From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/gru_layer.c |  796 ++++++++++++++++++++++++++++----------------------------
 1 files changed, 398 insertions(+), 398 deletions(-)

diff --git a/lib/detecter_tools/darknet/gru_layer.c b/lib/detecter_tools/darknet/gru_layer.c
index c44bb99..de301df 100644
--- a/lib/detecter_tools/darknet/gru_layer.c
+++ b/lib/detecter_tools/darknet/gru_layer.c
@@ -1,398 +1,398 @@
-#include "gru_layer.h"
-#include "connected_layer.h"
-#include "utils.h"
-#include "dark_cuda.h"
-#include "blas.h"
-#include "gemm.h"
-
-#include <math.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-static void increment_layer(layer *l, int steps)
-{
-    int num = l->outputs*l->batch*steps;
-    l->output += num;
-    l->delta += num;
-    l->x += num;
-    l->x_norm += num;
-
-#ifdef GPU
-    l->output_gpu += num;
-    l->delta_gpu += num;
-    l->x_gpu += num;
-    l->x_norm_gpu += num;
-#endif
-}
-
-layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize)
-{
-    fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs);
-    batch = batch / steps;
-    layer l = { (LAYER_TYPE)0 };
-    l.batch = batch;
-    l.type = GRU;
-    l.steps = steps;
-    l.inputs = inputs;
-
-    l.input_z_layer = (layer*)xcalloc(1,sizeof(layer));
-    fprintf(stderr, "\t\t");
-    *(l.input_z_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
-    l.input_z_layer->batch = batch;
-
-    l.state_z_layer = (layer*)xcalloc(1,sizeof(layer));
-    fprintf(stderr, "\t\t");
-    *(l.state_z_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
-    l.state_z_layer->batch = batch;
-
-
-
-    l.input_r_layer = (layer*)xcalloc(1,sizeof(layer));
-    fprintf(stderr, "\t\t");
-    *(l.input_r_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
-    l.input_r_layer->batch = batch;
-
-    l.state_r_layer = (layer*)xcalloc(1,sizeof(layer));
-    fprintf(stderr, "\t\t");
-    *(l.state_r_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
-    l.state_r_layer->batch = batch;
-
-
-
-    l.input_h_layer = (layer*)xcalloc(1,sizeof(layer));
-    fprintf(stderr, "\t\t");
-    *(l.input_h_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
-    l.input_h_layer->batch = batch;
-
-    l.state_h_layer = (layer*)xcalloc(1,sizeof(layer));
-    fprintf(stderr, "\t\t");
-    *(l.state_h_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
-    l.state_h_layer->batch = batch;
-
-    l.batch_normalize = batch_normalize;
-
-
-    l.outputs = outputs;
-    l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float));
-    l.delta = (float*)xcalloc(outputs * batch * steps, sizeof(float));
-    l.state = (float*)xcalloc(outputs * batch, sizeof(float));
-    l.prev_state = (float*)xcalloc(outputs * batch, sizeof(float));
-    l.forgot_state = (float*)xcalloc(outputs * batch, sizeof(float));
-    l.forgot_delta = (float*)xcalloc(outputs * batch, sizeof(float));
-
-    l.r_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
-    l.z_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
-    l.h_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
-
-    l.forward = forward_gru_layer;
-    l.backward = backward_gru_layer;
-    l.update = update_gru_layer;
-
-#ifdef GPU
-    l.forward_gpu = forward_gru_layer_gpu;
-    l.backward_gpu = backward_gru_layer_gpu;
-    l.update_gpu = update_gru_layer_gpu;
-
-    l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs);
-    l.forgot_delta_gpu = cuda_make_array(l.output, batch*outputs);
-    l.prev_state_gpu = cuda_make_array(l.output, batch*outputs);
-    l.state_gpu = cuda_make_array(l.output, batch*outputs);
-    l.output_gpu = cuda_make_array(l.output, batch*outputs*steps);
-    l.delta_gpu = cuda_make_array(l.delta, batch*outputs*steps);
-    l.r_gpu = cuda_make_array(l.output_gpu, batch*outputs);
-    l.z_gpu = cuda_make_array(l.output_gpu, batch*outputs);
-    l.h_gpu = cuda_make_array(l.output_gpu, batch*outputs);
-#endif
-
-    return l;
-}
-
-void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay)
-{
-    update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
-    update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
-    update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
-}
-
-void forward_gru_layer(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    int i;
-    layer input_z_layer = *(l.input_z_layer);
-    layer input_r_layer = *(l.input_r_layer);
-    layer input_h_layer = *(l.input_h_layer);
-
-    layer state_z_layer = *(l.state_z_layer);
-    layer state_r_layer = *(l.state_r_layer);
-    layer state_h_layer = *(l.state_h_layer);
-
-    fill_cpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta, 1);
-    fill_cpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta, 1);
-    fill_cpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta, 1);
-
-    fill_cpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta, 1);
-    fill_cpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta, 1);
-    fill_cpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta, 1);
-    if(state.train) {
-        fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1);
-        copy_cpu(l.outputs*l.batch, l.state, 1, l.prev_state, 1);
-    }
-
-    for (i = 0; i < l.steps; ++i) {
-        s.input = l.state;
-        forward_connected_layer(state_z_layer, s);
-        forward_connected_layer(state_r_layer, s);
-
-        s.input = state.input;
-        forward_connected_layer(input_z_layer, s);
-        forward_connected_layer(input_r_layer, s);
-        forward_connected_layer(input_h_layer, s);
-
-
-        copy_cpu(l.outputs*l.batch, input_z_layer.output, 1, l.z_cpu, 1);
-        axpy_cpu(l.outputs*l.batch, 1, state_z_layer.output, 1, l.z_cpu, 1);
-
-        copy_cpu(l.outputs*l.batch, input_r_layer.output, 1, l.r_cpu, 1);
-        axpy_cpu(l.outputs*l.batch, 1, state_r_layer.output, 1, l.r_cpu, 1);
-
-        activate_array(l.z_cpu, l.outputs*l.batch, LOGISTIC);
-        activate_array(l.r_cpu, l.outputs*l.batch, LOGISTIC);
-
-        copy_cpu(l.outputs*l.batch, l.state, 1, l.forgot_state, 1);
-        mul_cpu(l.outputs*l.batch, l.r_cpu, 1, l.forgot_state, 1);
-
-        s.input = l.forgot_state;
-        forward_connected_layer(state_h_layer, s);
-
-        copy_cpu(l.outputs*l.batch, input_h_layer.output, 1, l.h_cpu, 1);
-        axpy_cpu(l.outputs*l.batch, 1, state_h_layer.output, 1, l.h_cpu, 1);
-
-        #ifdef USET
-        activate_array(l.h_cpu, l.outputs*l.batch, TANH);
-        #else
-        activate_array(l.h_cpu, l.outputs*l.batch, LOGISTIC);
-        #endif
-
-        weighted_sum_cpu(l.state, l.h_cpu, l.z_cpu, l.outputs*l.batch, l.output);
-
-        copy_cpu(l.outputs*l.batch, l.output, 1, l.state, 1);
-
-        state.input += l.inputs*l.batch;
-        l.output += l.outputs*l.batch;
-        increment_layer(&input_z_layer, 1);
-        increment_layer(&input_r_layer, 1);
-        increment_layer(&input_h_layer, 1);
-
-        increment_layer(&state_z_layer, 1);
-        increment_layer(&state_r_layer, 1);
-        increment_layer(&state_h_layer, 1);
-    }
-}
-
-void backward_gru_layer(layer l, network_state state)
-{
-}
-
-#ifdef GPU
-
-void pull_gru_layer(layer l)
-{
-}
-
-void push_gru_layer(layer l)
-{
-}
-
-void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
-{
-    update_connected_layer_gpu(*(l.input_r_layer), batch, learning_rate, momentum, decay, loss_scale);
-    update_connected_layer_gpu(*(l.input_z_layer), batch, learning_rate, momentum, decay, loss_scale);
-    update_connected_layer_gpu(*(l.input_h_layer), batch, learning_rate, momentum, decay, loss_scale);
-    update_connected_layer_gpu(*(l.state_r_layer), batch, learning_rate, momentum, decay, loss_scale);
-    update_connected_layer_gpu(*(l.state_z_layer), batch, learning_rate, momentum, decay, loss_scale);
-    update_connected_layer_gpu(*(l.state_h_layer), batch, learning_rate, momentum, decay, loss_scale);
-}
-
-void forward_gru_layer_gpu(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    int i;
-    layer input_z_layer = *(l.input_z_layer);
-    layer input_r_layer = *(l.input_r_layer);
-    layer input_h_layer = *(l.input_h_layer);
-
-    layer state_z_layer = *(l.state_z_layer);
-    layer state_r_layer = *(l.state_r_layer);
-    layer state_h_layer = *(l.state_h_layer);
-
-    fill_ongpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta_gpu, 1);
-    fill_ongpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta_gpu, 1);
-    fill_ongpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta_gpu, 1);
-
-    fill_ongpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta_gpu, 1);
-    fill_ongpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta_gpu, 1);
-    fill_ongpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta_gpu, 1);
-    if(state.train) {
-        fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1);
-        copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.prev_state_gpu, 1);
-    }
-
-    for (i = 0; i < l.steps; ++i) {
-        s.input = l.state_gpu;
-        forward_connected_layer_gpu(state_z_layer, s);
-        forward_connected_layer_gpu(state_r_layer, s);
-
-        s.input = state.input;
-        forward_connected_layer_gpu(input_z_layer, s);
-        forward_connected_layer_gpu(input_r_layer, s);
-        forward_connected_layer_gpu(input_h_layer, s);
-
-
-        copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1);
-        axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1);
-
-        copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1);
-        axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1);
-
-        activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC);
-        activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC);
-
-        copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.forgot_state_gpu, 1);
-        mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1);
-
-        s.input = l.forgot_state_gpu;
-        forward_connected_layer_gpu(state_h_layer, s);
-
-        copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1);
-        axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1);
-
-        #ifdef USET
-        activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
-        #else
-        activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC);
-        #endif
-
-        weighted_sum_gpu(l.state_gpu, l.h_gpu, l.z_gpu, l.outputs*l.batch, l.output_gpu);
-
-        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.state_gpu, 1);
-
-        state.input += l.inputs*l.batch;
-        l.output_gpu += l.outputs*l.batch;
-        increment_layer(&input_z_layer, 1);
-        increment_layer(&input_r_layer, 1);
-        increment_layer(&input_h_layer, 1);
-
-        increment_layer(&state_z_layer, 1);
-        increment_layer(&state_r_layer, 1);
-        increment_layer(&state_h_layer, 1);
-    }
-}
-
-void backward_gru_layer_gpu(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    int i;
-    layer input_z_layer = *(l.input_z_layer);
-    layer input_r_layer = *(l.input_r_layer);
-    layer input_h_layer = *(l.input_h_layer);
-
-    layer state_z_layer = *(l.state_z_layer);
-    layer state_r_layer = *(l.state_r_layer);
-    layer state_h_layer = *(l.state_h_layer);
-
-    increment_layer(&input_z_layer, l.steps - 1);
-    increment_layer(&input_r_layer, l.steps - 1);
-    increment_layer(&input_h_layer, l.steps - 1);
-
-    increment_layer(&state_z_layer, l.steps - 1);
-    increment_layer(&state_r_layer, l.steps - 1);
-    increment_layer(&state_h_layer, l.steps - 1);
-
-    state.input += l.inputs*l.batch*(l.steps-1);
-    if(state.delta) state.delta += l.inputs*l.batch*(l.steps-1);
-    l.output_gpu += l.outputs*l.batch*(l.steps-1);
-    l.delta_gpu += l.outputs*l.batch*(l.steps-1);
-    for (i = l.steps-1; i >= 0; --i) {
-        if(i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1);
-        float *prev_delta_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch;
-
-        copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1);
-        axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1);
-
-        copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1);
-        axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1);
-
-        activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC);
-        activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC);
-
-        copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1);
-        axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1);
-
-        #ifdef USET
-        activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
-        #else
-        activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC);
-        #endif
-
-        weighted_delta_gpu(l.prev_state_gpu, l.h_gpu, l.z_gpu, prev_delta_gpu, input_h_layer.delta_gpu, input_z_layer.delta_gpu, l.outputs*l.batch, l.delta_gpu);
-
-        #ifdef USET
-        gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH, input_h_layer.delta_gpu);
-        #else
-        gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC, input_h_layer.delta_gpu);
-        #endif
-
-        copy_ongpu(l.outputs*l.batch, input_h_layer.delta_gpu, 1, state_h_layer.delta_gpu, 1);
-
-        copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, 1, l.forgot_state_gpu, 1);
-        mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1);
-        fill_ongpu(l.outputs*l.batch, 0, l.forgot_delta_gpu, 1);
-
-        s.input = l.forgot_state_gpu;
-        s.delta = l.forgot_delta_gpu;
-
-        backward_connected_layer_gpu(state_h_layer, s);
-        if(prev_delta_gpu) mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.r_gpu, prev_delta_gpu);
-        mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.prev_state_gpu, input_r_layer.delta_gpu);
-
-        gradient_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC, input_r_layer.delta_gpu);
-        copy_ongpu(l.outputs*l.batch, input_r_layer.delta_gpu, 1, state_r_layer.delta_gpu, 1);
-
-        gradient_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC, input_z_layer.delta_gpu);
-        copy_ongpu(l.outputs*l.batch, input_z_layer.delta_gpu, 1, state_z_layer.delta_gpu, 1);
-
-        s.input = l.prev_state_gpu;
-        s.delta = prev_delta_gpu;
-
-        backward_connected_layer_gpu(state_r_layer, s);
-        backward_connected_layer_gpu(state_z_layer, s);
-
-        s.input = state.input;
-        s.delta = state.delta;
-
-        backward_connected_layer_gpu(input_h_layer, s);
-        backward_connected_layer_gpu(input_r_layer, s);
-        backward_connected_layer_gpu(input_z_layer, s);
-
-
-        state.input -= l.inputs*l.batch;
-        if(state.delta) state.delta -= l.inputs*l.batch;
-        l.output_gpu -= l.outputs*l.batch;
-        l.delta_gpu -= l.outputs*l.batch;
-        increment_layer(&input_z_layer, -1);
-        increment_layer(&input_r_layer, -1);
-        increment_layer(&input_h_layer, -1);
-
-        increment_layer(&state_z_layer, -1);
-        increment_layer(&state_r_layer, -1);
-        increment_layer(&state_h_layer, -1);
-    }
-}
-#endif
+#include "gru_layer.h"
+#include "connected_layer.h"
+#include "utils.h"
+#include "dark_cuda.h"
+#include "blas.h"
+#include "gemm.h"
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+static void increment_layer(layer *l, int steps)
+{
+    int num = l->outputs*l->batch*steps;
+    l->output += num;
+    l->delta += num;
+    l->x += num;
+    l->x_norm += num;
+
+#ifdef GPU
+    l->output_gpu += num;
+    l->delta_gpu += num;
+    l->x_gpu += num;
+    l->x_norm_gpu += num;
+#endif
+}
+
+layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize)
+{
+    fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs);
+    batch = batch / steps;
+    layer l = { (LAYER_TYPE)0 };
+    l.batch = batch;
+    l.type = GRU;
+    l.steps = steps;
+    l.inputs = inputs;
+
+    l.input_z_layer = (layer*)xcalloc(1,sizeof(layer));
+    fprintf(stderr, "\t\t");
+    *(l.input_z_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
+    l.input_z_layer->batch = batch;
+
+    l.state_z_layer = (layer*)xcalloc(1,sizeof(layer));
+    fprintf(stderr, "\t\t");
+    *(l.state_z_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
+    l.state_z_layer->batch = batch;
+
+
+
+    l.input_r_layer = (layer*)xcalloc(1,sizeof(layer));
+    fprintf(stderr, "\t\t");
+    *(l.input_r_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
+    l.input_r_layer->batch = batch;
+
+    l.state_r_layer = (layer*)xcalloc(1,sizeof(layer));
+    fprintf(stderr, "\t\t");
+    *(l.state_r_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
+    l.state_r_layer->batch = batch;
+
+
+
+    l.input_h_layer = (layer*)xcalloc(1,sizeof(layer));
+    fprintf(stderr, "\t\t");
+    *(l.input_h_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
+    l.input_h_layer->batch = batch;
+
+    l.state_h_layer = (layer*)xcalloc(1,sizeof(layer));
+    fprintf(stderr, "\t\t");
+    *(l.state_h_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
+    l.state_h_layer->batch = batch;
+
+    l.batch_normalize = batch_normalize;
+
+
+    l.outputs = outputs;
+    l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float));
+    l.delta = (float*)xcalloc(outputs * batch * steps, sizeof(float));
+    l.state = (float*)xcalloc(outputs * batch, sizeof(float));
+    l.prev_state = (float*)xcalloc(outputs * batch, sizeof(float));
+    l.forgot_state = (float*)xcalloc(outputs * batch, sizeof(float));
+    l.forgot_delta = (float*)xcalloc(outputs * batch, sizeof(float));
+
+    l.r_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
+    l.z_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
+    l.h_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
+
+    l.forward = forward_gru_layer;
+    l.backward = backward_gru_layer;
+    l.update = update_gru_layer;
+
+#ifdef GPU
+    l.forward_gpu = forward_gru_layer_gpu;
+    l.backward_gpu = backward_gru_layer_gpu;
+    l.update_gpu = update_gru_layer_gpu;
+
+    l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs);
+    l.forgot_delta_gpu = cuda_make_array(l.output, batch*outputs);
+    l.prev_state_gpu = cuda_make_array(l.output, batch*outputs);
+    l.state_gpu = cuda_make_array(l.output, batch*outputs);
+    l.output_gpu = cuda_make_array(l.output, batch*outputs*steps);
+    l.delta_gpu = cuda_make_array(l.delta, batch*outputs*steps);
+    l.r_gpu = cuda_make_array(l.output_gpu, batch*outputs);
+    l.z_gpu = cuda_make_array(l.output_gpu, batch*outputs);
+    l.h_gpu = cuda_make_array(l.output_gpu, batch*outputs);
+#endif
+
+    return l;
+}
+
+void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay)
+{
+    update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
+    update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
+    update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
+}
+
+void forward_gru_layer(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    int i;
+    layer input_z_layer = *(l.input_z_layer);
+    layer input_r_layer = *(l.input_r_layer);
+    layer input_h_layer = *(l.input_h_layer);
+
+    layer state_z_layer = *(l.state_z_layer);
+    layer state_r_layer = *(l.state_r_layer);
+    layer state_h_layer = *(l.state_h_layer);
+
+    fill_cpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta, 1);
+    fill_cpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta, 1);
+    fill_cpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta, 1);
+
+    fill_cpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta, 1);
+    fill_cpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta, 1);
+    fill_cpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta, 1);
+    if(state.train) {
+        fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1);
+        copy_cpu(l.outputs*l.batch, l.state, 1, l.prev_state, 1);
+    }
+
+    for (i = 0; i < l.steps; ++i) {
+        s.input = l.state;
+        forward_connected_layer(state_z_layer, s);
+        forward_connected_layer(state_r_layer, s);
+
+        s.input = state.input;
+        forward_connected_layer(input_z_layer, s);
+        forward_connected_layer(input_r_layer, s);
+        forward_connected_layer(input_h_layer, s);
+
+
+        copy_cpu(l.outputs*l.batch, input_z_layer.output, 1, l.z_cpu, 1);
+        axpy_cpu(l.outputs*l.batch, 1, state_z_layer.output, 1, l.z_cpu, 1);
+
+        copy_cpu(l.outputs*l.batch, input_r_layer.output, 1, l.r_cpu, 1);
+        axpy_cpu(l.outputs*l.batch, 1, state_r_layer.output, 1, l.r_cpu, 1);
+
+        activate_array(l.z_cpu, l.outputs*l.batch, LOGISTIC);
+        activate_array(l.r_cpu, l.outputs*l.batch, LOGISTIC);
+
+        copy_cpu(l.outputs*l.batch, l.state, 1, l.forgot_state, 1);
+        mul_cpu(l.outputs*l.batch, l.r_cpu, 1, l.forgot_state, 1);
+
+        s.input = l.forgot_state;
+        forward_connected_layer(state_h_layer, s);
+
+        copy_cpu(l.outputs*l.batch, input_h_layer.output, 1, l.h_cpu, 1);
+        axpy_cpu(l.outputs*l.batch, 1, state_h_layer.output, 1, l.h_cpu, 1);
+
+        #ifdef USET
+        activate_array(l.h_cpu, l.outputs*l.batch, TANH);
+        #else
+        activate_array(l.h_cpu, l.outputs*l.batch, LOGISTIC);
+        #endif
+
+        weighted_sum_cpu(l.state, l.h_cpu, l.z_cpu, l.outputs*l.batch, l.output);
+
+        copy_cpu(l.outputs*l.batch, l.output, 1, l.state, 1);
+
+        state.input += l.inputs*l.batch;
+        l.output += l.outputs*l.batch;
+        increment_layer(&input_z_layer, 1);
+        increment_layer(&input_r_layer, 1);
+        increment_layer(&input_h_layer, 1);
+
+        increment_layer(&state_z_layer, 1);
+        increment_layer(&state_r_layer, 1);
+        increment_layer(&state_h_layer, 1);
+    }
+}
+
+void backward_gru_layer(layer l, network_state state)
+{
+}
+
+#ifdef GPU
+
+void pull_gru_layer(layer l)
+{
+}
+
+void push_gru_layer(layer l)
+{
+}
+
+void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
+{
+    update_connected_layer_gpu(*(l.input_r_layer), batch, learning_rate, momentum, decay, loss_scale);
+    update_connected_layer_gpu(*(l.input_z_layer), batch, learning_rate, momentum, decay, loss_scale);
+    update_connected_layer_gpu(*(l.input_h_layer), batch, learning_rate, momentum, decay, loss_scale);
+    update_connected_layer_gpu(*(l.state_r_layer), batch, learning_rate, momentum, decay, loss_scale);
+    update_connected_layer_gpu(*(l.state_z_layer), batch, learning_rate, momentum, decay, loss_scale);
+    update_connected_layer_gpu(*(l.state_h_layer), batch, learning_rate, momentum, decay, loss_scale);
+}
+
+void forward_gru_layer_gpu(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    int i;
+    layer input_z_layer = *(l.input_z_layer);
+    layer input_r_layer = *(l.input_r_layer);
+    layer input_h_layer = *(l.input_h_layer);
+
+    layer state_z_layer = *(l.state_z_layer);
+    layer state_r_layer = *(l.state_r_layer);
+    layer state_h_layer = *(l.state_h_layer);
+
+    fill_ongpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta_gpu, 1);
+    fill_ongpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta_gpu, 1);
+    fill_ongpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta_gpu, 1);
+
+    fill_ongpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta_gpu, 1);
+    fill_ongpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta_gpu, 1);
+    fill_ongpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta_gpu, 1);
+    if(state.train) {
+        fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1);
+        copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.prev_state_gpu, 1);
+    }
+
+    for (i = 0; i < l.steps; ++i) {
+        s.input = l.state_gpu;
+        forward_connected_layer_gpu(state_z_layer, s);
+        forward_connected_layer_gpu(state_r_layer, s);
+
+        s.input = state.input;
+        forward_connected_layer_gpu(input_z_layer, s);
+        forward_connected_layer_gpu(input_r_layer, s);
+        forward_connected_layer_gpu(input_h_layer, s);
+
+
+        copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1);
+        axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1);
+
+        copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1);
+        axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1);
+
+        activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC);
+        activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC);
+
+        copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.forgot_state_gpu, 1);
+        mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1);
+
+        s.input = l.forgot_state_gpu;
+        forward_connected_layer_gpu(state_h_layer, s);
+
+        copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1);
+        axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1);
+
+        #ifdef USET
+        activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
+        #else
+        activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC);
+        #endif
+
+        weighted_sum_gpu(l.state_gpu, l.h_gpu, l.z_gpu, l.outputs*l.batch, l.output_gpu);
+
+        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.state_gpu, 1);
+
+        state.input += l.inputs*l.batch;
+        l.output_gpu += l.outputs*l.batch;
+        increment_layer(&input_z_layer, 1);
+        increment_layer(&input_r_layer, 1);
+        increment_layer(&input_h_layer, 1);
+
+        increment_layer(&state_z_layer, 1);
+        increment_layer(&state_r_layer, 1);
+        increment_layer(&state_h_layer, 1);
+    }
+}
+
+void backward_gru_layer_gpu(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    int i;
+    layer input_z_layer = *(l.input_z_layer);
+    layer input_r_layer = *(l.input_r_layer);
+    layer input_h_layer = *(l.input_h_layer);
+
+    layer state_z_layer = *(l.state_z_layer);
+    layer state_r_layer = *(l.state_r_layer);
+    layer state_h_layer = *(l.state_h_layer);
+
+    increment_layer(&input_z_layer, l.steps - 1);
+    increment_layer(&input_r_layer, l.steps - 1);
+    increment_layer(&input_h_layer, l.steps - 1);
+
+    increment_layer(&state_z_layer, l.steps - 1);
+    increment_layer(&state_r_layer, l.steps - 1);
+    increment_layer(&state_h_layer, l.steps - 1);
+
+    state.input += l.inputs*l.batch*(l.steps-1);
+    if(state.delta) state.delta += l.inputs*l.batch*(l.steps-1);
+    l.output_gpu += l.outputs*l.batch*(l.steps-1);
+    l.delta_gpu += l.outputs*l.batch*(l.steps-1);
+    for (i = l.steps-1; i >= 0; --i) {
+        if(i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1);
+        float *prev_delta_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch;
+
+        copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1);
+        axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1);
+
+        copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1);
+        axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1);
+
+        activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC);
+        activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC);
+
+        copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1);
+        axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1);
+
+        #ifdef USET
+        activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
+        #else
+        activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC);
+        #endif
+
+        weighted_delta_gpu(l.prev_state_gpu, l.h_gpu, l.z_gpu, prev_delta_gpu, input_h_layer.delta_gpu, input_z_layer.delta_gpu, l.outputs*l.batch, l.delta_gpu);
+
+        #ifdef USET
+        gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH, input_h_layer.delta_gpu);
+        #else
+        gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC, input_h_layer.delta_gpu);
+        #endif
+
+        copy_ongpu(l.outputs*l.batch, input_h_layer.delta_gpu, 1, state_h_layer.delta_gpu, 1);
+
+        copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, 1, l.forgot_state_gpu, 1);
+        mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1);
+        fill_ongpu(l.outputs*l.batch, 0, l.forgot_delta_gpu, 1);
+
+        s.input = l.forgot_state_gpu;
+        s.delta = l.forgot_delta_gpu;
+
+        backward_connected_layer_gpu(state_h_layer, s);
+        if(prev_delta_gpu) mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.r_gpu, prev_delta_gpu);
+        mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.prev_state_gpu, input_r_layer.delta_gpu);
+
+        gradient_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC, input_r_layer.delta_gpu);
+        copy_ongpu(l.outputs*l.batch, input_r_layer.delta_gpu, 1, state_r_layer.delta_gpu, 1);
+
+        gradient_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC, input_z_layer.delta_gpu);
+        copy_ongpu(l.outputs*l.batch, input_z_layer.delta_gpu, 1, state_z_layer.delta_gpu, 1);
+
+        s.input = l.prev_state_gpu;
+        s.delta = prev_delta_gpu;
+
+        backward_connected_layer_gpu(state_r_layer, s);
+        backward_connected_layer_gpu(state_z_layer, s);
+
+        s.input = state.input;
+        s.delta = state.delta;
+
+        backward_connected_layer_gpu(input_h_layer, s);
+        backward_connected_layer_gpu(input_r_layer, s);
+        backward_connected_layer_gpu(input_z_layer, s);
+
+
+        state.input -= l.inputs*l.batch;
+        if(state.delta) state.delta -= l.inputs*l.batch;
+        l.output_gpu -= l.outputs*l.batch;
+        l.delta_gpu -= l.outputs*l.batch;
+        increment_layer(&input_z_layer, -1);
+        increment_layer(&input_r_layer, -1);
+        increment_layer(&input_h_layer, -1);
+
+        increment_layer(&state_z_layer, -1);
+        increment_layer(&state_r_layer, -1);
+        increment_layer(&state_h_layer, -1);
+    }
+}
+#endif

--
Gitblit v1.8.0