From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/local_layer.c |  566 ++++++++++++++++++++++++++++----------------------------
 1 files changed, 283 insertions(+), 283 deletions(-)

diff --git a/lib/detecter_tools/darknet/local_layer.c b/lib/detecter_tools/darknet/local_layer.c
index 76bb9bb..88c7b12 100644
--- a/lib/detecter_tools/darknet/local_layer.c
+++ b/lib/detecter_tools/darknet/local_layer.c
@@ -1,283 +1,283 @@
-#include "local_layer.h"
-#include "utils.h"
-#include "im2col.h"
-#include "col2im.h"
-#include "blas.h"
-#include "gemm.h"
-#include <stdio.h>
-#include <time.h>
-
-int local_out_height(local_layer l)
-{
-    int h = l.h;
-    if (!l.pad) h -= l.size;
-    else h -= 1;
-    return h/l.stride + 1;
-}
-
-int local_out_width(local_layer l)
-{
-    int w = l.w;
-    if (!l.pad) w -= l.size;
-    else w -= 1;
-    return w/l.stride + 1;
-}
-
-local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
-{
-    int i;
-    local_layer l = { (LAYER_TYPE)0 };
-    l.type = LOCAL;
-
-    l.h = h;
-    l.w = w;
-    l.c = c;
-    l.n = n;
-    l.batch = batch;
-    l.stride = stride;
-    l.size = size;
-    l.pad = pad;
-
-    int out_h = local_out_height(l);
-    int out_w = local_out_width(l);
-    int locations = out_h*out_w;
-    l.out_h = out_h;
-    l.out_w = out_w;
-    l.out_c = n;
-    l.outputs = l.out_h * l.out_w * l.out_c;
-    l.inputs = l.w * l.h * l.c;
-
-    l.weights = (float*)xcalloc(c * n * size * size * locations, sizeof(float));
-    l.weight_updates = (float*)xcalloc(c * n * size * size * locations, sizeof(float));
-
-    l.biases = (float*)xcalloc(l.outputs, sizeof(float));
-    l.bias_updates = (float*)xcalloc(l.outputs, sizeof(float));
-
-    // float scale = 1./sqrt(size*size*c);
-    float scale = sqrt(2./(size*size*c));
-    for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1,1);
-
-    l.col_image = (float*)xcalloc(out_h * out_w * size * size * c, sizeof(float));
-    l.output = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float));
-    l.delta = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float));
-
-    l.forward = forward_local_layer;
-    l.backward = backward_local_layer;
-    l.update = update_local_layer;
-
-#ifdef GPU
-    l.forward_gpu = forward_local_layer_gpu;
-    l.backward_gpu = backward_local_layer_gpu;
-    l.update_gpu = update_local_layer_gpu;
-
-    l.weights_gpu = cuda_make_array(l.weights, c*n*size*size*locations);
-    l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size*locations);
-
-    l.biases_gpu = cuda_make_array(l.biases, l.outputs);
-    l.bias_updates_gpu = cuda_make_array(l.bias_updates, l.outputs);
-
-    l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
-    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
-    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
-
-#endif
-    l.activation = activation;
-
-    fprintf(stderr, "Local Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
-
-    return l;
-}
-
-void forward_local_layer(const local_layer l, network_state state)
-{
-    int out_h = local_out_height(l);
-    int out_w = local_out_width(l);
-    int i, j;
-    int locations = out_h * out_w;
-
-    for(i = 0; i < l.batch; ++i){
-        copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
-    }
-
-    for(i = 0; i < l.batch; ++i){
-        float *input = state.input + i*l.w*l.h*l.c;
-        im2col_cpu(input, l.c, l.h, l.w,
-                l.size, l.stride, l.pad, l.col_image);
-        float *output = l.output + i*l.outputs;
-        for(j = 0; j < locations; ++j){
-            float *a = l.weights + j*l.size*l.size*l.c*l.n;
-            float *b = l.col_image + j;
-            float *c = output + j;
-
-            int m = l.n;
-            int n = 1;
-            int k = l.size*l.size*l.c;
-
-            gemm(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
-        }
-    }
-    activate_array(l.output, l.outputs*l.batch, l.activation);
-}
-
-void backward_local_layer(local_layer l, network_state state)
-{
-    int i, j;
-    int locations = l.out_w*l.out_h;
-
-    gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
-
-    for(i = 0; i < l.batch; ++i){
-        axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
-    }
-
-    for(i = 0; i < l.batch; ++i){
-        float *input = state.input + i*l.w*l.h*l.c;
-        im2col_cpu(input, l.c, l.h, l.w,
-                l.size, l.stride, l.pad, l.col_image);
-
-        for(j = 0; j < locations; ++j){
-            float *a = l.delta + i*l.outputs + j;
-            float *b = l.col_image + j;
-            float *c = l.weight_updates + j*l.size*l.size*l.c*l.n;
-            int m = l.n;
-            int n = l.size*l.size*l.c;
-            int k = 1;
-
-            gemm(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
-        }
-
-        if(state.delta){
-            for(j = 0; j < locations; ++j){
-                float *a = l.weights + j*l.size*l.size*l.c*l.n;
-                float *b = l.delta + i*l.outputs + j;
-                float *c = l.col_image + j;
-
-                int m = l.size*l.size*l.c;
-                int n = 1;
-                int k = l.n;
-
-                gemm(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
-            }
-
-            col2im_cpu(l.col_image, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
-        }
-    }
-}
-
-void update_local_layer(local_layer l, int batch, float learning_rate, float momentum, float decay)
-{
-    int locations = l.out_w*l.out_h;
-    int size = l.size*l.size*l.c*l.n*locations;
-    axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
-    scal_cpu(l.outputs, momentum, l.bias_updates, 1);
-
-    axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1);
-    axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
-    scal_cpu(size, momentum, l.weight_updates, 1);
-}
-
-#ifdef GPU
-
-void forward_local_layer_gpu(const local_layer l, network_state state)
-{
-    int out_h = local_out_height(l);
-    int out_w = local_out_width(l);
-    int i, j;
-    int locations = out_h * out_w;
-
-    for(i = 0; i < l.batch; ++i){
-        copy_ongpu(l.outputs, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
-    }
-
-    for(i = 0; i < l.batch; ++i){
-        float *input = state.input + i*l.w*l.h*l.c;
-        im2col_ongpu(input, l.c, l.h, l.w,
-                l.size, l.stride, l.pad, l.col_image_gpu);
-        float *output = l.output_gpu + i*l.outputs;
-        for(j = 0; j < locations; ++j){
-            float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n;
-            float *b = l.col_image_gpu + j;
-            float *c = output + j;
-
-            int m = l.n;
-            int n = 1;
-            int k = l.size*l.size*l.c;
-
-            gemm_ongpu(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
-        }
-    }
-    activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
-}
-
-void backward_local_layer_gpu(local_layer l, network_state state)
-{
-    int i, j;
-    int locations = l.out_w*l.out_h;
-
-    gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
-    for(i = 0; i < l.batch; ++i){
-        axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
-    }
-
-    for(i = 0; i < l.batch; ++i){
-        float *input = state.input + i*l.w*l.h*l.c;
-        im2col_ongpu(input, l.c, l.h, l.w,
-                l.size, l.stride, l.pad, l.col_image_gpu);
-
-        for(j = 0; j < locations; ++j){
-            float *a = l.delta_gpu + i*l.outputs + j;
-            float *b = l.col_image_gpu + j;
-            float *c = l.weight_updates_gpu + j*l.size*l.size*l.c*l.n;
-            int m = l.n;
-            int n = l.size*l.size*l.c;
-            int k = 1;
-
-            gemm_ongpu(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
-        }
-
-        if(state.delta){
-            for(j = 0; j < locations; ++j){
-                float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n;
-                float *b = l.delta_gpu + i*l.outputs + j;
-                float *c = l.col_image_gpu + j;
-
-                int m = l.size*l.size*l.c;
-                int n = 1;
-                int k = l.n;
-
-                gemm_ongpu(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
-            }
-
-            col2im_ongpu(l.col_image_gpu, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
-        }
-    }
-}
-
-void update_local_layer_gpu(local_layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
-{
-    int locations = l.out_w*l.out_h;
-    int size = l.size*l.size*l.c*l.n*locations;
-    axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
-    scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
-
-    axpy_ongpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
-    axpy_ongpu(size, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
-    scal_ongpu(size, momentum, l.weight_updates_gpu, 1);
-}
-
-void pull_local_layer(local_layer l)
-{
-    int locations = l.out_w*l.out_h;
-    int size = l.size*l.size*l.c*l.n*locations;
-    cuda_pull_array(l.weights_gpu, l.weights, size);
-    cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
-}
-
-void push_local_layer(local_layer l)
-{
-    int locations = l.out_w*l.out_h;
-    int size = l.size*l.size*l.c*l.n*locations;
-    cuda_push_array(l.weights_gpu, l.weights, size);
-    cuda_push_array(l.biases_gpu, l.biases, l.outputs);
-}
-#endif
+#include "local_layer.h"
+#include "utils.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
+#include <stdio.h>
+#include <time.h>
+
+int local_out_height(local_layer l)
+{
+    int h = l.h;
+    if (!l.pad) h -= l.size;
+    else h -= 1;
+    return h/l.stride + 1;
+}
+
+int local_out_width(local_layer l)
+{
+    int w = l.w;
+    if (!l.pad) w -= l.size;
+    else w -= 1;
+    return w/l.stride + 1;
+}
+
+local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
+{
+    int i;
+    local_layer l = { (LAYER_TYPE)0 };
+    l.type = LOCAL;
+
+    l.h = h;
+    l.w = w;
+    l.c = c;
+    l.n = n;
+    l.batch = batch;
+    l.stride = stride;
+    l.size = size;
+    l.pad = pad;
+
+    int out_h = local_out_height(l);
+    int out_w = local_out_width(l);
+    int locations = out_h*out_w;
+    l.out_h = out_h;
+    l.out_w = out_w;
+    l.out_c = n;
+    l.outputs = l.out_h * l.out_w * l.out_c;
+    l.inputs = l.w * l.h * l.c;
+
+    l.weights = (float*)xcalloc(c * n * size * size * locations, sizeof(float));
+    l.weight_updates = (float*)xcalloc(c * n * size * size * locations, sizeof(float));
+
+    l.biases = (float*)xcalloc(l.outputs, sizeof(float));
+    l.bias_updates = (float*)xcalloc(l.outputs, sizeof(float));
+
+    // float scale = 1./sqrt(size*size*c);
+    float scale = sqrt(2./(size*size*c));
+    for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1,1);
+
+    l.col_image = (float*)xcalloc(out_h * out_w * size * size * c, sizeof(float));
+    l.output = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float));
+    l.delta = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float));
+
+    l.forward = forward_local_layer;
+    l.backward = backward_local_layer;
+    l.update = update_local_layer;
+
+#ifdef GPU
+    l.forward_gpu = forward_local_layer_gpu;
+    l.backward_gpu = backward_local_layer_gpu;
+    l.update_gpu = update_local_layer_gpu;
+
+    l.weights_gpu = cuda_make_array(l.weights, c*n*size*size*locations);
+    l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size*locations);
+
+    l.biases_gpu = cuda_make_array(l.biases, l.outputs);
+    l.bias_updates_gpu = cuda_make_array(l.bias_updates, l.outputs);
+
+    l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
+    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
+    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+
+#endif
+    l.activation = activation;
+
+    fprintf(stderr, "Local Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+
+    return l;
+}
+
+void forward_local_layer(const local_layer l, network_state state)
+{
+    int out_h = local_out_height(l);
+    int out_w = local_out_width(l);
+    int i, j;
+    int locations = out_h * out_w;
+
+    for(i = 0; i < l.batch; ++i){
+        copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
+    }
+
+    for(i = 0; i < l.batch; ++i){
+        float *input = state.input + i*l.w*l.h*l.c;
+        im2col_cpu(input, l.c, l.h, l.w,
+                l.size, l.stride, l.pad, l.col_image);
+        float *output = l.output + i*l.outputs;
+        for(j = 0; j < locations; ++j){
+            float *a = l.weights + j*l.size*l.size*l.c*l.n;
+            float *b = l.col_image + j;
+            float *c = output + j;
+
+            int m = l.n;
+            int n = 1;
+            int k = l.size*l.size*l.c;
+
+            gemm(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
+        }
+    }
+    activate_array(l.output, l.outputs*l.batch, l.activation);
+}
+
+void backward_local_layer(local_layer l, network_state state)
+{
+    int i, j;
+    int locations = l.out_w*l.out_h;
+
+    gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
+
+    for(i = 0; i < l.batch; ++i){
+        axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
+    }
+
+    for(i = 0; i < l.batch; ++i){
+        float *input = state.input + i*l.w*l.h*l.c;
+        im2col_cpu(input, l.c, l.h, l.w,
+                l.size, l.stride, l.pad, l.col_image);
+
+        for(j = 0; j < locations; ++j){
+            float *a = l.delta + i*l.outputs + j;
+            float *b = l.col_image + j;
+            float *c = l.weight_updates + j*l.size*l.size*l.c*l.n;
+            int m = l.n;
+            int n = l.size*l.size*l.c;
+            int k = 1;
+
+            gemm(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
+        }
+
+        if(state.delta){
+            for(j = 0; j < locations; ++j){
+                float *a = l.weights + j*l.size*l.size*l.c*l.n;
+                float *b = l.delta + i*l.outputs + j;
+                float *c = l.col_image + j;
+
+                int m = l.size*l.size*l.c;
+                int n = 1;
+                int k = l.n;
+
+                gemm(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
+            }
+
+            col2im_cpu(l.col_image, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
+        }
+    }
+}
+
+void update_local_layer(local_layer l, int batch, float learning_rate, float momentum, float decay)
+{
+    int locations = l.out_w*l.out_h;
+    int size = l.size*l.size*l.c*l.n*locations;
+    axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
+    scal_cpu(l.outputs, momentum, l.bias_updates, 1);
+
+    axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1);
+    axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
+    scal_cpu(size, momentum, l.weight_updates, 1);
+}
+
+#ifdef GPU
+
+void forward_local_layer_gpu(const local_layer l, network_state state)
+{
+    int out_h = local_out_height(l);
+    int out_w = local_out_width(l);
+    int i, j;
+    int locations = out_h * out_w;
+
+    for(i = 0; i < l.batch; ++i){
+        copy_ongpu(l.outputs, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
+    }
+
+    for(i = 0; i < l.batch; ++i){
+        float *input = state.input + i*l.w*l.h*l.c;
+        im2col_ongpu(input, l.c, l.h, l.w,
+                l.size, l.stride, l.pad, l.col_image_gpu);
+        float *output = l.output_gpu + i*l.outputs;
+        for(j = 0; j < locations; ++j){
+            float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n;
+            float *b = l.col_image_gpu + j;
+            float *c = output + j;
+
+            int m = l.n;
+            int n = 1;
+            int k = l.size*l.size*l.c;
+
+            gemm_ongpu(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
+        }
+    }
+    activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
+}
+
+void backward_local_layer_gpu(local_layer l, network_state state)
+{
+    int i, j;
+    int locations = l.out_w*l.out_h;
+
+    gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
+    for(i = 0; i < l.batch; ++i){
+        axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
+    }
+
+    for(i = 0; i < l.batch; ++i){
+        float *input = state.input + i*l.w*l.h*l.c;
+        im2col_ongpu(input, l.c, l.h, l.w,
+                l.size, l.stride, l.pad, l.col_image_gpu);
+
+        for(j = 0; j < locations; ++j){
+            float *a = l.delta_gpu + i*l.outputs + j;
+            float *b = l.col_image_gpu + j;
+            float *c = l.weight_updates_gpu + j*l.size*l.size*l.c*l.n;
+            int m = l.n;
+            int n = l.size*l.size*l.c;
+            int k = 1;
+
+            gemm_ongpu(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
+        }
+
+        if(state.delta){
+            for(j = 0; j < locations; ++j){
+                float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n;
+                float *b = l.delta_gpu + i*l.outputs + j;
+                float *c = l.col_image_gpu + j;
+
+                int m = l.size*l.size*l.c;
+                int n = 1;
+                int k = l.n;
+
+                gemm_ongpu(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
+            }
+
+            col2im_ongpu(l.col_image_gpu, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
+        }
+    }
+}
+
+void update_local_layer_gpu(local_layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
+{
+    int locations = l.out_w*l.out_h;
+    int size = l.size*l.size*l.c*l.n*locations;
+    axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
+    scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
+
+    axpy_ongpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
+    axpy_ongpu(size, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
+    scal_ongpu(size, momentum, l.weight_updates_gpu, 1);
+}
+
+void pull_local_layer(local_layer l)
+{
+    int locations = l.out_w*l.out_h;
+    int size = l.size*l.size*l.c*l.n*locations;
+    cuda_pull_array(l.weights_gpu, l.weights, size);
+    cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
+}
+
+void push_local_layer(local_layer l)
+{
+    int locations = l.out_w*l.out_h;
+    int size = l.size*l.size*l.c*l.n*locations;
+    cuda_push_array(l.weights_gpu, l.weights, size);
+    cuda_push_array(l.biases_gpu, l.biases, l.outputs);
+}
+#endif

--
Gitblit v1.8.0