 * stride] = 0; - except_uncertainty_lost[box_index + 5 * stride] = 0; - except_uncertainty_lost[box_index + 6 * stride] = 0; - except_uncertainty_lost[box_index + 7 * stride] = 0; - } - } - } - } - float except_uc_loss = pow(mag_array(except_uncertainty_lost, l.outputs * l.batch), 2); - free(except_uncertainty_lost); - - *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); - - float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2); - float uc_loss = loss - except_uc_loss; - float iou_loss = except_uc_loss - class_loss; - - loss /= l.batch; - class_loss /= l.batch; - uc_loss /= l.batch; - iou_loss /= l.batch; - - fprintf(stderr, "Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d, class_loss = %.2f, iou_loss = %.2f, uc_loss = %.2f, total_loss = %.2f \n", - state.index, avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, recall75/count, count, - class_loss, iou_loss, uc_loss, loss); -} - -void backward_gaussian_yolo_layer(const layer l, network_state state) -{ - axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); -} - -void correct_gaussian_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter) -{ - int i; - int new_w=0; - int new_h=0; - if (letter) { - if (((float)netw / w) < ((float)neth / h)) { - new_w = netw; - new_h = (h * netw) / w; - } - else { - new_h = neth; - new_w = (w * neth) / h; - } - } - else { - new_w = netw; - new_h = neth; - } - /* - if (((float)netw/w) < ((float)neth/h)) { - new_w = netw; - new_h = (h * netw)/w; - } else { - new_h = neth; - new_w = (w * neth)/h; - } - */ - for (i = 0; i < n; ++i){ - box b = dets[i].bbox; - b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); - b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); - b.w *= (float)netw/new_w; - b.h *= (float)neth/new_h; - if(!relative){ - b.x *= w; - b.w *= w; - b.y *= h; - b.h *= h; - } - dets[i].bbox = b; - } -} - -int gaussian_yolo_num_detections(layer l, float thresh) -{ - int i, n; - int count = 0; - for (i = 0; i < l.w*l.h; ++i){ - for(n = 0; n < l.n; ++n){ - int obj_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8); - if(l.output[obj_index] > thresh){ - ++count; - } - } - } - return count; -} - -/* -void avg_flipped_gaussian_yolo(layer l) -{ - int i,j,n,z; - float *flip = l.output + l.outputs; - for (j = 0; j < l.h; ++j) { - for (i = 0; i < l.w/2; ++i) { - for (n = 0; n < l.n; ++n) { - for(z = 0; z < l.classes + 8 + 1; ++z){ - int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i; - int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1); - float swap = flip[i1]; - flip[i1] = flip[i2]; - flip[i2] = swap; - if(z == 0){ - flip[i1] = -flip[i1]; - flip[i2] = -flip[i2]; - } - } - } - } - } - for(i = 0; i < l.outputs; ++i){ - l.output[i] = (l.output[i] + flip[i])/2.; - } -} -*/ - -int get_gaussian_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter) -{ - int i,j,n; - float *predictions = l.output; - //if (l.batch == 2) avg_flipped_gaussian_yolo(l); - int count = 0; - for (i = 0; i < l.w*l.h; ++i){ - int row = i / l.w; - int col = i % l.w; - for(n = 0; n < l.n; ++n){ - int obj_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8); - float objectness = predictions[obj_index]; - if (objectness <= thresh) continue; // incorrect behavior for Nan values - - if (objectness > thresh) { - int box_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 0); - dets[count].bbox = get_gaussian_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h, l.yolo_point); - dets[count].objectness = objectness; - dets[count].classes = l.classes; - - dets[count].uc[0] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 1)]; // tx uncertainty - dets[count].uc[1] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 3)]; // ty uncertainty - dets[count].uc[2] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 5)]; // tw uncertainty - dets[count].uc[3] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 7)]; // th uncertainty - - dets[count].points = l.yolo_point; - //if (l.yolo_point != YOLO_CENTER) dets[count].objectness = objectness = 0; - - for (j = 0; j < l.classes; ++j) { - int class_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 9 + j); - float uc_aver = (dets[count].uc[0] + dets[count].uc[1] + dets[count].uc[2] + dets[count].uc[3]) / 4.0; - float prob = objectness*predictions[class_index] * (1.0 - uc_aver); - dets[count].prob[j] = (prob > thresh) ? prob : 0; - } - ++count; - } - } - } - correct_gaussian_yolo_boxes(dets, count, w, h, netw, neth, relative, letter); - return count; -} - -#ifdef GPU - -void forward_gaussian_yolo_layer_gpu(const layer l, network_state state) -{ - copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); - int b, n; - for (b = 0; b < l.batch; ++b) - { - for(n = 0; n < l.n; ++n) - { - // x : mu, sigma - int index = entry_gaussian_index(l, b, n*l.w*l.h, 0); - activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); - scal_add_ongpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1); // scale x - // y : mu, sigma - index = entry_gaussian_index(l, b, n*l.w*l.h, 2); - activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); - scal_add_ongpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1); // scale y - // w : sigma - index = entry_gaussian_index(l, b, n*l.w*l.h, 5); - activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC); - // h : sigma - index = entry_gaussian_index(l, b, n*l.w*l.h, 7); - activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC); - // objectness & class - index = entry_gaussian_index(l, b, n*l.w*l.h, 8); - activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC); - } - } - - if (!state.train || l.onlyforward) { - //cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); - cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs); - CHECK_CUDA(cudaPeekAtLastError()); - return; - } - - float *in_cpu = (float *)calloc(l.batch*l.inputs, sizeof(float)); - cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); - memcpy(in_cpu, l.output, l.batch*l.outputs * sizeof(float)); - float *truth_cpu = 0; - if (state.truth) { - int num_truth = l.batch*l.truths; - truth_cpu = (float *)calloc(num_truth, sizeof(float)); - cuda_pull_array(state.truth, truth_cpu, num_truth); - } - network_state cpu_state = state; - cpu_state.net = state.net; - cpu_state.index = state.index; - cpu_state.train = state.train; - cpu_state.truth = truth_cpu; - cpu_state.input = in_cpu; - forward_gaussian_yolo_layer(l, cpu_state); - //forward_yolo_layer(l, state); - cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); - free(in_cpu); - if (cpu_state.truth) free(cpu_state.truth); -} - -void backward_gaussian_yolo_layer_gpu(const layer l, network_state state) -{ - axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1); -} -#endif +// Gaussian YOLOv3 implementation +// Author: Jiwoong Choi +// ICCV 2019 Paper: http://openaccess.thecvf.com/content_ICCV_2019/html/Choi_Gaussian_YOLOv3_An_Accurate_and_Fast_Object_Detector_Using_Localization_ICCV_2019_paper.html +// arxiv.org: https://arxiv.org/abs/1904.04620v2 +// source code: https://github.com/jwchoi384/Gaussian_YOLOv3 + +#include "gaussian_yolo_layer.h" +#include "activations.h" +#include "blas.h" +#include "box.h" +#include "dark_cuda.h" +#include "utils.h" + +#include <stdio.h> +#include <assert.h> +#include <string.h> +#include <stdlib.h> + +#ifndef M_PI +#define M_PI 3.141592 +#endif + +extern int check_mistakes; + +layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes) +{ + int i; + layer l = { (LAYER_TYPE)0 }; + l.type = GAUSSIAN_YOLO; + + l.n = n; + l.total = total; + l.batch = batch; + l.h = h; + l.w = w; + l.c = n*(classes + 8 + 1); + l.out_w = l.w; + l.out_h = l.h; + l.out_c = l.c; + l.classes = classes; + l.cost = (float*)calloc(1, sizeof(float)); + l.biases = (float*)calloc(total*2, sizeof(float)); + if(mask) l.mask = mask; + else{ + l.mask = (int*)calloc(n, sizeof(int)); + for(i = 0; i < n; ++i){ + l.mask[i] = i; + } + } + l.bias_updates = (float*)calloc(n*2, sizeof(float)); + l.outputs = h*w*n*(classes + 8 + 1); + l.inputs = l.outputs; + l.max_boxes = max_boxes; + l.truth_size = 4 + 2; + l.truths = l.max_boxes*l.truth_size; + l.delta = (float*)calloc(batch*l.outputs, sizeof(float)); + l.output = (float*)calloc(batch*l.outputs, sizeof(float)); + for(i = 0; i < total*2; ++i){ + l.biases[i] = .5; + } + + l.forward = forward_gaussian_yolo_layer; + l.backward = backward_gaussian_yolo_layer; +#ifdef GPU + l.forward_gpu = forward_gaussian_yolo_layer_gpu; + l.backward_gpu = backward_gaussian_yolo_layer_gpu; + l.output_gpu = cuda_make_array(l.output, batch*l.outputs); + l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); + + + free(l.output); + if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1; + else { + cudaGetLastError(); // reset CUDA-error + l.output = (float*)calloc(batch * l.outputs, sizeof(float)); + } + + free(l.delta); + if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1; + else { + cudaGetLastError(); // reset CUDA-error + l.delta = (float*)calloc(batch * l.outputs, sizeof(float)); + } + +#endif + + //fprintf(stderr, "Gaussian_yolo\n"); + srand(time(0)); + + return l; +} + +void resize_gaussian_yolo_layer(layer *l, int w, int h) +{ + l->w = w; + l->h = h; + + l->outputs = h*w*l->n*(l->classes + 8 + 1); + l->inputs = l->outputs; + + //l->output = (float *)realloc(l->output, l->batch*l->outputs * sizeof(float)); + //l->delta = (float *)realloc(l->delta, l->batch*l->outputs * sizeof(float)); + + if (!l->output_pinned) l->output = (float*)realloc(l->output, l->batch*l->outputs * sizeof(float)); + if (!l->delta_pinned) l->delta = (float*)realloc(l->delta, l->batch*l->outputs * sizeof(float)); + +#ifdef GPU + + if (l->output_pinned) { + CHECK_CUDA(cudaFreeHost(l->output)); + if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) { + cudaGetLastError(); // reset CUDA-error + l->output = (float*)calloc(l->batch * l->outputs, sizeof(float)); + l->output_pinned = 0; + } + } + + if (l->delta_pinned) { + CHECK_CUDA(cudaFreeHost(l->delta)); + if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) { + cudaGetLastError(); // reset CUDA-error + l->delta = (float*)calloc(l->batch * l->outputs, sizeof(float)); + l->delta_pinned = 0; + } + } + + + cuda_free(l->delta_gpu); + cuda_free(l->output_gpu); + + l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); + l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); +#endif +} + +box get_gaussian_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride, YOLO_POINT yolo_point) +{ + box b; + + b.w = exp(x[index + 4 * stride]) * biases[2 * n] / w; + b.h = exp(x[index + 6 * stride]) * biases[2 * n + 1] / h; + b.x = (i + x[index + 0 * stride]) / lw; + b.y = (j + x[index + 2 * stride]) / lh; + + if (yolo_point == YOLO_CENTER) { + } + else if (yolo_point == YOLO_LEFT_TOP) { + b.x = (i + x[index + 0 * stride]) / lw + b.w / 2; + b.y = (j + x[index + 2 * stride]) / lh + b.h / 2; + } + else if (yolo_point == YOLO_RIGHT_BOTTOM) { + b.x = (i + x[index + 0 * stride]) / lw - b.w / 2; + b.y = (j + x[index + 2 * stride]) / lh - b.h / 2; + } + + return b; +} + +static inline float fix_nan_inf(float val) +{ + if (isnan(val) || isinf(val)) val = 0; + return val; +} + +static inline float clip_value(float val, const float max_val) +{ + if (val > max_val) val = max_val; + else if (val < -max_val) val = -max_val; + return val; +} + +float delta_gaussian_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, + float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, float uc_normalizer, int accumulate, YOLO_POINT yolo_point, float max_delta) +{ + box pred = get_gaussian_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride, yolo_point); + + float iou; + ious all_ious = { 0 }; + all_ious.iou = box_iou(pred, truth); + all_ious.giou = box_giou(pred, truth); + all_ious.diou = box_diou(pred, truth); + all_ious.ciou = box_ciou(pred, truth); + if (pred.w == 0) { pred.w = 1.0; } + if (pred.h == 0) { pred.h = 1.0; } + + float sigma_const = 0.3; + float epsi = pow(10,-9); + + float dx, dy, dw, dh; + + iou = all_ious.iou; + + float tx, ty, tw, th; + + tx = (truth.x*lw - i); + ty = (truth.y*lh - j); + tw = log(truth.w*w / biases[2 * n]); + th = log(truth.h*h / biases[2 * n + 1]); + + if (yolo_point == YOLO_CENTER) { + } + else if (yolo_point == YOLO_LEFT_TOP) { + tx = ((truth.x - truth.w / 2)*lw - i); + ty = ((truth.y - truth.h / 2)*lh - j); + } + else if (yolo_point == YOLO_RIGHT_BOTTOM) { + tx = ((truth.x + truth.w / 2)*lw - i); + ty = ((truth.y + truth.h / 2)*lh - j); + } + + dx = (tx - x[index + 0 * stride]); + dy = (ty - x[index + 2 * stride]); + dw = (tw - x[index + 4 * stride]); + dh = (th - x[index + 6 * stride]); + + // Gaussian + float in_exp_x = dx / x[index+1*stride]; + float in_exp_x_2 = pow(in_exp_x, 2); + float normal_dist_x = exp(in_exp_x_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+1*stride]+sigma_const)); + + float in_exp_y = dy / x[index+3*stride]; + float in_exp_y_2 = pow(in_exp_y, 2); + float normal_dist_y = exp(in_exp_y_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+3*stride]+sigma_const)); + + float in_exp_w = dw / x[index+5*stride]; + float in_exp_w_2 = pow(in_exp_w, 2); + float normal_dist_w = exp(in_exp_w_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+5*stride]+sigma_const)); + + float in_exp_h = dh / x[index+7*stride]; + float in_exp_h_2 = pow(in_exp_h, 2); + float normal_dist_h = exp(in_exp_h_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+7*stride]+sigma_const)); + + float temp_x = (1./2.) * 1./(normal_dist_x+epsi) * normal_dist_x * scale; + float temp_y = (1./2.) * 1./(normal_dist_y+epsi) * normal_dist_y * scale; + float temp_w = (1./2.) * 1./(normal_dist_w+epsi) * normal_dist_w * scale; + float temp_h = (1./2.) * 1./(normal_dist_h+epsi) * normal_dist_h * scale; + + if (!accumulate) { + delta[index + 0 * stride] = 0; + delta[index + 1 * stride] = 0; + delta[index + 2 * stride] = 0; + delta[index + 3 * stride] = 0; + delta[index + 4 * stride] = 0; + delta[index + 5 * stride] = 0; + delta[index + 6 * stride] = 0; + delta[index + 7 * stride] = 0; + } + + float delta_x = temp_x * in_exp_x * (1. / x[index + 1 * stride]); + float delta_y = temp_y * in_exp_y * (1. / x[index + 3 * stride]); + float delta_w = temp_w * in_exp_w * (1. / x[index + 5 * stride]); + float delta_h = temp_h * in_exp_h * (1. / x[index + 7 * stride]); + + float delta_ux = temp_x * (in_exp_x_2 / x[index + 1 * stride] - 1. / (x[index + 1 * stride] + sigma_const)); + float delta_uy = temp_y * (in_exp_y_2 / x[index + 3 * stride] - 1. / (x[index + 3 * stride] + sigma_const)); + float delta_uw = temp_w * (in_exp_w_2 / x[index + 5 * stride] - 1. / (x[index + 5 * stride] + sigma_const)); + float delta_uh = temp_h * (in_exp_h_2 / x[index + 7 * stride] - 1. / (x[index + 7 * stride] + sigma_const)); + + if (iou_loss != MSE) { + // GIoU + iou = all_ious.giou; + + // https://github.com/generalized-iou/g-darknet + // https://arxiv.org/abs/1902.09630v2 + // https://giou.stanford.edu/ + // https://arxiv.org/abs/1911.08287v1 + // https://github.com/Zzh-tju/DIoU-darknet + all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss); + + float dx, dy, dw, dh; + + dx = all_ious.dx_iou.dt; + dy = all_ious.dx_iou.db; + dw = all_ious.dx_iou.dl; + dh = all_ious.dx_iou.dr; + + if (yolo_point == YOLO_CENTER) { + } + else if (yolo_point == YOLO_LEFT_TOP) { + dx = dx - dw/2; + dy = dy - dh/2; + } + else if (yolo_point == YOLO_RIGHT_BOTTOM) { + dx = dx + dw / 2; + dy = dy + dh / 2; + } + + // jacobian^t (transpose) + //float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr); + //float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db); + //float dw = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr)); + //float dh = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db)); + + // predict exponential, apply gradient of e^delta_t ONLY for w,h + dw *= exp(x[index + 4 * stride]); + dh *= exp(x[index + 6 * stride]); + + delta_x = dx; + delta_y = dy; + delta_w = dw; + delta_h = dh; + } + + // normalize iou weight, for GIoU + delta_x *= iou_normalizer; + delta_y *= iou_normalizer; + delta_w *= iou_normalizer; + delta_h *= iou_normalizer; + + // normalize Uncertainty weight + delta_ux *= uc_normalizer; + delta_uy *= uc_normalizer; + delta_uw *= uc_normalizer; + delta_uh *= uc_normalizer; + + delta_x = fix_nan_inf(delta_x); + delta_y = fix_nan_inf(delta_y); + delta_w = fix_nan_inf(delta_w); + delta_h = fix_nan_inf(delta_h); + + delta_ux = fix_nan_inf(delta_ux); + delta_uy = fix_nan_inf(delta_uy); + delta_uw = fix_nan_inf(delta_uw); + delta_uh = fix_nan_inf(delta_uh); + + if (max_delta != FLT_MAX) { + delta_x = clip_value(delta_x, max_delta); + delta_y = clip_value(delta_y, max_delta); + delta_w = clip_value(delta_w, max_delta); + delta_h = clip_value(delta_h, max_delta); + + delta_ux = clip_value(delta_ux, max_delta); + delta_uy = clip_value(delta_uy, max_delta); + delta_uw = clip_value(delta_uw, max_delta); + delta_uh = clip_value(delta_uh, max_delta); + } + + delta[index + 0 * stride] += delta_x; + delta[index + 2 * stride] += delta_y; + delta[index + 4 * stride] += delta_w; + delta[index + 6 * stride] += delta_h; + + delta[index + 1 * stride] += delta_ux; + delta[index + 3 * stride] += delta_uy; + delta[index + 5 * stride] += delta_uw; + delta[index + 7 * stride] += delta_uh; + return iou; +} + +void averages_gaussian_yolo_deltas(int class_index, int box_index, int stride, int classes, float *delta) +{ + + int classes_in_one_box = 0; + int c; + for (c = 0; c < classes; ++c) { + if (delta[class_index + stride*c] > 0) classes_in_one_box++; + } + + if (classes_in_one_box > 0) { + delta[box_index + 0 * stride] /= classes_in_one_box; + delta[box_index + 1 * stride] /= classes_in_one_box; + delta[box_index + 2 * stride] /= classes_in_one_box; + delta[box_index + 3 * stride] /= classes_in_one_box; + delta[box_index + 4 * stride] /= classes_in_one_box; + delta[box_index + 5 * stride] /= classes_in_one_box; + delta[box_index + 6 * stride] /= classes_in_one_box; + delta[box_index + 7 * stride] /= classes_in_one_box; + } +} + +void delta_gaussian_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, float label_smooth_eps, float *classes_multipliers, float cls_normalizer) +{ + int n; + if (delta[index]){ + float y_true = 1; + if (label_smooth_eps) y_true = y_true * (1 - label_smooth_eps) + 0.5*label_smooth_eps; + delta[index + stride*class_id] = y_true - output[index + stride*class_id]; + //delta[index + stride*class_id] = 1 - output[index + stride*class_id]; + + if (classes_multipliers) delta[index + stride*class_id] *= classes_multipliers[class_id]; + if(avg_cat) *avg_cat += output[index + stride*class_id]; + return; + } + for(n = 0; n < classes; ++n){ + float y_true = ((n == class_id) ? 1 : 0); + if (label_smooth_eps) y_true = y_true * (1 - label_smooth_eps) + 0.5*label_smooth_eps; + delta[index + stride*n] = y_true - output[index + stride*n]; + + if (classes_multipliers && n == class_id) delta[index + stride*class_id] *= classes_multipliers[class_id] * cls_normalizer; + if(n == class_id && avg_cat) *avg_cat += output[index + stride*n]; + } +} + +int compare_gaussian_yolo_class(float *output, int classes, int class_index, int stride, float objectness, int class_id, float conf_thresh) +{ + int j; + for (j = 0; j < classes; ++j) { + //float prob = objectness * output[class_index + stride*j]; + float prob = output[class_index + stride*j]; + if (prob > conf_thresh) { + return 1; + } + } + return 0; +} + +static int entry_gaussian_index(layer l, int batch, int location, int entry) +{ + int n = location / (l.w*l.h); + int loc = location % (l.w*l.h); + return batch*l.outputs + n*l.w*l.h*(8+l.classes+1) + entry*l.w*l.h + loc; +} + +void forward_gaussian_yolo_layer(const layer l, network_state state) +{ + int i,j,b,t,n; + memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); + +#ifndef GPU + for (b = 0; b < l.batch; ++b){ + for(n = 0; n < l.n; ++n){ + // x : mu, sigma + int index = entry_gaussian_index(l, b, n*l.w*l.h, 0); + activate_array(l.output + index, 2*l.w*l.h, LOGISTIC); + scal_add_cpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1); // scale x + // y : mu, sigma + index = entry_gaussian_index(l, b, n*l.w*l.h, 2); + activate_array(l.output + index, 2*l.w*l.h, LOGISTIC); + scal_add_cpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1); // scale y + // w : sigma + index = entry_gaussian_index(l, b, n*l.w*l.h, 5); + activate_array(l.output + index, l.w*l.h, LOGISTIC); + // h : sigma + index = entry_gaussian_index(l, b, n*l.w*l.h, 7); + activate_array(l.output + index, l.w*l.h, LOGISTIC); + // objectness & class + index = entry_gaussian_index(l, b, n*l.w*l.h, 8); + activate_array(l.output + index, (1+l.classes)*l.w*l.h, LOGISTIC); + } + } +#endif + + memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); + if (!state.train) return; + float avg_iou = 0; + float recall = 0; + float recall75 = 0; + float avg_cat = 0; + float avg_obj = 0; + float avg_anyobj = 0; + int count = 0; + int class_count = 0; + *(l.cost) = 0; + for (b = 0; b < l.batch; ++b) { + for (j = 0; j < l.h; ++j) { + for (i = 0; i < l.w; ++i) { + for (n = 0; n < l.n; ++n) { + const int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9); + const int obj_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 8); + const int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0); + const int stride = l.w*l.h; + box pred = get_gaussian_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h, l.yolo_point); + float best_match_iou = 0; + int best_match_t = 0; + float best_iou = 0; + int best_t = 0; + for(t = 0; t < l.max_boxes; ++t){ + box truth = float_to_box_stride(state.truth + t*l.truth_size + b*l.truths, 1); + int class_id = state.truth[t*l.truth_size + b*l.truths + 4]; + if (class_id >= l.classes) { + printf("\n Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1); + printf(" truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f, class_id = %d \n", truth.x, truth.y, truth.w, truth.h, class_id); + if (check_mistakes) getchar(); + continue; // if label contains class_id more than number of classes in the cfg-file + } + if(!truth.x) break; + + + float objectness = l.output[obj_index]; + int class_id_match = compare_gaussian_yolo_class(l.output, l.classes, class_index, l.w*l.h, objectness, class_id, 0.25f); + + float iou = box_iou(pred, truth); + if (iou > best_match_iou && class_id_match == 1) { + best_match_iou = iou; + best_match_t = t; + } + if (iou > best_iou) { + best_iou = iou; + best_t = t; + } + } + + avg_anyobj += l.output[obj_index]; + l.delta[obj_index] = l.obj_normalizer * (0 - l.output[obj_index]); + if (best_match_iou > l.ignore_thresh) { + const float iou_multiplier = best_match_iou*best_match_iou;// (best_match_iou - l.ignore_thresh) / (1.0 - l.ignore_thresh); + if (l.objectness_smooth) { + l.delta[obj_index] = l.obj_normalizer * (iou_multiplier - l.output[obj_index]); + + int class_id = state.truth[best_match_t*l.truth_size + b*l.truths + 4]; + if (l.map) class_id = l.map[class_id]; + delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer); + } + else l.delta[obj_index] = 0; + } + else if (state.net.adversarial) { + float scale = pred.w * pred.h; + if (scale > 0) scale = sqrt(scale); + l.delta[obj_index] = scale * l.obj_normalizer * (0 - l.output[obj_index]); + int cl_id; + for (cl_id = 0; cl_id < l.classes; ++cl_id) { + if (l.output[class_index + stride*cl_id] * l.output[obj_index] > 0.25) + l.delta[class_index + stride*cl_id] = scale * (0 - l.output[class_index + stride*cl_id]); + } + } + if (best_iou > l.truth_thresh) { + const float iou_multiplier = best_iou*best_iou;// (best_iou - l.truth_thresh) / (1.0 - l.truth_thresh); + if (l.objectness_smooth) l.delta[obj_index] = l.obj_normalizer * (iou_multiplier - l.output[obj_index]); + else l.delta[obj_index] = l.obj_normalizer * (1 - l.output[obj_index]); + //l.delta[obj_index] = l.obj_normalizer * (1 - l.output[obj_index]); + + int class_id = state.truth[best_t*l.truth_size + b*l.truths + 4]; + if (l.map) class_id = l.map[class_id]; + delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer); + const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; + if (l.objectness_smooth) l.delta[class_index + stride*class_id] = class_multiplier * (iou_multiplier - l.output[class_index + stride*class_id]); + box truth = float_to_box_stride(state.truth + best_t*l.truth_size + b*l.truths, 1); + delta_gaussian_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta); + } + } + } + } + for(t = 0; t < l.max_boxes; ++t){ + box truth = float_to_box_stride(state.truth + t*l.truth_size + b*l.truths, 1); + + if(!truth.x) break; + float best_iou = 0; + int best_n = 0; + i = (truth.x * l.w); + j = (truth.y * l.h); + + if (l.yolo_point == YOLO_CENTER) { + } + else if (l.yolo_point == YOLO_LEFT_TOP) { + i = min_val_cmp(l.w-1, max_val_cmp(0, ((truth.x - truth.w / 2) * l.w))); + j = min_val_cmp(l.h-1, max_val_cmp(0, ((truth.y - truth.h / 2) * l.h))); + } + else if (l.yolo_point == YOLO_RIGHT_BOTTOM) { + i = min_val_cmp(l.w-1, max_val_cmp(0, ((truth.x + truth.w / 2) * l.w))); + j = min_val_cmp(l.h-1, max_val_cmp(0, ((truth.y + truth.h / 2) * l.h))); + } + + box truth_shift = truth; + truth_shift.x = truth_shift.y = 0; + for(n = 0; n < l.total; ++n){ + box pred = {0}; + pred.w = l.biases[2*n]/ state.net.w; + pred.h = l.biases[2*n+1]/ state.net.h; + float iou = box_iou(pred, truth_shift); + if (iou > best_iou){ + best_iou = iou; + best_n = n; + } + } + + int mask_n = int_index(l.mask, best_n, l.n); + if(mask_n >= 0){ + int class_id = state.truth[t*l.truth_size + b*l.truths + 4]; + if (l.map) class_id = l.map[class_id]; + + int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0); + const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; + float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta); + + int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8); + avg_obj += l.output[obj_index]; + l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]); + + int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9); + delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer); + + ++count; + ++class_count; + if(iou > .5) recall += 1; + if(iou > .75) recall75 += 1; + avg_iou += iou; + } + + + // iou_thresh + for (n = 0; n < l.total; ++n) { + int mask_n = int_index(l.mask, n, l.n); + if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) { + box pred = { 0 }; + pred.w = l.biases[2 * n] / state.net.w; + pred.h = l.biases[2 * n + 1] / state.net.h; + float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU + // iou, n + + if (iou > l.iou_thresh) { + int class_id = state.truth[t*l.truth_size + b*l.truths + 4]; + if (l.map) class_id = l.map[class_id]; + + int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0); + const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; + float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta); + + int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8); + avg_obj += l.output[obj_index]; + l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]); + + int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9); + delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer); + + ++count; + ++class_count; + if (iou > .5) recall += 1; + if (iou > .75) recall75 += 1; + avg_iou += iou; + } + } + } + } + + // averages the deltas obtained by the function: delta_yolo_box()_accumulate + for (j = 0; j < l.h; ++j) { + for (i = 0; i < l.w; ++i) { + for (n = 0; n < l.n; ++n) { + int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0); + int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9); + const int stride = l.w*l.h; + + averages_gaussian_yolo_deltas(class_index, box_index, stride, l.classes, l.delta); + } + } + } + } + + + // calculate: Classification-loss, IoU-loss and Uncertainty-loss + const int stride = l.w*l.h; + float* classification_lost = (float *)calloc(l.batch * l.outputs, sizeof(float)); + memcpy(classification_lost, l.delta, l.batch * l.outputs * sizeof(float)); + + + for (b = 0; b < l.batch; ++b) { + for (j = 0; j < l.h; ++j) { + for (i = 0; i < l.w; ++i) { + for (n = 0; n < l.n; ++n) { + int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0); + + classification_lost[box_index + 0 * stride] = 0; + classification_lost[box_index + 1 * stride] = 0; + classification_lost[box_index + 2 * stride] = 0; + classification_lost[box_index + 3 * stride] = 0; + classification_lost[box_index + 4 * stride] = 0; + classification_lost[box_index + 5 * stride] = 0; + classification_lost[box_index + 6 * stride] = 0; + classification_lost[box_index + 7 * stride] = 0; + } + } + } + } + float class_loss = pow(mag_array(classification_lost, l.outputs * l.batch), 2); + free(classification_lost); + + + float* except_uncertainty_lost = (float *)calloc(l.batch * l.outputs, sizeof(float)); + memcpy(except_uncertainty_lost, l.delta, l.batch * l.outputs * sizeof(float)); + for (b = 0; b < l.batch; ++b) { + for (j = 0; j < l.h; ++j) { + for (i = 0; i < l.w; ++i) { + for (n = 0; n < l.n; ++n) { + int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0); + except_uncertainty_lost[box_index + 4 * stride] = 0; + except_uncertainty_lost[box_index + 5 * stride] = 0; + except_uncertainty_lost[box_index + 6 * stride] = 0; + except_uncertainty_lost[box_index + 7 * stride] = 0; + } + } + } + } + float except_uc_loss = pow(mag_array(except_uncertainty_lost, l.outputs * l.batch), 2); + free(except_uncertainty_lost); + + *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); + + float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2); + float uc_loss = loss - except_uc_loss; + float iou_loss = except_uc_loss - class_loss; + + loss /= l.batch; + class_loss /= l.batch; + uc_loss /= l.batch; + iou_loss /= l.batch; + + fprintf(stderr, "Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d, class_loss = %.2f, iou_loss = %.2f, uc_loss = %.2f, total_loss = %.2f \n", + state.index, avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, recall75/count, count, + class_loss, iou_loss, uc_loss, loss); +} + +void backward_gaussian_yolo_layer(const layer l, network_state state) +{ + axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); +} + +void correct_gaussian_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter) +{ + int i; + int new_w=0; + int new_h=0; + if (letter) { + if (((float)netw / w) < ((float)neth / h)) { + new_w = netw; + new_h = (h * netw) / w; + } + else { + new_h = neth; + new_w = (w * neth) / h; + } + } + else { + new_w = netw; + new_h = neth; + } + /* + if (((float)netw/w) < ((float)neth/h)) { + new_w = netw; + new_h = (h * netw)/w; + } else { + new_h = neth; + new_w = (w * neth)/h; + } + */ + for (i = 0; i < n; ++i){ + box b = dets[i].bbox; + b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); + b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); + b.w *= (float)netw/new_w; + b.h *= (float)neth/new_h; + if(!relative){ + b.x *= w; + b.w *= w; + b.y *= h; + b.h *= h; + } + dets[i].bbox = b; + } +} + +int gaussian_yolo_num_detections(layer l, float thresh) +{ + int i, n; + int count = 0; + for (i = 0; i < l.w*l.h; ++i){ + for(n = 0; n < l.n; ++n){ + int obj_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8); + if(l.output[obj_index] > thresh){ + ++count; + } + } + } + return count; +} + +/* +void avg_flipped_gaussian_yolo(layer l) +{ + int i,j,n,z; + float *flip = l.output + l.outputs; + for (j = 0; j < l.h; ++j) { + for (i = 0; i < l.w/2; ++i) { + for (n = 0; n < l.n; ++n) { + for(z = 0; z < l.classes + 8 + 1; ++z){ + int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i; + int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1); + float swap = flip[i1]; + flip[i1] = flip[i2]; + flip[i2] = swap; + if(z == 0){ + flip[i1] = -flip[i1]; + flip[i2] = -flip[i2]; + } + } + } + } + } + for(i = 0; i < l.outputs; ++i){ + l.output[i] = (l.output[i] + flip[i])/2.; + } +} +*/ + +int get_gaussian_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter) +{ + int i,j,n; + float *predictions = l.output; + //if (l.batch == 2) avg_flipped_gaussian_yolo(l); + int count = 0; + for (i = 0; i < l.w*l.h; ++i){ + int row = i / l.w; + int col = i % l.w; + for(n = 0; n < l.n; ++n){ + int obj_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8); + float objectness = predictions[obj_index]; + if (objectness <= thresh) continue; // incorrect behavior for Nan values + + if (objectness > thresh) { + int box_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 0); + dets[count].bbox = get_gaussian_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h, l.yolo_point); + dets[count].objectness = objectness; + dets[count].classes = l.classes; + + dets[count].uc[0] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 1)]; // tx uncertainty + dets[count].uc[1] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 3)]; // ty uncertainty + dets[count].uc[2] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 5)]; // tw uncertainty + dets[count].uc[3] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 7)]; // th uncertainty + + dets[count].points = l.yolo_point; + //if (l.yolo_point != YOLO_CENTER) dets[count].objectness = objectness = 0; + + for (j = 0; j < l.classes; ++j) { + int class_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 9 + j); + float uc_aver = (dets[count].uc[0] + dets[count].uc[1] + dets[count].uc[2] + dets[count].uc[3]) / 4.0; + float prob = objectness*predictions[class_index] * (1.0 - uc_aver); + dets[count].prob[j] = (prob > thresh) ? prob : 0; + } + ++count; + } + } + } + correct_gaussian_yolo_boxes(dets, count, w, h, netw, neth, relative, letter); + return count; +} + +#ifdef GPU + +void forward_gaussian_yolo_layer_gpu(const layer l, network_state state) +{ + copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); + int b, n; + for (b = 0; b < l.batch; ++b) + { + for(n = 0; n < l.n; ++n) + { + // x : mu, sigma + int index = entry_gaussian_index(l, b, n*l.w*l.h, 0); + activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); + scal_add_ongpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1); // scale x + // y : mu, sigma + index = entry_gaussian_index(l, b, n*l.w*l.h, 2); + activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); + scal_add_ongpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1); // scale y + // w : sigma + index = entry_gaussian_index(l, b, n*l.w*l.h, 5); + activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC); + // h : sigma + index = entry_gaussian_index(l, b, n*l.w*l.h, 7); + activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC); + // objectness & class + index = entry_gaussian_index(l, b, n*l.w*l.h, 8); + activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC); + } + } + + if (!state.train || l.onlyforward) { + //cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); + cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs); + CHECK_CUDA(cudaPeekAtLastError()); + return; + } + + float *in_cpu = (float *)calloc(l.batch*l.inputs, sizeof(float)); + cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); + memcpy(in_cpu, l.output, l.batch*l.outputs * sizeof(float)); + float *truth_cpu = 0; + if (state.truth) { + int num_truth = l.batch*l.truths; + truth_cpu = (float *)calloc(num_truth, sizeof(float)); + cuda_pull_array(state.truth, truth_cpu, num_truth); + } + network_state cpu_state = state; + cpu_state.net = state.net; + cpu_state.index = state.index; + cpu_state.train = state.train; + cpu_state.truth = truth_cpu; + cpu_state.input = in_cpu; + forward_gaussian_yolo_layer(l, cpu_state); + //forward_yolo_layer(l, state); + cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); + free(in_cpu); + if (cpu_state.truth) free(cpu_state.truth); +} + +void backward_gaussian_yolo_layer_gpu(const layer l, network_state state) +{ + axpy_ongpu(l.batch*l.inputs, l.delta_normalizer, l.delta_gpu, 1, state.delta, 1); +} +#endif -- Gitblit v1.8.0