From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/gaussian_yolo_layer.c | 1798 +++++++++++++++++++++++++++++-----------------------------
 1 files changed, 899 insertions(+), 899 deletions(-)

diff --git a/lib/detecter_tools/darknet/gaussian_yolo_layer.c b/lib/detecter_tools/darknet/gaussian_yolo_layer.c
index 5742e29..bd99a89 100644
--- a/lib/detecter_tools/darknet/gaussian_yolo_layer.c
+++ b/lib/detecter_tools/darknet/gaussian_yolo_layer.c
@@ -1,899 +1,899 @@
-// Gaussian YOLOv3 implementation
-// Author: Jiwoong Choi
-// ICCV 2019 Paper: http://openaccess.thecvf.com/content_ICCV_2019/html/Choi_Gaussian_YOLOv3_An_Accurate_and_Fast_Object_Detector_Using_Localization_ICCV_2019_paper.html
-// arxiv.org: https://arxiv.org/abs/1904.04620v2
-// source code: https://github.com/jwchoi384/Gaussian_YOLOv3
-
-#include "gaussian_yolo_layer.h"
-#include "activations.h"
-#include "blas.h"
-#include "box.h"
-#include "dark_cuda.h"
-#include "utils.h"
-
-#include <stdio.h>
-#include <assert.h>
-#include <string.h>
-#include <stdlib.h>
-
-#ifndef M_PI
-#define M_PI 3.141592
-#endif
-
-extern int check_mistakes;
-
-layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes)
-{
-    int i;
-    layer l = { (LAYER_TYPE)0 };
-    l.type = GAUSSIAN_YOLO;
-
-    l.n = n;
-    l.total = total;
-    l.batch = batch;
-    l.h = h;
-    l.w = w;
-    l.c = n*(classes + 8 + 1);
-    l.out_w = l.w;
-    l.out_h = l.h;
-    l.out_c = l.c;
-    l.classes = classes;
-    l.cost = (float*)calloc(1, sizeof(float));
-    l.biases = (float*)calloc(total*2, sizeof(float));
-    if(mask) l.mask = mask;
-    else{
-        l.mask = (int*)calloc(n, sizeof(int));
-        for(i = 0; i < n; ++i){
-            l.mask[i] = i;
-        }
-    }
-    l.bias_updates = (float*)calloc(n*2, sizeof(float));
-    l.outputs = h*w*n*(classes + 8 + 1);
-    l.inputs = l.outputs;
-    l.max_boxes = max_boxes;
-    l.truths = l.max_boxes*(4 + 1);
-    l.delta = (float*)calloc(batch*l.outputs, sizeof(float));
-    l.output = (float*)calloc(batch*l.outputs, sizeof(float));
-    for(i = 0; i < total*2; ++i){
-        l.biases[i] = .5;
-    }
-
-    l.forward = forward_gaussian_yolo_layer;
-    l.backward = backward_gaussian_yolo_layer;
-#ifdef GPU
-    l.forward_gpu = forward_gaussian_yolo_layer_gpu;
-    l.backward_gpu = backward_gaussian_yolo_layer_gpu;
-    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
-    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
-
-
-    free(l.output);
-    if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1;
-    else {
-        cudaGetLastError(); // reset CUDA-error
-        l.output = (float*)calloc(batch * l.outputs, sizeof(float));
-    }
-
-    free(l.delta);
-    if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1;
-    else {
-        cudaGetLastError(); // reset CUDA-error
-        l.delta = (float*)calloc(batch * l.outputs, sizeof(float));
-    }
-
-#endif
-
-    //fprintf(stderr, "Gaussian_yolo\n");
-    srand(time(0));
-
-    return l;
-}
-
-void resize_gaussian_yolo_layer(layer *l, int w, int h)
-{
-    l->w = w;
-    l->h = h;
-
-    l->outputs = h*w*l->n*(l->classes + 8 + 1);
-    l->inputs = l->outputs;
-
-    //l->output = (float *)realloc(l->output, l->batch*l->outputs * sizeof(float));
-    //l->delta = (float *)realloc(l->delta, l->batch*l->outputs * sizeof(float));
-
-    if (!l->output_pinned) l->output = (float*)realloc(l->output, l->batch*l->outputs * sizeof(float));
-    if (!l->delta_pinned) l->delta = (float*)realloc(l->delta, l->batch*l->outputs * sizeof(float));
-
-#ifdef GPU
-
-    if (l->output_pinned) {
-        CHECK_CUDA(cudaFreeHost(l->output));
-        if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
-            cudaGetLastError(); // reset CUDA-error
-            l->output = (float*)calloc(l->batch * l->outputs, sizeof(float));
-            l->output_pinned = 0;
-        }
-    }
-
-    if (l->delta_pinned) {
-        CHECK_CUDA(cudaFreeHost(l->delta));
-        if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
-            cudaGetLastError(); // reset CUDA-error
-            l->delta = (float*)calloc(l->batch * l->outputs, sizeof(float));
-            l->delta_pinned = 0;
-        }
-    }
-
-
-    cuda_free(l->delta_gpu);
-    cuda_free(l->output_gpu);
-
-    l->delta_gpu =     cuda_make_array(l->delta, l->batch*l->outputs);
-    l->output_gpu =    cuda_make_array(l->output, l->batch*l->outputs);
-#endif
-}
-
-box get_gaussian_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride, YOLO_POINT yolo_point)
-{
-    box b;
-
-    b.w = exp(x[index + 4 * stride]) * biases[2 * n] / w;
-    b.h = exp(x[index + 6 * stride]) * biases[2 * n + 1] / h;
-    b.x = (i + x[index + 0 * stride]) / lw;
-    b.y = (j + x[index + 2 * stride]) / lh;
-
-    if (yolo_point == YOLO_CENTER) {
-    }
-    else if (yolo_point == YOLO_LEFT_TOP) {
-        b.x = (i + x[index + 0 * stride]) / lw + b.w / 2;
-        b.y = (j + x[index + 2 * stride]) / lh + b.h / 2;
-    }
-    else if (yolo_point == YOLO_RIGHT_BOTTOM) {
-        b.x = (i + x[index + 0 * stride]) / lw - b.w / 2;
-        b.y = (j + x[index + 2 * stride]) / lh - b.h / 2;
-    }
-
-    return b;
-}
-
-static inline float fix_nan_inf(float val)
-{
-    if (isnan(val) || isinf(val)) val = 0;
-    return val;
-}
-
-static inline float clip_value(float val, const float max_val)
-{
-    if (val > max_val) val = max_val;
-    else if (val < -max_val) val = -max_val;
-    return val;
-}
-
-float delta_gaussian_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta,
-    float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, float uc_normalizer, int accumulate, YOLO_POINT yolo_point, float max_delta)
-{
-    box pred = get_gaussian_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride, yolo_point);
-
-    float iou;
-    ious all_ious = { 0 };
-    all_ious.iou = box_iou(pred, truth);
-    all_ious.giou = box_giou(pred, truth);
-    all_ious.diou = box_diou(pred, truth);
-    all_ious.ciou = box_ciou(pred, truth);
-    if (pred.w == 0) { pred.w = 1.0; }
-    if (pred.h == 0) { pred.h = 1.0; }
-
-    float sigma_const = 0.3;
-    float epsi = pow(10,-9);
-
-    float dx, dy, dw, dh;
-
-    iou = all_ious.iou;
-
-    float tx, ty, tw, th;
-
-    tx = (truth.x*lw - i);
-    ty = (truth.y*lh - j);
-    tw = log(truth.w*w / biases[2 * n]);
-    th = log(truth.h*h / biases[2 * n + 1]);
-
-    if (yolo_point == YOLO_CENTER) {
-    }
-    else if (yolo_point == YOLO_LEFT_TOP) {
-        tx = ((truth.x - truth.w / 2)*lw - i);
-        ty = ((truth.y - truth.h / 2)*lh - j);
-    }
-    else if (yolo_point == YOLO_RIGHT_BOTTOM) {
-        tx = ((truth.x + truth.w / 2)*lw - i);
-        ty = ((truth.y + truth.h / 2)*lh - j);
-    }
-
-    dx = (tx - x[index + 0 * stride]);
-    dy = (ty - x[index + 2 * stride]);
-    dw = (tw - x[index + 4 * stride]);
-    dh = (th - x[index + 6 * stride]);
-
-    // Gaussian
-    float in_exp_x = dx / x[index+1*stride];
-    float in_exp_x_2 = pow(in_exp_x, 2);
-    float normal_dist_x = exp(in_exp_x_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+1*stride]+sigma_const));
-
-    float in_exp_y = dy / x[index+3*stride];
-    float in_exp_y_2 = pow(in_exp_y, 2);
-    float normal_dist_y = exp(in_exp_y_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+3*stride]+sigma_const));
-
-    float in_exp_w = dw / x[index+5*stride];
-    float in_exp_w_2 = pow(in_exp_w, 2);
-    float normal_dist_w = exp(in_exp_w_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+5*stride]+sigma_const));
-
-    float in_exp_h = dh / x[index+7*stride];
-    float in_exp_h_2 = pow(in_exp_h, 2);
-    float normal_dist_h = exp(in_exp_h_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+7*stride]+sigma_const));
-
-    float temp_x = (1./2.) * 1./(normal_dist_x+epsi) * normal_dist_x * scale;
-    float temp_y = (1./2.) * 1./(normal_dist_y+epsi) * normal_dist_y * scale;
-    float temp_w = (1./2.) * 1./(normal_dist_w+epsi) * normal_dist_w * scale;
-    float temp_h = (1./2.) * 1./(normal_dist_h+epsi) * normal_dist_h * scale;
-
-    if (!accumulate) {
-        delta[index + 0 * stride] = 0;
-        delta[index + 1 * stride] = 0;
-        delta[index + 2 * stride] = 0;
-        delta[index + 3 * stride] = 0;
-        delta[index + 4 * stride] = 0;
-        delta[index + 5 * stride] = 0;
-        delta[index + 6 * stride] = 0;
-        delta[index + 7 * stride] = 0;
-    }
-
-    float delta_x = temp_x * in_exp_x  * (1. / x[index + 1 * stride]);
-    float delta_y = temp_y * in_exp_y  * (1. / x[index + 3 * stride]);
-    float delta_w = temp_w * in_exp_w  * (1. / x[index + 5 * stride]);
-    float delta_h = temp_h * in_exp_h  * (1. / x[index + 7 * stride]);
-
-    float delta_ux = temp_x * (in_exp_x_2 / x[index + 1 * stride] - 1. / (x[index + 1 * stride] + sigma_const));
-    float delta_uy = temp_y * (in_exp_y_2 / x[index + 3 * stride] - 1. / (x[index + 3 * stride] + sigma_const));
-    float delta_uw = temp_w * (in_exp_w_2 / x[index + 5 * stride] - 1. / (x[index + 5 * stride] + sigma_const));
-    float delta_uh = temp_h * (in_exp_h_2 / x[index + 7 * stride] - 1. / (x[index + 7 * stride] + sigma_const));
-
-    if (iou_loss != MSE) {
-        // GIoU
-        iou = all_ious.giou;
-
-        // https://github.com/generalized-iou/g-darknet
-        // https://arxiv.org/abs/1902.09630v2
-        // https://giou.stanford.edu/
-        // https://arxiv.org/abs/1911.08287v1
-        // https://github.com/Zzh-tju/DIoU-darknet
-        all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss);
-
-        float dx, dy, dw, dh;
-
-        dx = all_ious.dx_iou.dt;
-        dy = all_ious.dx_iou.db;
-        dw = all_ious.dx_iou.dl;
-        dh = all_ious.dx_iou.dr;
-
-        if (yolo_point == YOLO_CENTER) {
-        }
-        else if (yolo_point == YOLO_LEFT_TOP) {
-            dx = dx - dw/2;
-            dy = dy - dh/2;
-        }
-        else if (yolo_point == YOLO_RIGHT_BOTTOM) {
-            dx = dx + dw / 2;
-            dy = dy + dh / 2;
-        }
-
-        // jacobian^t (transpose)
-        //float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr);
-        //float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db);
-        //float dw = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr));
-        //float dh = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db));
-
-        // predict exponential, apply gradient of e^delta_t ONLY for w,h
-        dw *= exp(x[index + 4 * stride]);
-        dh *= exp(x[index + 6 * stride]);
-
-        delta_x = dx;
-        delta_y = dy;
-        delta_w = dw;
-        delta_h = dh;
-    }
-
-    // normalize iou weight, for GIoU
-    delta_x *= iou_normalizer;
-    delta_y *= iou_normalizer;
-    delta_w *= iou_normalizer;
-    delta_h *= iou_normalizer;
-
-    // normalize Uncertainty weight
-    delta_ux *= uc_normalizer;
-    delta_uy *= uc_normalizer;
-    delta_uw *= uc_normalizer;
-    delta_uh *= uc_normalizer;
-
-    delta_x = fix_nan_inf(delta_x);
-    delta_y = fix_nan_inf(delta_y);
-    delta_w = fix_nan_inf(delta_w);
-    delta_h = fix_nan_inf(delta_h);
-
-    delta_ux = fix_nan_inf(delta_ux);
-    delta_uy = fix_nan_inf(delta_uy);
-    delta_uw = fix_nan_inf(delta_uw);
-    delta_uh = fix_nan_inf(delta_uh);
-
-    if (max_delta != FLT_MAX) {
-        delta_x = clip_value(delta_x, max_delta);
-        delta_y = clip_value(delta_y, max_delta);
-        delta_w = clip_value(delta_w, max_delta);
-        delta_h = clip_value(delta_h, max_delta);
-
-        delta_ux = clip_value(delta_ux, max_delta);
-        delta_uy = clip_value(delta_uy, max_delta);
-        delta_uw = clip_value(delta_uw, max_delta);
-        delta_uh = clip_value(delta_uh, max_delta);
-    }
-
-    delta[index + 0 * stride] += delta_x;
-    delta[index + 2 * stride] += delta_y;
-    delta[index + 4 * stride] += delta_w;
-    delta[index + 6 * stride] += delta_h;
-
-    delta[index + 1 * stride] += delta_ux;
-    delta[index + 3 * stride] += delta_uy;
-    delta[index + 5 * stride] += delta_uw;
-    delta[index + 7 * stride] += delta_uh;
-    return iou;
-}
-
-void averages_gaussian_yolo_deltas(int class_index, int box_index, int stride, int classes, float *delta)
-{
-
-    int classes_in_one_box = 0;
-    int c;
-    for (c = 0; c < classes; ++c) {
-        if (delta[class_index + stride*c] > 0) classes_in_one_box++;
-    }
-
-    if (classes_in_one_box > 0) {
-        delta[box_index + 0 * stride] /= classes_in_one_box;
-        delta[box_index + 1 * stride] /= classes_in_one_box;
-        delta[box_index + 2 * stride] /= classes_in_one_box;
-        delta[box_index + 3 * stride] /= classes_in_one_box;
-        delta[box_index + 4 * stride] /= classes_in_one_box;
-        delta[box_index + 5 * stride] /= classes_in_one_box;
-        delta[box_index + 6 * stride] /= classes_in_one_box;
-        delta[box_index + 7 * stride] /= classes_in_one_box;
-    }
-}
-
-void delta_gaussian_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, float label_smooth_eps, float *classes_multipliers)
-{
-    int n;
-    if (delta[index]){
-        float y_true = 1;
-        if (label_smooth_eps) y_true = y_true *  (1 - label_smooth_eps) + 0.5*label_smooth_eps;
-        delta[index + stride*class_id] = y_true - output[index + stride*class_id];
-        //delta[index + stride*class_id] = 1 - output[index + stride*class_id];
-
-        if (classes_multipliers) delta[index + stride*class_id] *= classes_multipliers[class_id];
-        if(avg_cat) *avg_cat += output[index + stride*class_id];
-        return;
-    }
-    for(n = 0; n < classes; ++n){
-        float y_true = ((n == class_id) ? 1 : 0);
-        if (label_smooth_eps) y_true = y_true *  (1 - label_smooth_eps) + 0.5*label_smooth_eps;
-        delta[index + stride*n] = y_true - output[index + stride*n];
-
-        if (classes_multipliers && n == class_id) delta[index + stride*class_id] *= classes_multipliers[class_id];
-        if(n == class_id && avg_cat) *avg_cat += output[index + stride*n];
-    }
-}
-
-int compare_gaussian_yolo_class(float *output, int classes, int class_index, int stride, float objectness, int class_id, float conf_thresh)
-{
-    int j;
-    for (j = 0; j < classes; ++j) {
-        //float prob = objectness * output[class_index + stride*j];
-        float prob = output[class_index + stride*j];
-        if (prob > conf_thresh) {
-            return 1;
-        }
-    }
-    return 0;
-}
-
-static int entry_gaussian_index(layer l, int batch, int location, int entry)
-{
-    int n =   location / (l.w*l.h);
-    int loc = location % (l.w*l.h);
-    return batch*l.outputs + n*l.w*l.h*(8+l.classes+1) + entry*l.w*l.h + loc;
-}
-
-void forward_gaussian_yolo_layer(const layer l, network_state state)
-{
-    int i,j,b,t,n;
-    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
-
-#ifndef GPU
-    for (b = 0; b < l.batch; ++b){
-        for(n = 0; n < l.n; ++n){
-            // x : mu, sigma
-            int index = entry_gaussian_index(l, b, n*l.w*l.h, 0);
-            activate_array(l.output + index, 2*l.w*l.h, LOGISTIC);
-            scal_add_cpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1);    // scale x
-            // y : mu, sigma
-            index = entry_gaussian_index(l, b, n*l.w*l.h, 2);
-            activate_array(l.output + index, 2*l.w*l.h, LOGISTIC);
-            scal_add_cpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1);    // scale y
-            // w : sigma
-            index = entry_gaussian_index(l, b, n*l.w*l.h, 5);
-            activate_array(l.output + index, l.w*l.h, LOGISTIC);
-            // h : sigma
-            index = entry_gaussian_index(l, b, n*l.w*l.h, 7);
-            activate_array(l.output + index, l.w*l.h, LOGISTIC);
-            // objectness & class
-            index = entry_gaussian_index(l, b, n*l.w*l.h, 8);
-            activate_array(l.output + index, (1+l.classes)*l.w*l.h, LOGISTIC);
-        }
-    }
-#endif
-
-    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
-    if (!state.train) return;
-    float avg_iou = 0;
-    float recall = 0;
-    float recall75 = 0;
-    float avg_cat = 0;
-    float avg_obj = 0;
-    float avg_anyobj = 0;
-    int count = 0;
-    int class_count = 0;
-    *(l.cost) = 0;
-    for (b = 0; b < l.batch; ++b) {
-        for (j = 0; j < l.h; ++j) {
-            for (i = 0; i < l.w; ++i) {
-                for (n = 0; n < l.n; ++n) {
-                    const int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9);
-                    const int obj_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 8);
-                    const int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0);
-                    const int stride = l.w*l.h;
-                    box pred = get_gaussian_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h, l.yolo_point);
-                    float best_match_iou = 0;
-                    int best_match_t = 0;
-                    float best_iou = 0;
-                    int best_t = 0;
-                    for(t = 0; t < l.max_boxes; ++t){
-                        box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
-                        int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
-                        if (class_id >= l.classes) {
-                            printf("\n Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1);
-                            printf(" truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f, class_id = %d \n", truth.x, truth.y, truth.w, truth.h, class_id);
-                            if (check_mistakes) getchar();
-                            continue; // if label contains class_id more than number of classes in the cfg-file
-                        }
-                        if(!truth.x) break;
-
-
-                        float objectness = l.output[obj_index];
-                        int class_id_match = compare_gaussian_yolo_class(l.output, l.classes, class_index, l.w*l.h, objectness, class_id, 0.25f);
-
-                        float iou = box_iou(pred, truth);
-                        if (iou > best_match_iou && class_id_match == 1) {
-                            best_match_iou = iou;
-                            best_match_t = t;
-                        }
-                        if (iou > best_iou) {
-                            best_iou = iou;
-                            best_t = t;
-                        }
-                    }
-
-                    avg_anyobj += l.output[obj_index];
-                    l.delta[obj_index] = l.cls_normalizer * (0 - l.output[obj_index]);
-                    if (best_match_iou > l.ignore_thresh) {
-                        const float iou_multiplier = best_match_iou*best_match_iou;// (best_match_iou - l.ignore_thresh) / (1.0 - l.ignore_thresh);
-                        if (l.objectness_smooth) {
-                            l.delta[obj_index] = l.cls_normalizer * (iou_multiplier - l.output[obj_index]);
-
-                            int class_id = state.truth[best_match_t*(4 + 1) + b*l.truths + 4];
-                            if (l.map) class_id = l.map[class_id];
-                            const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
-                            l.delta[class_index + stride*class_id] = class_multiplier * (iou_multiplier - l.output[class_index + stride*class_id]);
-                        }
-                        else l.delta[obj_index] = 0;
-                    }
-                    else if (state.net.adversarial) {
-                        float scale = pred.w * pred.h;
-                        if (scale > 0) scale = sqrt(scale);
-                        l.delta[obj_index] = scale * l.cls_normalizer * (0 - l.output[obj_index]);
-                        int cl_id;
-                        for (cl_id = 0; cl_id < l.classes; ++cl_id) {
-                            if (l.output[class_index + stride*cl_id] * l.output[obj_index] > 0.25)
-                                l.delta[class_index + stride*cl_id] = scale * (0 - l.output[class_index + stride*cl_id]);
-                        }
-                    }
-                    if (best_iou > l.truth_thresh) {
-                        const float iou_multiplier = best_iou*best_iou;// (best_iou - l.truth_thresh) / (1.0 - l.truth_thresh);
-                        if (l.objectness_smooth) l.delta[obj_index] = l.cls_normalizer * (iou_multiplier - l.output[obj_index]);
-                        else l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]);
-                        //l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]);
-
-                        int class_id = state.truth[best_t*(4 + 1) + b*l.truths + 4];
-                        if (l.map) class_id = l.map[class_id];
-                        delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.label_smooth_eps, l.classes_multipliers);
-                        const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
-                        if (l.objectness_smooth) l.delta[class_index + stride*class_id] = class_multiplier * (iou_multiplier - l.output[class_index + stride*class_id]);
-                        box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1);
-                        delta_gaussian_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta);
-                    }
-                }
-            }
-        }
-        for(t = 0; t < l.max_boxes; ++t){
-            box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
-
-            if(!truth.x) break;
-            float best_iou = 0;
-            int best_n = 0;
-            i = (truth.x * l.w);
-            j = (truth.y * l.h);
-
-            if (l.yolo_point == YOLO_CENTER) {
-            }
-            else if (l.yolo_point == YOLO_LEFT_TOP) {
-                i = min_val_cmp(l.w-1, max_val_cmp(0, ((truth.x - truth.w / 2) * l.w)));
-                j = min_val_cmp(l.h-1, max_val_cmp(0, ((truth.y - truth.h / 2) * l.h)));
-            }
-            else if (l.yolo_point == YOLO_RIGHT_BOTTOM) {
-                i = min_val_cmp(l.w-1, max_val_cmp(0, ((truth.x + truth.w / 2) * l.w)));
-                j = min_val_cmp(l.h-1, max_val_cmp(0, ((truth.y + truth.h / 2) * l.h)));
-            }
-
-            box truth_shift = truth;
-            truth_shift.x = truth_shift.y = 0;
-            for(n = 0; n < l.total; ++n){
-                box pred = {0};
-                pred.w = l.biases[2*n]/ state.net.w;
-                pred.h = l.biases[2*n+1]/ state.net.h;
-                float iou = box_iou(pred, truth_shift);
-                if (iou > best_iou){
-                    best_iou = iou;
-                    best_n = n;
-                }
-            }
-
-            int mask_n = int_index(l.mask, best_n, l.n);
-            if(mask_n >= 0){
-                int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
-                if (l.map) class_id = l.map[class_id];
-
-                int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
-                const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
-                float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta);
-
-                int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8);
-                avg_obj += l.output[obj_index];
-                l.delta[obj_index] = class_multiplier * l.cls_normalizer * (1 - l.output[obj_index]);
-
-                int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9);
-                delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.label_smooth_eps, l.classes_multipliers);
-
-                ++count;
-                ++class_count;
-                if(iou > .5) recall += 1;
-                if(iou > .75) recall75 += 1;
-                avg_iou += iou;
-            }
-
-
-            // iou_thresh
-            for (n = 0; n < l.total; ++n) {
-                int mask_n = int_index(l.mask, n, l.n);
-                if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) {
-                    box pred = { 0 };
-                    pred.w = l.biases[2 * n] / state.net.w;
-                    pred.h = l.biases[2 * n + 1] / state.net.h;
-                    float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU
-                    // iou, n
-
-                    if (iou > l.iou_thresh) {
-                        int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
-                        if (l.map) class_id = l.map[class_id];
-
-                        int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
-                        const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
-                        float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta);
-
-                        int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8);
-                        avg_obj += l.output[obj_index];
-                        l.delta[obj_index] = class_multiplier * l.cls_normalizer * (1 - l.output[obj_index]);
-
-                        int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9);
-                        delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.label_smooth_eps, l.classes_multipliers);
-
-                        ++count;
-                        ++class_count;
-                        if (iou > .5) recall += 1;
-                        if (iou > .75) recall75 += 1;
-                        avg_iou += iou;
-                    }
-                }
-            }
-        }
-
-        // averages the deltas obtained by the function: delta_yolo_box()_accumulate
-        for (j = 0; j < l.h; ++j) {
-            for (i = 0; i < l.w; ++i) {
-                for (n = 0; n < l.n; ++n) {
-                    int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0);
-                    int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9);
-                    const int stride = l.w*l.h;
-
-                    averages_gaussian_yolo_deltas(class_index, box_index, stride, l.classes, l.delta);
-                }
-            }
-        }
-    }
-
-
-    // calculate: Classification-loss, IoU-loss and Uncertainty-loss
-    const int stride = l.w*l.h;
-    float* classification_lost = (float *)calloc(l.batch * l.outputs, sizeof(float));
-    memcpy(classification_lost, l.delta, l.batch * l.outputs * sizeof(float));
-
-
-    for (b = 0; b < l.batch; ++b) {
-        for (j = 0; j < l.h; ++j) {
-            for (i = 0; i < l.w; ++i) {
-                for (n = 0; n < l.n; ++n) {
-                    int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0);
-
-                    classification_lost[box_index + 0 * stride] = 0;
-                    classification_lost[box_index + 1 * stride] = 0;
-                    classification_lost[box_index + 2 * stride] = 0;
-                    classification_lost[box_index + 3 * stride] = 0;
-                    classification_lost[box_index + 4 * stride] = 0;
-                    classification_lost[box_index + 5 * stride] = 0;
-                    classification_lost[box_index + 6 * stride] = 0;
-                    classification_lost[box_index + 7 * stride] = 0;
-                }
-            }
-        }
-    }
-    float class_loss = pow(mag_array(classification_lost, l.outputs * l.batch), 2);
-    free(classification_lost);
-
-
-    float* except_uncertainty_lost = (float *)calloc(l.batch * l.outputs, sizeof(float));
-    memcpy(except_uncertainty_lost, l.delta, l.batch * l.outputs * sizeof(float));
-    for (b = 0; b < l.batch; ++b) {
-        for (j = 0; j < l.h; ++j) {
-            for (i = 0; i < l.w; ++i) {
-                for (n = 0; n < l.n; ++n) {
-                    int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0);
-                    except_uncertainty_lost[box_index + 4 * stride] = 0;
-                    except_uncertainty_lost[box_index + 5 * stride] = 0;
-                    except_uncertainty_lost[box_index + 6 * stride] = 0;
-                    except_uncertainty_lost[box_index + 7 * stride] = 0;
-                }
-            }
-        }
-    }
-    float except_uc_loss = pow(mag_array(except_uncertainty_lost, l.outputs * l.batch), 2);
-    free(except_uncertainty_lost);
-
-    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
-
-    float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2);
-    float uc_loss = loss - except_uc_loss;
-    float iou_loss = except_uc_loss - class_loss;
-
-    loss /= l.batch;
-    class_loss /= l.batch;
-    uc_loss /= l.batch;
-    iou_loss /= l.batch;
-
-    fprintf(stderr, "Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f,  count: %d, class_loss = %.2f, iou_loss = %.2f, uc_loss = %.2f, total_loss = %.2f \n",
-        state.index, avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, recall75/count, count,
-        class_loss, iou_loss, uc_loss, loss);
-}
-
-void backward_gaussian_yolo_layer(const layer l, network_state state)
-{
-   axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
-}
-
-void correct_gaussian_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
-{
-    int i;
-    int new_w=0;
-    int new_h=0;
-    if (letter) {
-        if (((float)netw / w) < ((float)neth / h)) {
-            new_w = netw;
-            new_h = (h * netw) / w;
-        }
-        else {
-            new_h = neth;
-            new_w = (w * neth) / h;
-        }
-    }
-    else {
-        new_w = netw;
-        new_h = neth;
-    }
-    /*
-    if (((float)netw/w) < ((float)neth/h)) {
-        new_w = netw;
-        new_h = (h * netw)/w;
-    } else {
-        new_h = neth;
-        new_w = (w * neth)/h;
-    }
-    */
-    for (i = 0; i < n; ++i){
-        box b = dets[i].bbox;
-        b.x =  (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw);
-        b.y =  (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth);
-        b.w *= (float)netw/new_w;
-        b.h *= (float)neth/new_h;
-        if(!relative){
-            b.x *= w;
-            b.w *= w;
-            b.y *= h;
-            b.h *= h;
-        }
-        dets[i].bbox = b;
-    }
-}
-
-int gaussian_yolo_num_detections(layer l, float thresh)
-{
-    int i, n;
-    int count = 0;
-    for (i = 0; i < l.w*l.h; ++i){
-        for(n = 0; n < l.n; ++n){
-            int obj_index  = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8);
-            if(l.output[obj_index] > thresh){
-                ++count;
-            }
-        }
-    }
-    return count;
-}
-
-/*
-void avg_flipped_gaussian_yolo(layer l)
-{
-    int i,j,n,z;
-    float *flip = l.output + l.outputs;
-    for (j = 0; j < l.h; ++j) {
-        for (i = 0; i < l.w/2; ++i) {
-            for (n = 0; n < l.n; ++n) {
-                for(z = 0; z < l.classes + 8 + 1; ++z){
-                    int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
-                    int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
-                    float swap = flip[i1];
-                    flip[i1] = flip[i2];
-                    flip[i2] = swap;
-                    if(z == 0){
-                        flip[i1] = -flip[i1];
-                        flip[i2] = -flip[i2];
-                    }
-                }
-            }
-        }
-    }
-    for(i = 0; i < l.outputs; ++i){
-        l.output[i] = (l.output[i] + flip[i])/2.;
-    }
-}
-*/
-
-int get_gaussian_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter)
-{
-    int i,j,n;
-    float *predictions = l.output;
-    //if (l.batch == 2) avg_flipped_gaussian_yolo(l);
-    int count = 0;
-    for (i = 0; i < l.w*l.h; ++i){
-        int row = i / l.w;
-        int col = i % l.w;
-        for(n = 0; n < l.n; ++n){
-            int obj_index  = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8);
-            float objectness = predictions[obj_index];
-            if (objectness <= thresh) continue;    // incorrect behavior for Nan values
-
-            if (objectness > thresh) {
-                int box_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 0);
-                dets[count].bbox = get_gaussian_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h, l.yolo_point);
-                dets[count].objectness = objectness;
-                dets[count].classes = l.classes;
-
-                dets[count].uc[0] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 1)]; // tx uncertainty
-                dets[count].uc[1] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 3)]; // ty uncertainty
-                dets[count].uc[2] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 5)]; // tw uncertainty
-                dets[count].uc[3] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 7)]; // th uncertainty
-
-                dets[count].points = l.yolo_point;
-                //if (l.yolo_point != YOLO_CENTER) dets[count].objectness = objectness = 0;
-
-                for (j = 0; j < l.classes; ++j) {
-                    int class_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 9 + j);
-                    float uc_aver = (dets[count].uc[0] + dets[count].uc[1] + dets[count].uc[2] + dets[count].uc[3]) / 4.0;
-                    float prob = objectness*predictions[class_index] * (1.0 - uc_aver);
-                    dets[count].prob[j] = (prob > thresh) ? prob : 0;
-                }
-                ++count;
-            }
-        }
-    }
-    correct_gaussian_yolo_boxes(dets, count, w, h, netw, neth, relative, letter);
-    return count;
-}
-
-#ifdef GPU
-
-void forward_gaussian_yolo_layer_gpu(const layer l, network_state state)
-{
-    copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
-    int b, n;
-    for (b = 0; b < l.batch; ++b)
-    {
-        for(n = 0; n < l.n; ++n)
-        {
-            // x : mu, sigma
-            int index = entry_gaussian_index(l, b, n*l.w*l.h, 0);
-            activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC);
-            scal_add_ongpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1);      // scale x
-            // y : mu, sigma
-            index = entry_gaussian_index(l, b, n*l.w*l.h, 2);
-            activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC);
-            scal_add_ongpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1);      // scale y
-            // w : sigma
-            index = entry_gaussian_index(l, b, n*l.w*l.h, 5);
-            activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC);
-            // h : sigma
-            index = entry_gaussian_index(l, b, n*l.w*l.h, 7);
-            activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC);
-            // objectness & class
-            index = entry_gaussian_index(l, b, n*l.w*l.h, 8);
-            activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC);
-        }
-    }
-
-    if (!state.train || l.onlyforward) {
-        //cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
-        cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs);
-        CHECK_CUDA(cudaPeekAtLastError());
-        return;
-    }
-
-    float *in_cpu = (float *)calloc(l.batch*l.inputs, sizeof(float));
-    cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
-    memcpy(in_cpu, l.output, l.batch*l.outputs * sizeof(float));
-    float *truth_cpu = 0;
-    if (state.truth) {
-        int num_truth = l.batch*l.truths;
-        truth_cpu = (float *)calloc(num_truth, sizeof(float));
-        cuda_pull_array(state.truth, truth_cpu, num_truth);
-    }
-    network_state cpu_state = state;
-    cpu_state.net = state.net;
-    cpu_state.index = state.index;
-    cpu_state.train = state.train;
-    cpu_state.truth = truth_cpu;
-    cpu_state.input = in_cpu;
-    forward_gaussian_yolo_layer(l, cpu_state);
-    //forward_yolo_layer(l, state);
-    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
-    free(in_cpu);
-    if (cpu_state.truth) free(cpu_state.truth);
-}
-
-void backward_gaussian_yolo_layer_gpu(const layer l, network_state state)
-{
-    axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
-}
-#endif
+// Gaussian YOLOv3 implementation
+// Author: Jiwoong Choi
+// ICCV 2019 Paper: http://openaccess.thecvf.com/content_ICCV_2019/html/Choi_Gaussian_YOLOv3_An_Accurate_and_Fast_Object_Detector_Using_Localization_ICCV_2019_paper.html
+// arxiv.org: https://arxiv.org/abs/1904.04620v2
+// source code: https://github.com/jwchoi384/Gaussian_YOLOv3
+
+#include "gaussian_yolo_layer.h"
+#include "activations.h"
+#include "blas.h"
+#include "box.h"
+#include "dark_cuda.h"
+#include "utils.h"
+
+#include <stdio.h>
+#include <assert.h>
+#include <string.h>
+#include <stdlib.h>
+
+#ifndef M_PI
+#define M_PI 3.141592
+#endif
+
+extern int check_mistakes;
+
+layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes)
+{
+    int i;
+    layer l = { (LAYER_TYPE)0 };
+    l.type = GAUSSIAN_YOLO;
+
+    l.n = n;
+    l.total = total;
+    l.batch = batch;
+    l.h = h;
+    l.w = w;
+    l.c = n*(classes + 8 + 1);
+    l.out_w = l.w;
+    l.out_h = l.h;
+    l.out_c = l.c;
+    l.classes = classes;
+    l.cost = (float*)calloc(1, sizeof(float));
+    l.biases = (float*)calloc(total*2, sizeof(float));
+    if(mask) l.mask = mask;
+    else{
+        l.mask = (int*)calloc(n, sizeof(int));
+        for(i = 0; i < n; ++i){
+            l.mask[i] = i;
+        }
+    }
+    l.bias_updates = (float*)calloc(n*2, sizeof(float));
+    l.outputs = h*w*n*(classes + 8 + 1);
+    l.inputs = l.outputs;
+    l.max_boxes = max_boxes;
+	l.truth_size = 4 + 2;
+    l.truths = l.max_boxes*l.truth_size;
+    l.delta = (float*)calloc(batch*l.outputs, sizeof(float));
+    l.output = (float*)calloc(batch*l.outputs, sizeof(float));
+    for(i = 0; i < total*2; ++i){
+        l.biases[i] = .5;
+    }
+
+    l.forward = forward_gaussian_yolo_layer;
+    l.backward = backward_gaussian_yolo_layer;
+#ifdef GPU
+    l.forward_gpu = forward_gaussian_yolo_layer_gpu;
+    l.backward_gpu = backward_gaussian_yolo_layer_gpu;
+    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
+    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
+
+
+    free(l.output);
+    if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1;
+    else {
+        cudaGetLastError(); // reset CUDA-error
+        l.output = (float*)calloc(batch * l.outputs, sizeof(float));
+    }
+
+    free(l.delta);
+    if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1;
+    else {
+        cudaGetLastError(); // reset CUDA-error
+        l.delta = (float*)calloc(batch * l.outputs, sizeof(float));
+    }
+
+#endif
+
+    //fprintf(stderr, "Gaussian_yolo\n");
+    srand(time(0));
+
+    return l;
+}
+
+void resize_gaussian_yolo_layer(layer *l, int w, int h)
+{
+    l->w = w;
+    l->h = h;
+
+    l->outputs = h*w*l->n*(l->classes + 8 + 1);
+    l->inputs = l->outputs;
+
+    //l->output = (float *)realloc(l->output, l->batch*l->outputs * sizeof(float));
+    //l->delta = (float *)realloc(l->delta, l->batch*l->outputs * sizeof(float));
+
+    if (!l->output_pinned) l->output = (float*)realloc(l->output, l->batch*l->outputs * sizeof(float));
+    if (!l->delta_pinned) l->delta = (float*)realloc(l->delta, l->batch*l->outputs * sizeof(float));
+
+#ifdef GPU
+
+    if (l->output_pinned) {
+        CHECK_CUDA(cudaFreeHost(l->output));
+        if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
+            cudaGetLastError(); // reset CUDA-error
+            l->output = (float*)calloc(l->batch * l->outputs, sizeof(float));
+            l->output_pinned = 0;
+        }
+    }
+
+    if (l->delta_pinned) {
+        CHECK_CUDA(cudaFreeHost(l->delta));
+        if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
+            cudaGetLastError(); // reset CUDA-error
+            l->delta = (float*)calloc(l->batch * l->outputs, sizeof(float));
+            l->delta_pinned = 0;
+        }
+    }
+
+
+    cuda_free(l->delta_gpu);
+    cuda_free(l->output_gpu);
+
+    l->delta_gpu =     cuda_make_array(l->delta, l->batch*l->outputs);
+    l->output_gpu =    cuda_make_array(l->output, l->batch*l->outputs);
+#endif
+}
+
+box get_gaussian_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride, YOLO_POINT yolo_point)
+{
+    box b;
+
+    b.w = exp(x[index + 4 * stride]) * biases[2 * n] / w;
+    b.h = exp(x[index + 6 * stride]) * biases[2 * n + 1] / h;
+    b.x = (i + x[index + 0 * stride]) / lw;
+    b.y = (j + x[index + 2 * stride]) / lh;
+
+    if (yolo_point == YOLO_CENTER) {
+    }
+    else if (yolo_point == YOLO_LEFT_TOP) {
+        b.x = (i + x[index + 0 * stride]) / lw + b.w / 2;
+        b.y = (j + x[index + 2 * stride]) / lh + b.h / 2;
+    }
+    else if (yolo_point == YOLO_RIGHT_BOTTOM) {
+        b.x = (i + x[index + 0 * stride]) / lw - b.w / 2;
+        b.y = (j + x[index + 2 * stride]) / lh - b.h / 2;
+    }
+
+    return b;
+}
+
+static inline float fix_nan_inf(float val)
+{
+    if (isnan(val) || isinf(val)) val = 0;
+    return val;
+}
+
+static inline float clip_value(float val, const float max_val)
+{
+    if (val > max_val) val = max_val;
+    else if (val < -max_val) val = -max_val;
+    return val;
+}
+
+float delta_gaussian_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta,
+    float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, float uc_normalizer, int accumulate, YOLO_POINT yolo_point, float max_delta)
+{
+    box pred = get_gaussian_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride, yolo_point);
+
+    float iou;
+    ious all_ious = { 0 };
+    all_ious.iou = box_iou(pred, truth);
+    all_ious.giou = box_giou(pred, truth);
+    all_ious.diou = box_diou(pred, truth);
+    all_ious.ciou = box_ciou(pred, truth);
+    if (pred.w == 0) { pred.w = 1.0; }
+    if (pred.h == 0) { pred.h = 1.0; }
+
+    float sigma_const = 0.3;
+    float epsi = pow(10,-9);
+
+    float dx, dy, dw, dh;
+
+    iou = all_ious.iou;
+
+    float tx, ty, tw, th;
+
+    tx = (truth.x*lw - i);
+    ty = (truth.y*lh - j);
+    tw = log(truth.w*w / biases[2 * n]);
+    th = log(truth.h*h / biases[2 * n + 1]);
+
+    if (yolo_point == YOLO_CENTER) {
+    }
+    else if (yolo_point == YOLO_LEFT_TOP) {
+        tx = ((truth.x - truth.w / 2)*lw - i);
+        ty = ((truth.y - truth.h / 2)*lh - j);
+    }
+    else if (yolo_point == YOLO_RIGHT_BOTTOM) {
+        tx = ((truth.x + truth.w / 2)*lw - i);
+        ty = ((truth.y + truth.h / 2)*lh - j);
+    }
+
+    dx = (tx - x[index + 0 * stride]);
+    dy = (ty - x[index + 2 * stride]);
+    dw = (tw - x[index + 4 * stride]);
+    dh = (th - x[index + 6 * stride]);
+
+    // Gaussian
+    float in_exp_x = dx / x[index+1*stride];
+    float in_exp_x_2 = pow(in_exp_x, 2);
+    float normal_dist_x = exp(in_exp_x_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+1*stride]+sigma_const));
+
+    float in_exp_y = dy / x[index+3*stride];
+    float in_exp_y_2 = pow(in_exp_y, 2);
+    float normal_dist_y = exp(in_exp_y_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+3*stride]+sigma_const));
+
+    float in_exp_w = dw / x[index+5*stride];
+    float in_exp_w_2 = pow(in_exp_w, 2);
+    float normal_dist_w = exp(in_exp_w_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+5*stride]+sigma_const));
+
+    float in_exp_h = dh / x[index+7*stride];
+    float in_exp_h_2 = pow(in_exp_h, 2);
+    float normal_dist_h = exp(in_exp_h_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+7*stride]+sigma_const));
+
+    float temp_x = (1./2.) * 1./(normal_dist_x+epsi) * normal_dist_x * scale;
+    float temp_y = (1./2.) * 1./(normal_dist_y+epsi) * normal_dist_y * scale;
+    float temp_w = (1./2.) * 1./(normal_dist_w+epsi) * normal_dist_w * scale;
+    float temp_h = (1./2.) * 1./(normal_dist_h+epsi) * normal_dist_h * scale;
+
+    if (!accumulate) {
+        delta[index + 0 * stride] = 0;
+        delta[index + 1 * stride] = 0;
+        delta[index + 2 * stride] = 0;
+        delta[index + 3 * stride] = 0;
+        delta[index + 4 * stride] = 0;
+        delta[index + 5 * stride] = 0;
+        delta[index + 6 * stride] = 0;
+        delta[index + 7 * stride] = 0;
+    }
+
+    float delta_x = temp_x * in_exp_x  * (1. / x[index + 1 * stride]);
+    float delta_y = temp_y * in_exp_y  * (1. / x[index + 3 * stride]);
+    float delta_w = temp_w * in_exp_w  * (1. / x[index + 5 * stride]);
+    float delta_h = temp_h * in_exp_h  * (1. / x[index + 7 * stride]);
+
+    float delta_ux = temp_x * (in_exp_x_2 / x[index + 1 * stride] - 1. / (x[index + 1 * stride] + sigma_const));
+    float delta_uy = temp_y * (in_exp_y_2 / x[index + 3 * stride] - 1. / (x[index + 3 * stride] + sigma_const));
+    float delta_uw = temp_w * (in_exp_w_2 / x[index + 5 * stride] - 1. / (x[index + 5 * stride] + sigma_const));
+    float delta_uh = temp_h * (in_exp_h_2 / x[index + 7 * stride] - 1. / (x[index + 7 * stride] + sigma_const));
+
+    if (iou_loss != MSE) {
+        // GIoU
+        iou = all_ious.giou;
+
+        // https://github.com/generalized-iou/g-darknet
+        // https://arxiv.org/abs/1902.09630v2
+        // https://giou.stanford.edu/
+        // https://arxiv.org/abs/1911.08287v1
+        // https://github.com/Zzh-tju/DIoU-darknet
+        all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss);
+
+        float dx, dy, dw, dh;
+
+        dx = all_ious.dx_iou.dt;
+        dy = all_ious.dx_iou.db;
+        dw = all_ious.dx_iou.dl;
+        dh = all_ious.dx_iou.dr;
+
+        if (yolo_point == YOLO_CENTER) {
+        }
+        else if (yolo_point == YOLO_LEFT_TOP) {
+            dx = dx - dw/2;
+            dy = dy - dh/2;
+        }
+        else if (yolo_point == YOLO_RIGHT_BOTTOM) {
+            dx = dx + dw / 2;
+            dy = dy + dh / 2;
+        }
+
+        // jacobian^t (transpose)
+        //float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr);
+        //float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db);
+        //float dw = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr));
+        //float dh = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db));
+
+        // predict exponential, apply gradient of e^delta_t ONLY for w,h
+        dw *= exp(x[index + 4 * stride]);
+        dh *= exp(x[index + 6 * stride]);
+
+        delta_x = dx;
+        delta_y = dy;
+        delta_w = dw;
+        delta_h = dh;
+    }
+
+    // normalize iou weight, for GIoU
+    delta_x *= iou_normalizer;
+    delta_y *= iou_normalizer;
+    delta_w *= iou_normalizer;
+    delta_h *= iou_normalizer;
+
+    // normalize Uncertainty weight
+    delta_ux *= uc_normalizer;
+    delta_uy *= uc_normalizer;
+    delta_uw *= uc_normalizer;
+    delta_uh *= uc_normalizer;
+
+    delta_x = fix_nan_inf(delta_x);
+    delta_y = fix_nan_inf(delta_y);
+    delta_w = fix_nan_inf(delta_w);
+    delta_h = fix_nan_inf(delta_h);
+
+    delta_ux = fix_nan_inf(delta_ux);
+    delta_uy = fix_nan_inf(delta_uy);
+    delta_uw = fix_nan_inf(delta_uw);
+    delta_uh = fix_nan_inf(delta_uh);
+
+    if (max_delta != FLT_MAX) {
+        delta_x = clip_value(delta_x, max_delta);
+        delta_y = clip_value(delta_y, max_delta);
+        delta_w = clip_value(delta_w, max_delta);
+        delta_h = clip_value(delta_h, max_delta);
+
+        delta_ux = clip_value(delta_ux, max_delta);
+        delta_uy = clip_value(delta_uy, max_delta);
+        delta_uw = clip_value(delta_uw, max_delta);
+        delta_uh = clip_value(delta_uh, max_delta);
+    }
+
+    delta[index + 0 * stride] += delta_x;
+    delta[index + 2 * stride] += delta_y;
+    delta[index + 4 * stride] += delta_w;
+    delta[index + 6 * stride] += delta_h;
+
+    delta[index + 1 * stride] += delta_ux;
+    delta[index + 3 * stride] += delta_uy;
+    delta[index + 5 * stride] += delta_uw;
+    delta[index + 7 * stride] += delta_uh;
+    return iou;
+}
+
+void averages_gaussian_yolo_deltas(int class_index, int box_index, int stride, int classes, float *delta)
+{
+
+    int classes_in_one_box = 0;
+    int c;
+    for (c = 0; c < classes; ++c) {
+        if (delta[class_index + stride*c] > 0) classes_in_one_box++;
+    }
+
+    if (classes_in_one_box > 0) {
+        delta[box_index + 0 * stride] /= classes_in_one_box;
+        delta[box_index + 1 * stride] /= classes_in_one_box;
+        delta[box_index + 2 * stride] /= classes_in_one_box;
+        delta[box_index + 3 * stride] /= classes_in_one_box;
+        delta[box_index + 4 * stride] /= classes_in_one_box;
+        delta[box_index + 5 * stride] /= classes_in_one_box;
+        delta[box_index + 6 * stride] /= classes_in_one_box;
+        delta[box_index + 7 * stride] /= classes_in_one_box;
+    }
+}
+
+void delta_gaussian_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, float label_smooth_eps, float *classes_multipliers, float cls_normalizer)
+{
+    int n;
+    if (delta[index]){
+        float y_true = 1;
+        if (label_smooth_eps) y_true = y_true *  (1 - label_smooth_eps) + 0.5*label_smooth_eps;
+        delta[index + stride*class_id] = y_true - output[index + stride*class_id];
+        //delta[index + stride*class_id] = 1 - output[index + stride*class_id];
+
+        if (classes_multipliers) delta[index + stride*class_id] *= classes_multipliers[class_id];
+        if(avg_cat) *avg_cat += output[index + stride*class_id];
+        return;
+    }
+    for(n = 0; n < classes; ++n){
+        float y_true = ((n == class_id) ? 1 : 0);
+        if (label_smooth_eps) y_true = y_true *  (1 - label_smooth_eps) + 0.5*label_smooth_eps;
+        delta[index + stride*n] = y_true - output[index + stride*n];
+
+        if (classes_multipliers && n == class_id) delta[index + stride*class_id] *= classes_multipliers[class_id] * cls_normalizer;
+        if(n == class_id && avg_cat) *avg_cat += output[index + stride*n];
+    }
+}
+
+int compare_gaussian_yolo_class(float *output, int classes, int class_index, int stride, float objectness, int class_id, float conf_thresh)
+{
+    int j;
+    for (j = 0; j < classes; ++j) {
+        //float prob = objectness * output[class_index + stride*j];
+        float prob = output[class_index + stride*j];
+        if (prob > conf_thresh) {
+            return 1;
+        }
+    }
+    return 0;
+}
+
+static int entry_gaussian_index(layer l, int batch, int location, int entry)
+{
+    int n =   location / (l.w*l.h);
+    int loc = location % (l.w*l.h);
+    return batch*l.outputs + n*l.w*l.h*(8+l.classes+1) + entry*l.w*l.h + loc;
+}
+
+void forward_gaussian_yolo_layer(const layer l, network_state state)
+{
+    int i,j,b,t,n;
+    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
+
+#ifndef GPU
+    for (b = 0; b < l.batch; ++b){
+        for(n = 0; n < l.n; ++n){
+            // x : mu, sigma
+            int index = entry_gaussian_index(l, b, n*l.w*l.h, 0);
+            activate_array(l.output + index, 2*l.w*l.h, LOGISTIC);
+            scal_add_cpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1);    // scale x
+            // y : mu, sigma
+            index = entry_gaussian_index(l, b, n*l.w*l.h, 2);
+            activate_array(l.output + index, 2*l.w*l.h, LOGISTIC);
+            scal_add_cpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1);    // scale y
+            // w : sigma
+            index = entry_gaussian_index(l, b, n*l.w*l.h, 5);
+            activate_array(l.output + index, l.w*l.h, LOGISTIC);
+            // h : sigma
+            index = entry_gaussian_index(l, b, n*l.w*l.h, 7);
+            activate_array(l.output + index, l.w*l.h, LOGISTIC);
+            // objectness & class
+            index = entry_gaussian_index(l, b, n*l.w*l.h, 8);
+            activate_array(l.output + index, (1+l.classes)*l.w*l.h, LOGISTIC);
+        }
+    }
+#endif
+
+    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
+    if (!state.train) return;
+    float avg_iou = 0;
+    float recall = 0;
+    float recall75 = 0;
+    float avg_cat = 0;
+    float avg_obj = 0;
+    float avg_anyobj = 0;
+    int count = 0;
+    int class_count = 0;
+    *(l.cost) = 0;
+    for (b = 0; b < l.batch; ++b) {
+        for (j = 0; j < l.h; ++j) {
+            for (i = 0; i < l.w; ++i) {
+                for (n = 0; n < l.n; ++n) {
+                    const int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9);
+                    const int obj_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 8);
+                    const int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0);
+                    const int stride = l.w*l.h;
+                    box pred = get_gaussian_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h, l.yolo_point);
+                    float best_match_iou = 0;
+                    int best_match_t = 0;
+                    float best_iou = 0;
+                    int best_t = 0;
+                    for(t = 0; t < l.max_boxes; ++t){
+                        box truth = float_to_box_stride(state.truth + t*l.truth_size + b*l.truths, 1);
+                        int class_id = state.truth[t*l.truth_size + b*l.truths + 4];
+                        if (class_id >= l.classes) {
+                            printf("\n Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1);
+                            printf(" truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f, class_id = %d \n", truth.x, truth.y, truth.w, truth.h, class_id);
+                            if (check_mistakes) getchar();
+                            continue; // if label contains class_id more than number of classes in the cfg-file
+                        }
+                        if(!truth.x) break;
+
+
+                        float objectness = l.output[obj_index];
+                        int class_id_match = compare_gaussian_yolo_class(l.output, l.classes, class_index, l.w*l.h, objectness, class_id, 0.25f);
+
+                        float iou = box_iou(pred, truth);
+                        if (iou > best_match_iou && class_id_match == 1) {
+                            best_match_iou = iou;
+                            best_match_t = t;
+                        }
+                        if (iou > best_iou) {
+                            best_iou = iou;
+                            best_t = t;
+                        }
+                    }
+
+                    avg_anyobj += l.output[obj_index];
+                    l.delta[obj_index] = l.obj_normalizer * (0 - l.output[obj_index]);
+                    if (best_match_iou > l.ignore_thresh) {
+                        const float iou_multiplier = best_match_iou*best_match_iou;// (best_match_iou - l.ignore_thresh) / (1.0 - l.ignore_thresh);
+                        if (l.objectness_smooth) {
+                            l.delta[obj_index] = l.obj_normalizer * (iou_multiplier - l.output[obj_index]);
+
+                            int class_id = state.truth[best_match_t*l.truth_size + b*l.truths + 4];
+                            if (l.map) class_id = l.map[class_id];
+                            delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer);
+                        }
+                        else l.delta[obj_index] = 0;
+                    }
+                    else if (state.net.adversarial) {
+                        float scale = pred.w * pred.h;
+                        if (scale > 0) scale = sqrt(scale);
+                        l.delta[obj_index] = scale * l.obj_normalizer * (0 - l.output[obj_index]);
+                        int cl_id;
+                        for (cl_id = 0; cl_id < l.classes; ++cl_id) {
+                            if (l.output[class_index + stride*cl_id] * l.output[obj_index] > 0.25)
+                                l.delta[class_index + stride*cl_id] = scale * (0 - l.output[class_index + stride*cl_id]);
+                        }
+                    }
+                    if (best_iou > l.truth_thresh) {
+                        const float iou_multiplier = best_iou*best_iou;// (best_iou - l.truth_thresh) / (1.0 - l.truth_thresh);
+                        if (l.objectness_smooth) l.delta[obj_index] = l.obj_normalizer * (iou_multiplier - l.output[obj_index]);
+                        else l.delta[obj_index] = l.obj_normalizer * (1 - l.output[obj_index]);
+                        //l.delta[obj_index] = l.obj_normalizer * (1 - l.output[obj_index]);
+
+                        int class_id = state.truth[best_t*l.truth_size + b*l.truths + 4];
+                        if (l.map) class_id = l.map[class_id];
+                        delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer);
+                        const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
+                        if (l.objectness_smooth) l.delta[class_index + stride*class_id] = class_multiplier * (iou_multiplier - l.output[class_index + stride*class_id]);
+                        box truth = float_to_box_stride(state.truth + best_t*l.truth_size + b*l.truths, 1);
+                        delta_gaussian_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta);
+                    }
+                }
+            }
+        }
+        for(t = 0; t < l.max_boxes; ++t){
+            box truth = float_to_box_stride(state.truth + t*l.truth_size + b*l.truths, 1);
+
+            if(!truth.x) break;
+            float best_iou = 0;
+            int best_n = 0;
+            i = (truth.x * l.w);
+            j = (truth.y * l.h);
+
+            if (l.yolo_point == YOLO_CENTER) {
+            }
+            else if (l.yolo_point == YOLO_LEFT_TOP) {
+                i = min_val_cmp(l.w-1, max_val_cmp(0, ((truth.x - truth.w / 2) * l.w)));
+                j = min_val_cmp(l.h-1, max_val_cmp(0, ((truth.y - truth.h / 2) * l.h)));
+            }
+            else if (l.yolo_point == YOLO_RIGHT_BOTTOM) {
+                i = min_val_cmp(l.w-1, max_val_cmp(0, ((truth.x + truth.w / 2) * l.w)));
+                j = min_val_cmp(l.h-1, max_val_cmp(0, ((truth.y + truth.h / 2) * l.h)));
+            }
+
+            box truth_shift = truth;
+            truth_shift.x = truth_shift.y = 0;
+            for(n = 0; n < l.total; ++n){
+                box pred = {0};
+                pred.w = l.biases[2*n]/ state.net.w;
+                pred.h = l.biases[2*n+1]/ state.net.h;
+                float iou = box_iou(pred, truth_shift);
+                if (iou > best_iou){
+                    best_iou = iou;
+                    best_n = n;
+                }
+            }
+
+            int mask_n = int_index(l.mask, best_n, l.n);
+            if(mask_n >= 0){
+                int class_id = state.truth[t*l.truth_size + b*l.truths + 4];
+                if (l.map) class_id = l.map[class_id];
+
+                int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
+                const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
+                float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta);
+
+                int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8);
+                avg_obj += l.output[obj_index];
+                l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]);
+
+                int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9);
+                delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer);
+
+                ++count;
+                ++class_count;
+                if(iou > .5) recall += 1;
+                if(iou > .75) recall75 += 1;
+                avg_iou += iou;
+            }
+
+
+            // iou_thresh
+            for (n = 0; n < l.total; ++n) {
+                int mask_n = int_index(l.mask, n, l.n);
+                if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) {
+                    box pred = { 0 };
+                    pred.w = l.biases[2 * n] / state.net.w;
+                    pred.h = l.biases[2 * n + 1] / state.net.h;
+                    float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU
+                    // iou, n
+
+                    if (iou > l.iou_thresh) {
+                        int class_id = state.truth[t*l.truth_size + b*l.truths + 4];
+                        if (l.map) class_id = l.map[class_id];
+
+                        int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
+                        const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
+                        float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, l.uc_normalizer, 1, l.yolo_point, l.max_delta);
+
+                        int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8);
+                        avg_obj += l.output[obj_index];
+                        l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]);
+
+                        int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9);
+                        delta_gaussian_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer);
+
+                        ++count;
+                        ++class_count;
+                        if (iou > .5) recall += 1;
+                        if (iou > .75) recall75 += 1;
+                        avg_iou += iou;
+                    }
+                }
+            }
+        }
+
+        // averages the deltas obtained by the function: delta_yolo_box()_accumulate
+        for (j = 0; j < l.h; ++j) {
+            for (i = 0; i < l.w; ++i) {
+                for (n = 0; n < l.n; ++n) {
+                    int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0);
+                    int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9);
+                    const int stride = l.w*l.h;
+
+                    averages_gaussian_yolo_deltas(class_index, box_index, stride, l.classes, l.delta);
+                }
+            }
+        }
+    }
+
+
+    // calculate: Classification-loss, IoU-loss and Uncertainty-loss
+    const int stride = l.w*l.h;
+    float* classification_lost = (float *)calloc(l.batch * l.outputs, sizeof(float));
+    memcpy(classification_lost, l.delta, l.batch * l.outputs * sizeof(float));
+
+
+    for (b = 0; b < l.batch; ++b) {
+        for (j = 0; j < l.h; ++j) {
+            for (i = 0; i < l.w; ++i) {
+                for (n = 0; n < l.n; ++n) {
+                    int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0);
+
+                    classification_lost[box_index + 0 * stride] = 0;
+                    classification_lost[box_index + 1 * stride] = 0;
+                    classification_lost[box_index + 2 * stride] = 0;
+                    classification_lost[box_index + 3 * stride] = 0;
+                    classification_lost[box_index + 4 * stride] = 0;
+                    classification_lost[box_index + 5 * stride] = 0;
+                    classification_lost[box_index + 6 * stride] = 0;
+                    classification_lost[box_index + 7 * stride] = 0;
+                }
+            }
+        }
+    }
+    float class_loss = pow(mag_array(classification_lost, l.outputs * l.batch), 2);
+    free(classification_lost);
+
+
+    float* except_uncertainty_lost = (float *)calloc(l.batch * l.outputs, sizeof(float));
+    memcpy(except_uncertainty_lost, l.delta, l.batch * l.outputs * sizeof(float));
+    for (b = 0; b < l.batch; ++b) {
+        for (j = 0; j < l.h; ++j) {
+            for (i = 0; i < l.w; ++i) {
+                for (n = 0; n < l.n; ++n) {
+                    int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0);
+                    except_uncertainty_lost[box_index + 4 * stride] = 0;
+                    except_uncertainty_lost[box_index + 5 * stride] = 0;
+                    except_uncertainty_lost[box_index + 6 * stride] = 0;
+                    except_uncertainty_lost[box_index + 7 * stride] = 0;
+                }
+            }
+        }
+    }
+    float except_uc_loss = pow(mag_array(except_uncertainty_lost, l.outputs * l.batch), 2);
+    free(except_uncertainty_lost);
+
+    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
+
+    float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2);
+    float uc_loss = loss - except_uc_loss;
+    float iou_loss = except_uc_loss - class_loss;
+
+    loss /= l.batch;
+    class_loss /= l.batch;
+    uc_loss /= l.batch;
+    iou_loss /= l.batch;
+
+    fprintf(stderr, "Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f,  count: %d, class_loss = %.2f, iou_loss = %.2f, uc_loss = %.2f, total_loss = %.2f \n",
+        state.index, avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, recall75/count, count,
+        class_loss, iou_loss, uc_loss, loss);
+}
+
+void backward_gaussian_yolo_layer(const layer l, network_state state)
+{
+   axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
+}
+
+void correct_gaussian_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
+{
+    int i;
+    int new_w=0;
+    int new_h=0;
+    if (letter) {
+        if (((float)netw / w) < ((float)neth / h)) {
+            new_w = netw;
+            new_h = (h * netw) / w;
+        }
+        else {
+            new_h = neth;
+            new_w = (w * neth) / h;
+        }
+    }
+    else {
+        new_w = netw;
+        new_h = neth;
+    }
+    /*
+    if (((float)netw/w) < ((float)neth/h)) {
+        new_w = netw;
+        new_h = (h * netw)/w;
+    } else {
+        new_h = neth;
+        new_w = (w * neth)/h;
+    }
+    */
+    for (i = 0; i < n; ++i){
+        box b = dets[i].bbox;
+        b.x =  (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw);
+        b.y =  (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth);
+        b.w *= (float)netw/new_w;
+        b.h *= (float)neth/new_h;
+        if(!relative){
+            b.x *= w;
+            b.w *= w;
+            b.y *= h;
+            b.h *= h;
+        }
+        dets[i].bbox = b;
+    }
+}
+
+int gaussian_yolo_num_detections(layer l, float thresh)
+{
+    int i, n;
+    int count = 0;
+    for (i = 0; i < l.w*l.h; ++i){
+        for(n = 0; n < l.n; ++n){
+            int obj_index  = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8);
+            if(l.output[obj_index] > thresh){
+                ++count;
+            }
+        }
+    }
+    return count;
+}
+
+/*
+void avg_flipped_gaussian_yolo(layer l)
+{
+    int i,j,n,z;
+    float *flip = l.output + l.outputs;
+    for (j = 0; j < l.h; ++j) {
+        for (i = 0; i < l.w/2; ++i) {
+            for (n = 0; n < l.n; ++n) {
+                for(z = 0; z < l.classes + 8 + 1; ++z){
+                    int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
+                    int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
+                    float swap = flip[i1];
+                    flip[i1] = flip[i2];
+                    flip[i2] = swap;
+                    if(z == 0){
+                        flip[i1] = -flip[i1];
+                        flip[i2] = -flip[i2];
+                    }
+                }
+            }
+        }
+    }
+    for(i = 0; i < l.outputs; ++i){
+        l.output[i] = (l.output[i] + flip[i])/2.;
+    }
+}
+*/
+
+int get_gaussian_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter)
+{
+    int i,j,n;
+    float *predictions = l.output;
+    //if (l.batch == 2) avg_flipped_gaussian_yolo(l);
+    int count = 0;
+    for (i = 0; i < l.w*l.h; ++i){
+        int row = i / l.w;
+        int col = i % l.w;
+        for(n = 0; n < l.n; ++n){
+            int obj_index  = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8);
+            float objectness = predictions[obj_index];
+            if (objectness <= thresh) continue;    // incorrect behavior for Nan values
+
+            if (objectness > thresh) {
+                int box_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 0);
+                dets[count].bbox = get_gaussian_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h, l.yolo_point);
+                dets[count].objectness = objectness;
+                dets[count].classes = l.classes;
+
+                dets[count].uc[0] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 1)]; // tx uncertainty
+                dets[count].uc[1] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 3)]; // ty uncertainty
+                dets[count].uc[2] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 5)]; // tw uncertainty
+                dets[count].uc[3] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 7)]; // th uncertainty
+
+                dets[count].points = l.yolo_point;
+                //if (l.yolo_point != YOLO_CENTER) dets[count].objectness = objectness = 0;
+
+                for (j = 0; j < l.classes; ++j) {
+                    int class_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 9 + j);
+                    float uc_aver = (dets[count].uc[0] + dets[count].uc[1] + dets[count].uc[2] + dets[count].uc[3]) / 4.0;
+                    float prob = objectness*predictions[class_index] * (1.0 - uc_aver);
+                    dets[count].prob[j] = (prob > thresh) ? prob : 0;
+                }
+                ++count;
+            }
+        }
+    }
+    correct_gaussian_yolo_boxes(dets, count, w, h, netw, neth, relative, letter);
+    return count;
+}
+
+#ifdef GPU
+
+void forward_gaussian_yolo_layer_gpu(const layer l, network_state state)
+{
+    copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
+    int b, n;
+    for (b = 0; b < l.batch; ++b)
+    {
+        for(n = 0; n < l.n; ++n)
+        {
+            // x : mu, sigma
+            int index = entry_gaussian_index(l, b, n*l.w*l.h, 0);
+            activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC);
+            scal_add_ongpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1);      // scale x
+            // y : mu, sigma
+            index = entry_gaussian_index(l, b, n*l.w*l.h, 2);
+            activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC);
+            scal_add_ongpu(l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1);      // scale y
+            // w : sigma
+            index = entry_gaussian_index(l, b, n*l.w*l.h, 5);
+            activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC);
+            // h : sigma
+            index = entry_gaussian_index(l, b, n*l.w*l.h, 7);
+            activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC);
+            // objectness & class
+            index = entry_gaussian_index(l, b, n*l.w*l.h, 8);
+            activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC);
+        }
+    }
+
+    if (!state.train || l.onlyforward) {
+        //cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
+        cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs);
+        CHECK_CUDA(cudaPeekAtLastError());
+        return;
+    }
+
+    float *in_cpu = (float *)calloc(l.batch*l.inputs, sizeof(float));
+    cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
+    memcpy(in_cpu, l.output, l.batch*l.outputs * sizeof(float));
+    float *truth_cpu = 0;
+    if (state.truth) {
+        int num_truth = l.batch*l.truths;
+        truth_cpu = (float *)calloc(num_truth, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, num_truth);
+    }
+    network_state cpu_state = state;
+    cpu_state.net = state.net;
+    cpu_state.index = state.index;
+    cpu_state.train = state.train;
+    cpu_state.truth = truth_cpu;
+    cpu_state.input = in_cpu;
+    forward_gaussian_yolo_layer(l, cpu_state);
+    //forward_yolo_layer(l, state);
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
+    free(in_cpu);
+    if (cpu_state.truth) free(cpu_state.truth);
+}
+
+void backward_gaussian_yolo_layer_gpu(const layer l, network_state state)
+{
+    axpy_ongpu(l.batch*l.inputs, l.delta_normalizer, l.delta_gpu, 1, state.delta, 1);
+}
+#endif

--
Gitblit v1.8.0