From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/gru_layer.c | 796 ++++++++++++++++++++++++++++---------------------------- 1 files changed, 398 insertions(+), 398 deletions(-) diff --git a/lib/detecter_tools/darknet/gru_layer.c b/lib/detecter_tools/darknet/gru_layer.c index c44bb99..de301df 100644 --- a/lib/detecter_tools/darknet/gru_layer.c +++ b/lib/detecter_tools/darknet/gru_layer.c @@ -1,398 +1,398 @@ -#include "gru_layer.h" -#include "connected_layer.h" -#include "utils.h" -#include "dark_cuda.h" -#include "blas.h" -#include "gemm.h" - -#include <math.h> -#include <stdio.h> -#include <stdlib.h> -#include <string.h> - -static void increment_layer(layer *l, int steps) -{ - int num = l->outputs*l->batch*steps; - l->output += num; - l->delta += num; - l->x += num; - l->x_norm += num; - -#ifdef GPU - l->output_gpu += num; - l->delta_gpu += num; - l->x_gpu += num; - l->x_norm_gpu += num; -#endif -} - -layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize) -{ - fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs); - batch = batch / steps; - layer l = { (LAYER_TYPE)0 }; - l.batch = batch; - l.type = GRU; - l.steps = steps; - l.inputs = inputs; - - l.input_z_layer = (layer*)xcalloc(1,sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.input_z_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); - l.input_z_layer->batch = batch; - - l.state_z_layer = (layer*)xcalloc(1,sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.state_z_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); - l.state_z_layer->batch = batch; - - - - l.input_r_layer = (layer*)xcalloc(1,sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.input_r_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); - l.input_r_layer->batch = batch; - - l.state_r_layer = (layer*)xcalloc(1,sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.state_r_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); - l.state_r_layer->batch = batch; - - - - l.input_h_layer = (layer*)xcalloc(1,sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.input_h_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); - l.input_h_layer->batch = batch; - - l.state_h_layer = (layer*)xcalloc(1,sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.state_h_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); - l.state_h_layer->batch = batch; - - l.batch_normalize = batch_normalize; - - - l.outputs = outputs; - l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float)); - l.delta = (float*)xcalloc(outputs * batch * steps, sizeof(float)); - l.state = (float*)xcalloc(outputs * batch, sizeof(float)); - l.prev_state = (float*)xcalloc(outputs * batch, sizeof(float)); - l.forgot_state = (float*)xcalloc(outputs * batch, sizeof(float)); - l.forgot_delta = (float*)xcalloc(outputs * batch, sizeof(float)); - - l.r_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); - l.z_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); - l.h_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); - - l.forward = forward_gru_layer; - l.backward = backward_gru_layer; - l.update = update_gru_layer; - -#ifdef GPU - l.forward_gpu = forward_gru_layer_gpu; - l.backward_gpu = backward_gru_layer_gpu; - l.update_gpu = update_gru_layer_gpu; - - l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs); - l.forgot_delta_gpu = cuda_make_array(l.output, batch*outputs); - l.prev_state_gpu = cuda_make_array(l.output, batch*outputs); - l.state_gpu = cuda_make_array(l.output, batch*outputs); - l.output_gpu = cuda_make_array(l.output, batch*outputs*steps); - l.delta_gpu = cuda_make_array(l.delta, batch*outputs*steps); - l.r_gpu = cuda_make_array(l.output_gpu, batch*outputs); - l.z_gpu = cuda_make_array(l.output_gpu, batch*outputs); - l.h_gpu = cuda_make_array(l.output_gpu, batch*outputs); -#endif - - return l; -} - -void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay) -{ - update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay); -} - -void forward_gru_layer(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer input_z_layer = *(l.input_z_layer); - layer input_r_layer = *(l.input_r_layer); - layer input_h_layer = *(l.input_h_layer); - - layer state_z_layer = *(l.state_z_layer); - layer state_r_layer = *(l.state_r_layer); - layer state_h_layer = *(l.state_h_layer); - - fill_cpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta, 1); - fill_cpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta, 1); - fill_cpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta, 1); - - fill_cpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta, 1); - fill_cpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta, 1); - fill_cpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta, 1); - if(state.train) { - fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1); - copy_cpu(l.outputs*l.batch, l.state, 1, l.prev_state, 1); - } - - for (i = 0; i < l.steps; ++i) { - s.input = l.state; - forward_connected_layer(state_z_layer, s); - forward_connected_layer(state_r_layer, s); - - s.input = state.input; - forward_connected_layer(input_z_layer, s); - forward_connected_layer(input_r_layer, s); - forward_connected_layer(input_h_layer, s); - - - copy_cpu(l.outputs*l.batch, input_z_layer.output, 1, l.z_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, state_z_layer.output, 1, l.z_cpu, 1); - - copy_cpu(l.outputs*l.batch, input_r_layer.output, 1, l.r_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, state_r_layer.output, 1, l.r_cpu, 1); - - activate_array(l.z_cpu, l.outputs*l.batch, LOGISTIC); - activate_array(l.r_cpu, l.outputs*l.batch, LOGISTIC); - - copy_cpu(l.outputs*l.batch, l.state, 1, l.forgot_state, 1); - mul_cpu(l.outputs*l.batch, l.r_cpu, 1, l.forgot_state, 1); - - s.input = l.forgot_state; - forward_connected_layer(state_h_layer, s); - - copy_cpu(l.outputs*l.batch, input_h_layer.output, 1, l.h_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, state_h_layer.output, 1, l.h_cpu, 1); - - #ifdef USET - activate_array(l.h_cpu, l.outputs*l.batch, TANH); - #else - activate_array(l.h_cpu, l.outputs*l.batch, LOGISTIC); - #endif - - weighted_sum_cpu(l.state, l.h_cpu, l.z_cpu, l.outputs*l.batch, l.output); - - copy_cpu(l.outputs*l.batch, l.output, 1, l.state, 1); - - state.input += l.inputs*l.batch; - l.output += l.outputs*l.batch; - increment_layer(&input_z_layer, 1); - increment_layer(&input_r_layer, 1); - increment_layer(&input_h_layer, 1); - - increment_layer(&state_z_layer, 1); - increment_layer(&state_r_layer, 1); - increment_layer(&state_h_layer, 1); - } -} - -void backward_gru_layer(layer l, network_state state) -{ -} - -#ifdef GPU - -void pull_gru_layer(layer l) -{ -} - -void push_gru_layer(layer l) -{ -} - -void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) -{ - update_connected_layer_gpu(*(l.input_r_layer), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.input_z_layer), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.input_h_layer), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.state_r_layer), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.state_z_layer), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.state_h_layer), batch, learning_rate, momentum, decay, loss_scale); -} - -void forward_gru_layer_gpu(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer input_z_layer = *(l.input_z_layer); - layer input_r_layer = *(l.input_r_layer); - layer input_h_layer = *(l.input_h_layer); - - layer state_z_layer = *(l.state_z_layer); - layer state_r_layer = *(l.state_r_layer); - layer state_h_layer = *(l.state_h_layer); - - fill_ongpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta_gpu, 1); - fill_ongpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta_gpu, 1); - fill_ongpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta_gpu, 1); - - fill_ongpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta_gpu, 1); - fill_ongpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta_gpu, 1); - fill_ongpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta_gpu, 1); - if(state.train) { - fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); - copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.prev_state_gpu, 1); - } - - for (i = 0; i < l.steps; ++i) { - s.input = l.state_gpu; - forward_connected_layer_gpu(state_z_layer, s); - forward_connected_layer_gpu(state_r_layer, s); - - s.input = state.input; - forward_connected_layer_gpu(input_z_layer, s); - forward_connected_layer_gpu(input_r_layer, s); - forward_connected_layer_gpu(input_h_layer, s); - - - copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); - - copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); - - activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); - activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); - - copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.forgot_state_gpu, 1); - mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); - - s.input = l.forgot_state_gpu; - forward_connected_layer_gpu(state_h_layer, s); - - copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); - - #ifdef USET - activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); - #else - activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); - #endif - - weighted_sum_gpu(l.state_gpu, l.h_gpu, l.z_gpu, l.outputs*l.batch, l.output_gpu); - - copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.state_gpu, 1); - - state.input += l.inputs*l.batch; - l.output_gpu += l.outputs*l.batch; - increment_layer(&input_z_layer, 1); - increment_layer(&input_r_layer, 1); - increment_layer(&input_h_layer, 1); - - increment_layer(&state_z_layer, 1); - increment_layer(&state_r_layer, 1); - increment_layer(&state_h_layer, 1); - } -} - -void backward_gru_layer_gpu(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer input_z_layer = *(l.input_z_layer); - layer input_r_layer = *(l.input_r_layer); - layer input_h_layer = *(l.input_h_layer); - - layer state_z_layer = *(l.state_z_layer); - layer state_r_layer = *(l.state_r_layer); - layer state_h_layer = *(l.state_h_layer); - - increment_layer(&input_z_layer, l.steps - 1); - increment_layer(&input_r_layer, l.steps - 1); - increment_layer(&input_h_layer, l.steps - 1); - - increment_layer(&state_z_layer, l.steps - 1); - increment_layer(&state_r_layer, l.steps - 1); - increment_layer(&state_h_layer, l.steps - 1); - - state.input += l.inputs*l.batch*(l.steps-1); - if(state.delta) state.delta += l.inputs*l.batch*(l.steps-1); - l.output_gpu += l.outputs*l.batch*(l.steps-1); - l.delta_gpu += l.outputs*l.batch*(l.steps-1); - for (i = l.steps-1; i >= 0; --i) { - if(i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1); - float *prev_delta_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; - - copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); - - copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); - - activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); - activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); - - copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); - - #ifdef USET - activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); - #else - activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); - #endif - - weighted_delta_gpu(l.prev_state_gpu, l.h_gpu, l.z_gpu, prev_delta_gpu, input_h_layer.delta_gpu, input_z_layer.delta_gpu, l.outputs*l.batch, l.delta_gpu); - - #ifdef USET - gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH, input_h_layer.delta_gpu); - #else - gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC, input_h_layer.delta_gpu); - #endif - - copy_ongpu(l.outputs*l.batch, input_h_layer.delta_gpu, 1, state_h_layer.delta_gpu, 1); - - copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, 1, l.forgot_state_gpu, 1); - mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); - fill_ongpu(l.outputs*l.batch, 0, l.forgot_delta_gpu, 1); - - s.input = l.forgot_state_gpu; - s.delta = l.forgot_delta_gpu; - - backward_connected_layer_gpu(state_h_layer, s); - if(prev_delta_gpu) mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.r_gpu, prev_delta_gpu); - mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.prev_state_gpu, input_r_layer.delta_gpu); - - gradient_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC, input_r_layer.delta_gpu); - copy_ongpu(l.outputs*l.batch, input_r_layer.delta_gpu, 1, state_r_layer.delta_gpu, 1); - - gradient_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC, input_z_layer.delta_gpu); - copy_ongpu(l.outputs*l.batch, input_z_layer.delta_gpu, 1, state_z_layer.delta_gpu, 1); - - s.input = l.prev_state_gpu; - s.delta = prev_delta_gpu; - - backward_connected_layer_gpu(state_r_layer, s); - backward_connected_layer_gpu(state_z_layer, s); - - s.input = state.input; - s.delta = state.delta; - - backward_connected_layer_gpu(input_h_layer, s); - backward_connected_layer_gpu(input_r_layer, s); - backward_connected_layer_gpu(input_z_layer, s); - - - state.input -= l.inputs*l.batch; - if(state.delta) state.delta -= l.inputs*l.batch; - l.output_gpu -= l.outputs*l.batch; - l.delta_gpu -= l.outputs*l.batch; - increment_layer(&input_z_layer, -1); - increment_layer(&input_r_layer, -1); - increment_layer(&input_h_layer, -1); - - increment_layer(&state_z_layer, -1); - increment_layer(&state_r_layer, -1); - increment_layer(&state_h_layer, -1); - } -} -#endif +#include "gru_layer.h" +#include "connected_layer.h" +#include "utils.h" +#include "dark_cuda.h" +#include "blas.h" +#include "gemm.h" + +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +static void increment_layer(layer *l, int steps) +{ + int num = l->outputs*l->batch*steps; + l->output += num; + l->delta += num; + l->x += num; + l->x_norm += num; + +#ifdef GPU + l->output_gpu += num; + l->delta_gpu += num; + l->x_gpu += num; + l->x_norm_gpu += num; +#endif +} + +layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize) +{ + fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs); + batch = batch / steps; + layer l = { (LAYER_TYPE)0 }; + l.batch = batch; + l.type = GRU; + l.steps = steps; + l.inputs = inputs; + + l.input_z_layer = (layer*)xcalloc(1,sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.input_z_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); + l.input_z_layer->batch = batch; + + l.state_z_layer = (layer*)xcalloc(1,sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.state_z_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); + l.state_z_layer->batch = batch; + + + + l.input_r_layer = (layer*)xcalloc(1,sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.input_r_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); + l.input_r_layer->batch = batch; + + l.state_r_layer = (layer*)xcalloc(1,sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.state_r_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); + l.state_r_layer->batch = batch; + + + + l.input_h_layer = (layer*)xcalloc(1,sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.input_h_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); + l.input_h_layer->batch = batch; + + l.state_h_layer = (layer*)xcalloc(1,sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.state_h_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); + l.state_h_layer->batch = batch; + + l.batch_normalize = batch_normalize; + + + l.outputs = outputs; + l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float)); + l.delta = (float*)xcalloc(outputs * batch * steps, sizeof(float)); + l.state = (float*)xcalloc(outputs * batch, sizeof(float)); + l.prev_state = (float*)xcalloc(outputs * batch, sizeof(float)); + l.forgot_state = (float*)xcalloc(outputs * batch, sizeof(float)); + l.forgot_delta = (float*)xcalloc(outputs * batch, sizeof(float)); + + l.r_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); + l.z_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); + l.h_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); + + l.forward = forward_gru_layer; + l.backward = backward_gru_layer; + l.update = update_gru_layer; + +#ifdef GPU + l.forward_gpu = forward_gru_layer_gpu; + l.backward_gpu = backward_gru_layer_gpu; + l.update_gpu = update_gru_layer_gpu; + + l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs); + l.forgot_delta_gpu = cuda_make_array(l.output, batch*outputs); + l.prev_state_gpu = cuda_make_array(l.output, batch*outputs); + l.state_gpu = cuda_make_array(l.output, batch*outputs); + l.output_gpu = cuda_make_array(l.output, batch*outputs*steps); + l.delta_gpu = cuda_make_array(l.delta, batch*outputs*steps); + l.r_gpu = cuda_make_array(l.output_gpu, batch*outputs); + l.z_gpu = cuda_make_array(l.output_gpu, batch*outputs); + l.h_gpu = cuda_make_array(l.output_gpu, batch*outputs); +#endif + + return l; +} + +void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay) +{ + update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay); +} + +void forward_gru_layer(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer input_z_layer = *(l.input_z_layer); + layer input_r_layer = *(l.input_r_layer); + layer input_h_layer = *(l.input_h_layer); + + layer state_z_layer = *(l.state_z_layer); + layer state_r_layer = *(l.state_r_layer); + layer state_h_layer = *(l.state_h_layer); + + fill_cpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta, 1); + fill_cpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta, 1); + fill_cpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta, 1); + + fill_cpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta, 1); + fill_cpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta, 1); + fill_cpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta, 1); + if(state.train) { + fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1); + copy_cpu(l.outputs*l.batch, l.state, 1, l.prev_state, 1); + } + + for (i = 0; i < l.steps; ++i) { + s.input = l.state; + forward_connected_layer(state_z_layer, s); + forward_connected_layer(state_r_layer, s); + + s.input = state.input; + forward_connected_layer(input_z_layer, s); + forward_connected_layer(input_r_layer, s); + forward_connected_layer(input_h_layer, s); + + + copy_cpu(l.outputs*l.batch, input_z_layer.output, 1, l.z_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, state_z_layer.output, 1, l.z_cpu, 1); + + copy_cpu(l.outputs*l.batch, input_r_layer.output, 1, l.r_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, state_r_layer.output, 1, l.r_cpu, 1); + + activate_array(l.z_cpu, l.outputs*l.batch, LOGISTIC); + activate_array(l.r_cpu, l.outputs*l.batch, LOGISTIC); + + copy_cpu(l.outputs*l.batch, l.state, 1, l.forgot_state, 1); + mul_cpu(l.outputs*l.batch, l.r_cpu, 1, l.forgot_state, 1); + + s.input = l.forgot_state; + forward_connected_layer(state_h_layer, s); + + copy_cpu(l.outputs*l.batch, input_h_layer.output, 1, l.h_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, state_h_layer.output, 1, l.h_cpu, 1); + + #ifdef USET + activate_array(l.h_cpu, l.outputs*l.batch, TANH); + #else + activate_array(l.h_cpu, l.outputs*l.batch, LOGISTIC); + #endif + + weighted_sum_cpu(l.state, l.h_cpu, l.z_cpu, l.outputs*l.batch, l.output); + + copy_cpu(l.outputs*l.batch, l.output, 1, l.state, 1); + + state.input += l.inputs*l.batch; + l.output += l.outputs*l.batch; + increment_layer(&input_z_layer, 1); + increment_layer(&input_r_layer, 1); + increment_layer(&input_h_layer, 1); + + increment_layer(&state_z_layer, 1); + increment_layer(&state_r_layer, 1); + increment_layer(&state_h_layer, 1); + } +} + +void backward_gru_layer(layer l, network_state state) +{ +} + +#ifdef GPU + +void pull_gru_layer(layer l) +{ +} + +void push_gru_layer(layer l) +{ +} + +void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) +{ + update_connected_layer_gpu(*(l.input_r_layer), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.input_z_layer), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.input_h_layer), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.state_r_layer), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.state_z_layer), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.state_h_layer), batch, learning_rate, momentum, decay, loss_scale); +} + +void forward_gru_layer_gpu(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer input_z_layer = *(l.input_z_layer); + layer input_r_layer = *(l.input_r_layer); + layer input_h_layer = *(l.input_h_layer); + + layer state_z_layer = *(l.state_z_layer); + layer state_r_layer = *(l.state_r_layer); + layer state_h_layer = *(l.state_h_layer); + + fill_ongpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta_gpu, 1); + + fill_ongpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta_gpu, 1); + if(state.train) { + fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); + copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.prev_state_gpu, 1); + } + + for (i = 0; i < l.steps; ++i) { + s.input = l.state_gpu; + forward_connected_layer_gpu(state_z_layer, s); + forward_connected_layer_gpu(state_r_layer, s); + + s.input = state.input; + forward_connected_layer_gpu(input_z_layer, s); + forward_connected_layer_gpu(input_r_layer, s); + forward_connected_layer_gpu(input_h_layer, s); + + + copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); + + copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); + + activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); + activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); + + copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.forgot_state_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); + + s.input = l.forgot_state_gpu; + forward_connected_layer_gpu(state_h_layer, s); + + copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); + + #ifdef USET + activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); + #else + activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); + #endif + + weighted_sum_gpu(l.state_gpu, l.h_gpu, l.z_gpu, l.outputs*l.batch, l.output_gpu); + + copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.state_gpu, 1); + + state.input += l.inputs*l.batch; + l.output_gpu += l.outputs*l.batch; + increment_layer(&input_z_layer, 1); + increment_layer(&input_r_layer, 1); + increment_layer(&input_h_layer, 1); + + increment_layer(&state_z_layer, 1); + increment_layer(&state_r_layer, 1); + increment_layer(&state_h_layer, 1); + } +} + +void backward_gru_layer_gpu(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer input_z_layer = *(l.input_z_layer); + layer input_r_layer = *(l.input_r_layer); + layer input_h_layer = *(l.input_h_layer); + + layer state_z_layer = *(l.state_z_layer); + layer state_r_layer = *(l.state_r_layer); + layer state_h_layer = *(l.state_h_layer); + + increment_layer(&input_z_layer, l.steps - 1); + increment_layer(&input_r_layer, l.steps - 1); + increment_layer(&input_h_layer, l.steps - 1); + + increment_layer(&state_z_layer, l.steps - 1); + increment_layer(&state_r_layer, l.steps - 1); + increment_layer(&state_h_layer, l.steps - 1); + + state.input += l.inputs*l.batch*(l.steps-1); + if(state.delta) state.delta += l.inputs*l.batch*(l.steps-1); + l.output_gpu += l.outputs*l.batch*(l.steps-1); + l.delta_gpu += l.outputs*l.batch*(l.steps-1); + for (i = l.steps-1; i >= 0; --i) { + if(i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1); + float *prev_delta_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; + + copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); + + copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); + + activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); + activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); + + copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); + + #ifdef USET + activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); + #else + activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); + #endif + + weighted_delta_gpu(l.prev_state_gpu, l.h_gpu, l.z_gpu, prev_delta_gpu, input_h_layer.delta_gpu, input_z_layer.delta_gpu, l.outputs*l.batch, l.delta_gpu); + + #ifdef USET + gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH, input_h_layer.delta_gpu); + #else + gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC, input_h_layer.delta_gpu); + #endif + + copy_ongpu(l.outputs*l.batch, input_h_layer.delta_gpu, 1, state_h_layer.delta_gpu, 1); + + copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, 1, l.forgot_state_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); + fill_ongpu(l.outputs*l.batch, 0, l.forgot_delta_gpu, 1); + + s.input = l.forgot_state_gpu; + s.delta = l.forgot_delta_gpu; + + backward_connected_layer_gpu(state_h_layer, s); + if(prev_delta_gpu) mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.r_gpu, prev_delta_gpu); + mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.prev_state_gpu, input_r_layer.delta_gpu); + + gradient_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC, input_r_layer.delta_gpu); + copy_ongpu(l.outputs*l.batch, input_r_layer.delta_gpu, 1, state_r_layer.delta_gpu, 1); + + gradient_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC, input_z_layer.delta_gpu); + copy_ongpu(l.outputs*l.batch, input_z_layer.delta_gpu, 1, state_z_layer.delta_gpu, 1); + + s.input = l.prev_state_gpu; + s.delta = prev_delta_gpu; + + backward_connected_layer_gpu(state_r_layer, s); + backward_connected_layer_gpu(state_z_layer, s); + + s.input = state.input; + s.delta = state.delta; + + backward_connected_layer_gpu(input_h_layer, s); + backward_connected_layer_gpu(input_r_layer, s); + backward_connected_layer_gpu(input_z_layer, s); + + + state.input -= l.inputs*l.batch; + if(state.delta) state.delta -= l.inputs*l.batch; + l.output_gpu -= l.outputs*l.batch; + l.delta_gpu -= l.outputs*l.batch; + increment_layer(&input_z_layer, -1); + increment_layer(&input_r_layer, -1); + increment_layer(&input_h_layer, -1); + + increment_layer(&state_z_layer, -1); + increment_layer(&state_r_layer, -1); + increment_layer(&state_h_layer, -1); + } +} +#endif -- Gitblit v1.8.0