From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/lstm_layer.c | 1292 +++++++++++++++++++++++++++++----------------------------- 1 files changed, 646 insertions(+), 646 deletions(-) diff --git a/lib/detecter_tools/darknet/lstm_layer.c b/lib/detecter_tools/darknet/lstm_layer.c index d4dc4b4..a794556 100644 --- a/lib/detecter_tools/darknet/lstm_layer.c +++ b/lib/detecter_tools/darknet/lstm_layer.c @@ -1,646 +1,646 @@ -#include "lstm_layer.h" -#include "connected_layer.h" -#include "utils.h" -#include "dark_cuda.h" -#include "blas.h" -#include "gemm.h" - -#include <math.h> -#include <stdio.h> -#include <stdlib.h> -#include <string.h> - -static void increment_layer(layer *l, int steps) -{ - int num = l->outputs*l->batch*steps; - l->output += num; - l->delta += num; - l->x += num; - l->x_norm += num; - -#ifdef GPU - l->output_gpu += num; - l->delta_gpu += num; - l->x_gpu += num; - l->x_norm_gpu += num; -#endif -} - -layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_normalize) -{ - fprintf(stderr, "LSTM Layer: %d inputs, %d outputs\n", inputs, outputs); - batch = batch / steps; - layer l = { (LAYER_TYPE)0 }; - l.batch = batch; - l.type = LSTM; - l.steps = steps; - l.inputs = inputs; - l.out_w = 1; - l.out_h = 1; - l.out_c = outputs; - - l.uf = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.uf) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); - l.uf->batch = batch; - if (l.workspace_size < l.uf->workspace_size) l.workspace_size = l.uf->workspace_size; - - l.ui = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.ui) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); - l.ui->batch = batch; - if (l.workspace_size < l.ui->workspace_size) l.workspace_size = l.ui->workspace_size; - - l.ug = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.ug) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); - l.ug->batch = batch; - if (l.workspace_size < l.ug->workspace_size) l.workspace_size = l.ug->workspace_size; - - l.uo = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.uo) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); - l.uo->batch = batch; - if (l.workspace_size < l.uo->workspace_size) l.workspace_size = l.uo->workspace_size; - - l.wf = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.wf) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); - l.wf->batch = batch; - if (l.workspace_size < l.wf->workspace_size) l.workspace_size = l.wf->workspace_size; - - l.wi = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.wi) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); - l.wi->batch = batch; - if (l.workspace_size < l.wi->workspace_size) l.workspace_size = l.wi->workspace_size; - - l.wg = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.wg) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); - l.wg->batch = batch; - if (l.workspace_size < l.wg->workspace_size) l.workspace_size = l.wg->workspace_size; - - l.wo = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.wo) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); - l.wo->batch = batch; - if (l.workspace_size < l.wo->workspace_size) l.workspace_size = l.wo->workspace_size; - - l.batch_normalize = batch_normalize; - l.outputs = outputs; - - l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float)); - l.state = (float*)xcalloc(outputs * batch, sizeof(float)); - - l.forward = forward_lstm_layer; - l.update = update_lstm_layer; - l.backward = backward_lstm_layer; - - l.prev_state_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.prev_cell_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.cell_cpu = (float*)xcalloc(batch*outputs*steps, sizeof(float)); - - l.f_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.i_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.g_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.o_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.c_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.h_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.temp_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.temp2_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.temp3_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.dc_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - l.dh_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); - -#ifdef GPU - l.forward_gpu = forward_lstm_layer_gpu; - l.backward_gpu = backward_lstm_layer_gpu; - l.update_gpu = update_lstm_layer_gpu; - - //l.state_gpu = cuda_make_array(l.state, batch*l.outputs); - - l.output_gpu = cuda_make_array(0, batch*outputs*steps); - l.delta_gpu = cuda_make_array(0, batch*l.outputs*steps); - - l.prev_state_gpu = cuda_make_array(0, batch*outputs); - l.prev_cell_gpu = cuda_make_array(0, batch*outputs); - l.cell_gpu = cuda_make_array(0, batch*outputs*steps); - - l.f_gpu = cuda_make_array(0, batch*outputs); - l.i_gpu = cuda_make_array(0, batch*outputs); - l.g_gpu = cuda_make_array(0, batch*outputs); - l.o_gpu = cuda_make_array(0, batch*outputs); - l.c_gpu = cuda_make_array(0, batch*outputs); - l.h_gpu = cuda_make_array(0, batch*outputs); - l.temp_gpu = cuda_make_array(0, batch*outputs); - l.temp2_gpu = cuda_make_array(0, batch*outputs); - l.temp3_gpu = cuda_make_array(0, batch*outputs); - l.dc_gpu = cuda_make_array(0, batch*outputs); - l.dh_gpu = cuda_make_array(0, batch*outputs); -#ifdef CUDNN - /* - cudnnSetTensor4dDescriptor(l.wf->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wf->out_c, l.wf->out_h, l.wf->out_w); - cudnnSetTensor4dDescriptor(l.wi->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wi->out_c, l.wi->out_h, l.wi->out_w); - cudnnSetTensor4dDescriptor(l.wg->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wg->out_c, l.wg->out_h, l.wg->out_w); - cudnnSetTensor4dDescriptor(l.wo->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wo->out_c, l.wo->out_h, l.wo->out_w); - - cudnnSetTensor4dDescriptor(l.uf->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.uf->out_c, l.uf->out_h, l.uf->out_w); - cudnnSetTensor4dDescriptor(l.ui->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.ui->out_c, l.ui->out_h, l.ui->out_w); - cudnnSetTensor4dDescriptor(l.ug->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.ug->out_c, l.ug->out_h, l.ug->out_w); - cudnnSetTensor4dDescriptor(l.uo->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.uo->out_c, l.uo->out_h, l.uo->out_w); - */ -#endif - -#endif - - return l; -} - -void update_lstm_layer(layer l, int batch, float learning_rate, float momentum, float decay) -{ - update_connected_layer(*(l.wf), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.wi), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.wg), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.wo), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.uf), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.ui), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.ug), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.uo), batch, learning_rate, momentum, decay); -} - -void forward_lstm_layer(layer l, network_state state) -{ - network_state s = { 0 }; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer wf = *(l.wf); - layer wi = *(l.wi); - layer wg = *(l.wg); - layer wo = *(l.wo); - - layer uf = *(l.uf); - layer ui = *(l.ui); - layer ug = *(l.ug); - layer uo = *(l.uo); - - fill_cpu(l.outputs * l.batch * l.steps, 0, wf.delta, 1); - fill_cpu(l.outputs * l.batch * l.steps, 0, wi.delta, 1); - fill_cpu(l.outputs * l.batch * l.steps, 0, wg.delta, 1); - fill_cpu(l.outputs * l.batch * l.steps, 0, wo.delta, 1); - - fill_cpu(l.outputs * l.batch * l.steps, 0, uf.delta, 1); - fill_cpu(l.outputs * l.batch * l.steps, 0, ui.delta, 1); - fill_cpu(l.outputs * l.batch * l.steps, 0, ug.delta, 1); - fill_cpu(l.outputs * l.batch * l.steps, 0, uo.delta, 1); - if (state.train) { - fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1); - } - - for (i = 0; i < l.steps; ++i) { - s.input = l.h_cpu; - forward_connected_layer(wf, s); - forward_connected_layer(wi, s); - forward_connected_layer(wg, s); - forward_connected_layer(wo, s); - - s.input = state.input; - forward_connected_layer(uf, s); - forward_connected_layer(ui, s); - forward_connected_layer(ug, s); - forward_connected_layer(uo, s); - - copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1); - - copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1); - - copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1); - - copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1); - - activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC); - activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC); - activate_array(l.g_cpu, l.outputs*l.batch, TANH); - activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC); - - copy_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1); - mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1); - mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.c_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, l.temp_cpu, 1, l.c_cpu, 1); - - copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.h_cpu, 1); - activate_array(l.h_cpu, l.outputs*l.batch, TANH); - mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.h_cpu, 1); - - copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.cell_cpu, 1); - copy_cpu(l.outputs*l.batch, l.h_cpu, 1, l.output, 1); - - state.input += l.inputs*l.batch; - l.output += l.outputs*l.batch; - l.cell_cpu += l.outputs*l.batch; - - increment_layer(&wf, 1); - increment_layer(&wi, 1); - increment_layer(&wg, 1); - increment_layer(&wo, 1); - - increment_layer(&uf, 1); - increment_layer(&ui, 1); - increment_layer(&ug, 1); - increment_layer(&uo, 1); - } -} - -void backward_lstm_layer(layer l, network_state state) -{ - network_state s = { 0 }; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer wf = *(l.wf); - layer wi = *(l.wi); - layer wg = *(l.wg); - layer wo = *(l.wo); - - layer uf = *(l.uf); - layer ui = *(l.ui); - layer ug = *(l.ug); - layer uo = *(l.uo); - - increment_layer(&wf, l.steps - 1); - increment_layer(&wi, l.steps - 1); - increment_layer(&wg, l.steps - 1); - increment_layer(&wo, l.steps - 1); - - increment_layer(&uf, l.steps - 1); - increment_layer(&ui, l.steps - 1); - increment_layer(&ug, l.steps - 1); - increment_layer(&uo, l.steps - 1); - - state.input += l.inputs*l.batch*(l.steps - 1); - if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1); - - l.output += l.outputs*l.batch*(l.steps - 1); - l.cell_cpu += l.outputs*l.batch*(l.steps - 1); - l.delta += l.outputs*l.batch*(l.steps - 1); - - for (i = l.steps - 1; i >= 0; --i) { - if (i != 0) copy_cpu(l.outputs*l.batch, l.cell_cpu - l.outputs*l.batch, 1, l.prev_cell_cpu, 1); - copy_cpu(l.outputs*l.batch, l.cell_cpu, 1, l.c_cpu, 1); - if (i != 0) copy_cpu(l.outputs*l.batch, l.output - l.outputs*l.batch, 1, l.prev_state_cpu, 1); - copy_cpu(l.outputs*l.batch, l.output, 1, l.h_cpu, 1); - - l.dh_cpu = (i == 0) ? 0 : l.delta - l.outputs*l.batch; - - copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1); - - copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1); - - copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1); - - copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1); - axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1); - - activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC); - activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC); - activate_array(l.g_cpu, l.outputs*l.batch, TANH); - activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC); - - copy_cpu(l.outputs*l.batch, l.delta, 1, l.temp3_cpu, 1); - - copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1); - activate_array(l.temp_cpu, l.outputs*l.batch, TANH); - - copy_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp2_cpu, 1); - mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.temp2_cpu, 1); - - gradient_array(l.temp_cpu, l.outputs*l.batch, TANH, l.temp2_cpu); - axpy_cpu(l.outputs*l.batch, 1, l.dc_cpu, 1, l.temp2_cpu, 1); - - copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1); - activate_array(l.temp_cpu, l.outputs*l.batch, TANH); - mul_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp_cpu, 1); - gradient_array(l.o_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); - copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wo.delta, 1); - s.input = l.prev_state_cpu; - s.delta = l.dh_cpu; - backward_connected_layer(wo, s); - - copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uo.delta, 1); - s.input = state.input; - s.delta = state.delta; - backward_connected_layer(uo, s); - - copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); - mul_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1); - gradient_array(l.g_cpu, l.outputs*l.batch, TANH, l.temp_cpu); - copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wg.delta, 1); - s.input = l.prev_state_cpu; - s.delta = l.dh_cpu; - backward_connected_layer(wg, s); - - copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ug.delta, 1); - s.input = state.input; - s.delta = state.delta; - backward_connected_layer(ug, s); - - copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); - mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1); - gradient_array(l.i_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); - copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wi.delta, 1); - s.input = l.prev_state_cpu; - s.delta = l.dh_cpu; - backward_connected_layer(wi, s); - - copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ui.delta, 1); - s.input = state.input; - s.delta = state.delta; - backward_connected_layer(ui, s); - - copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); - mul_cpu(l.outputs*l.batch, l.prev_cell_cpu, 1, l.temp_cpu, 1); - gradient_array(l.f_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); - copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wf.delta, 1); - s.input = l.prev_state_cpu; - s.delta = l.dh_cpu; - backward_connected_layer(wf, s); - - copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uf.delta, 1); - s.input = state.input; - s.delta = state.delta; - backward_connected_layer(uf, s); - - copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); - mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.temp_cpu, 1); - copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, l.dc_cpu, 1); - - state.input -= l.inputs*l.batch; - if (state.delta) state.delta -= l.inputs*l.batch; - l.output -= l.outputs*l.batch; - l.cell_cpu -= l.outputs*l.batch; - l.delta -= l.outputs*l.batch; - - increment_layer(&wf, -1); - increment_layer(&wi, -1); - increment_layer(&wg, -1); - increment_layer(&wo, -1); - - increment_layer(&uf, -1); - increment_layer(&ui, -1); - increment_layer(&ug, -1); - increment_layer(&uo, -1); - } -} - -#ifdef GPU -void update_lstm_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) -{ - update_connected_layer_gpu(*(l.wf), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.wi), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.wg), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.wo), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.uf), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.ui), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.ug), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.uo), batch, learning_rate, momentum, decay, loss_scale); -} - -void forward_lstm_layer_gpu(layer l, network_state state) -{ - network_state s = { 0 }; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer wf = *(l.wf); - layer wi = *(l.wi); - layer wg = *(l.wg); - layer wo = *(l.wo); - - layer uf = *(l.uf); - layer ui = *(l.ui); - layer ug = *(l.ug); - layer uo = *(l.uo); - - fill_ongpu(l.outputs * l.batch * l.steps, 0, wf.delta_gpu, 1); - fill_ongpu(l.outputs * l.batch * l.steps, 0, wi.delta_gpu, 1); - fill_ongpu(l.outputs * l.batch * l.steps, 0, wg.delta_gpu, 1); - fill_ongpu(l.outputs * l.batch * l.steps, 0, wo.delta_gpu, 1); - - fill_ongpu(l.outputs * l.batch * l.steps, 0, uf.delta_gpu, 1); - fill_ongpu(l.outputs * l.batch * l.steps, 0, ui.delta_gpu, 1); - fill_ongpu(l.outputs * l.batch * l.steps, 0, ug.delta_gpu, 1); - fill_ongpu(l.outputs * l.batch * l.steps, 0, uo.delta_gpu, 1); - if (state.train) { - fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); - } - - for (i = 0; i < l.steps; ++i) { - s.input = l.h_gpu; - forward_connected_layer_gpu(wf, s); - forward_connected_layer_gpu(wi, s); - forward_connected_layer_gpu(wg, s); - forward_connected_layer_gpu(wo, s); - - s.input = state.input; - forward_connected_layer_gpu(uf, s); - forward_connected_layer_gpu(ui, s); - forward_connected_layer_gpu(ug, s); - forward_connected_layer_gpu(uo, s); - - copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1); - - copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1); - - copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1); - - copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1); - - activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC); - activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC); - activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH); - activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC); - - copy_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1); - mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1); - mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.c_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, l.temp_gpu, 1, l.c_gpu, 1); - - copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.h_gpu, 1); - activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); - mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.h_gpu, 1); - - copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.cell_gpu, 1); - copy_ongpu(l.outputs*l.batch, l.h_gpu, 1, l.output_gpu, 1); - - state.input += l.inputs*l.batch; - l.output_gpu += l.outputs*l.batch; - l.cell_gpu += l.outputs*l.batch; - - increment_layer(&wf, 1); - increment_layer(&wi, 1); - increment_layer(&wg, 1); - increment_layer(&wo, 1); - - increment_layer(&uf, 1); - increment_layer(&ui, 1); - increment_layer(&ug, 1); - increment_layer(&uo, 1); - } -} - -void backward_lstm_layer_gpu(layer l, network_state state) -{ - network_state s = { 0 }; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer wf = *(l.wf); - layer wi = *(l.wi); - layer wg = *(l.wg); - layer wo = *(l.wo); - - layer uf = *(l.uf); - layer ui = *(l.ui); - layer ug = *(l.ug); - layer uo = *(l.uo); - - increment_layer(&wf, l.steps - 1); - increment_layer(&wi, l.steps - 1); - increment_layer(&wg, l.steps - 1); - increment_layer(&wo, l.steps - 1); - - increment_layer(&uf, l.steps - 1); - increment_layer(&ui, l.steps - 1); - increment_layer(&ug, l.steps - 1); - increment_layer(&uo, l.steps - 1); - - state.input += l.inputs*l.batch*(l.steps - 1); - if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1); - - l.output_gpu += l.outputs*l.batch*(l.steps - 1); - l.cell_gpu += l.outputs*l.batch*(l.steps - 1); - l.delta_gpu += l.outputs*l.batch*(l.steps - 1); - - for (i = l.steps - 1; i >= 0; --i) { - if (i != 0) copy_ongpu(l.outputs*l.batch, l.cell_gpu - l.outputs*l.batch, 1, l.prev_cell_gpu, 1); - copy_ongpu(l.outputs*l.batch, l.cell_gpu, 1, l.c_gpu, 1); - if (i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1); - copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.h_gpu, 1); - - l.dh_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; - - copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1); - - copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1); - - copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1); - - copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1); - axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1); - - activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC); - activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC); - activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH); - activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC); - - copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, l.temp3_gpu, 1); - - copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.temp_gpu, 1); - activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); - - copy_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp2_gpu, 1); - mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.temp2_gpu, 1); - - gradient_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH, l.temp2_gpu); - axpy_ongpu(l.outputs*l.batch, 1, l.dc_gpu, 1, l.temp2_gpu, 1); - - copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.temp_gpu, 1); - activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); - mul_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp_gpu, 1); - gradient_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); - copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wo.delta_gpu, 1); - s.input = l.prev_state_gpu; - s.delta = l.dh_gpu; - backward_connected_layer_gpu(wo, s); - - copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, uo.delta_gpu, 1); - s.input = state.input; - s.delta = state.delta; - backward_connected_layer_gpu(uo, s); - - copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); - mul_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1); - gradient_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH, l.temp_gpu); - copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wg.delta_gpu, 1); - s.input = l.prev_state_gpu; - s.delta = l.dh_gpu; - backward_connected_layer_gpu(wg, s); - - copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, ug.delta_gpu, 1); - s.input = state.input; - s.delta = state.delta; - backward_connected_layer_gpu(ug, s); - - copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); - mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1); - gradient_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); - copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wi.delta_gpu, 1); - s.input = l.prev_state_gpu; - s.delta = l.dh_gpu; - backward_connected_layer_gpu(wi, s); - - copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, ui.delta_gpu, 1); - s.input = state.input; - s.delta = state.delta; - backward_connected_layer_gpu(ui, s); - - copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); - mul_ongpu(l.outputs*l.batch, l.prev_cell_gpu, 1, l.temp_gpu, 1); - gradient_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); - copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wf.delta_gpu, 1); - s.input = l.prev_state_gpu; - s.delta = l.dh_gpu; - backward_connected_layer_gpu(wf, s); - - copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, uf.delta_gpu, 1); - s.input = state.input; - s.delta = state.delta; - backward_connected_layer_gpu(uf, s); - - copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); - mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.temp_gpu, 1); - copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, l.dc_gpu, 1); - - state.input -= l.inputs*l.batch; - if (state.delta) state.delta -= l.inputs*l.batch; - l.output_gpu -= l.outputs*l.batch; - l.cell_gpu -= l.outputs*l.batch; - l.delta_gpu -= l.outputs*l.batch; - - increment_layer(&wf, -1); - increment_layer(&wi, -1); - increment_layer(&wg, -1); - increment_layer(&wo, -1); - - increment_layer(&uf, -1); - increment_layer(&ui, -1); - increment_layer(&ug, -1); - increment_layer(&uo, -1); - } -} -#endif +#include "lstm_layer.h" +#include "connected_layer.h" +#include "utils.h" +#include "dark_cuda.h" +#include "blas.h" +#include "gemm.h" + +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +static void increment_layer(layer *l, int steps) +{ + int num = l->outputs*l->batch*steps; + l->output += num; + l->delta += num; + l->x += num; + l->x_norm += num; + +#ifdef GPU + l->output_gpu += num; + l->delta_gpu += num; + l->x_gpu += num; + l->x_norm_gpu += num; +#endif +} + +layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_normalize) +{ + fprintf(stderr, "LSTM Layer: %d inputs, %d outputs\n", inputs, outputs); + batch = batch / steps; + layer l = { (LAYER_TYPE)0 }; + l.batch = batch; + l.type = LSTM; + l.steps = steps; + l.inputs = inputs; + l.out_w = 1; + l.out_h = 1; + l.out_c = outputs; + + l.uf = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.uf) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); + l.uf->batch = batch; + if (l.workspace_size < l.uf->workspace_size) l.workspace_size = l.uf->workspace_size; + + l.ui = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.ui) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); + l.ui->batch = batch; + if (l.workspace_size < l.ui->workspace_size) l.workspace_size = l.ui->workspace_size; + + l.ug = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.ug) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); + l.ug->batch = batch; + if (l.workspace_size < l.ug->workspace_size) l.workspace_size = l.ug->workspace_size; + + l.uo = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.uo) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); + l.uo->batch = batch; + if (l.workspace_size < l.uo->workspace_size) l.workspace_size = l.uo->workspace_size; + + l.wf = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.wf) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); + l.wf->batch = batch; + if (l.workspace_size < l.wf->workspace_size) l.workspace_size = l.wf->workspace_size; + + l.wi = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.wi) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); + l.wi->batch = batch; + if (l.workspace_size < l.wi->workspace_size) l.workspace_size = l.wi->workspace_size; + + l.wg = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.wg) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); + l.wg->batch = batch; + if (l.workspace_size < l.wg->workspace_size) l.workspace_size = l.wg->workspace_size; + + l.wo = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.wo) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); + l.wo->batch = batch; + if (l.workspace_size < l.wo->workspace_size) l.workspace_size = l.wo->workspace_size; + + l.batch_normalize = batch_normalize; + l.outputs = outputs; + + l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float)); + l.state = (float*)xcalloc(outputs * batch, sizeof(float)); + + l.forward = forward_lstm_layer; + l.update = update_lstm_layer; + l.backward = backward_lstm_layer; + + l.prev_state_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.prev_cell_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.cell_cpu = (float*)xcalloc(batch*outputs*steps, sizeof(float)); + + l.f_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.i_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.g_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.o_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.c_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.h_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.temp_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.temp2_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.temp3_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.dc_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + l.dh_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); + +#ifdef GPU + l.forward_gpu = forward_lstm_layer_gpu; + l.backward_gpu = backward_lstm_layer_gpu; + l.update_gpu = update_lstm_layer_gpu; + + //l.state_gpu = cuda_make_array(l.state, batch*l.outputs); + + l.output_gpu = cuda_make_array(0, batch*outputs*steps); + l.delta_gpu = cuda_make_array(0, batch*l.outputs*steps); + + l.prev_state_gpu = cuda_make_array(0, batch*outputs); + l.prev_cell_gpu = cuda_make_array(0, batch*outputs); + l.cell_gpu = cuda_make_array(0, batch*outputs*steps); + + l.f_gpu = cuda_make_array(0, batch*outputs); + l.i_gpu = cuda_make_array(0, batch*outputs); + l.g_gpu = cuda_make_array(0, batch*outputs); + l.o_gpu = cuda_make_array(0, batch*outputs); + l.c_gpu = cuda_make_array(0, batch*outputs); + l.h_gpu = cuda_make_array(0, batch*outputs); + l.temp_gpu = cuda_make_array(0, batch*outputs); + l.temp2_gpu = cuda_make_array(0, batch*outputs); + l.temp3_gpu = cuda_make_array(0, batch*outputs); + l.dc_gpu = cuda_make_array(0, batch*outputs); + l.dh_gpu = cuda_make_array(0, batch*outputs); +#ifdef CUDNN + /* + cudnnSetTensor4dDescriptor(l.wf->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wf->out_c, l.wf->out_h, l.wf->out_w); + cudnnSetTensor4dDescriptor(l.wi->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wi->out_c, l.wi->out_h, l.wi->out_w); + cudnnSetTensor4dDescriptor(l.wg->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wg->out_c, l.wg->out_h, l.wg->out_w); + cudnnSetTensor4dDescriptor(l.wo->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wo->out_c, l.wo->out_h, l.wo->out_w); + + cudnnSetTensor4dDescriptor(l.uf->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.uf->out_c, l.uf->out_h, l.uf->out_w); + cudnnSetTensor4dDescriptor(l.ui->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.ui->out_c, l.ui->out_h, l.ui->out_w); + cudnnSetTensor4dDescriptor(l.ug->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.ug->out_c, l.ug->out_h, l.ug->out_w); + cudnnSetTensor4dDescriptor(l.uo->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.uo->out_c, l.uo->out_h, l.uo->out_w); + */ +#endif + +#endif + + return l; +} + +void update_lstm_layer(layer l, int batch, float learning_rate, float momentum, float decay) +{ + update_connected_layer(*(l.wf), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.wi), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.wg), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.wo), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.uf), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.ui), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.ug), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.uo), batch, learning_rate, momentum, decay); +} + +void forward_lstm_layer(layer l, network_state state) +{ + network_state s = { 0 }; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer wf = *(l.wf); + layer wi = *(l.wi); + layer wg = *(l.wg); + layer wo = *(l.wo); + + layer uf = *(l.uf); + layer ui = *(l.ui); + layer ug = *(l.ug); + layer uo = *(l.uo); + + fill_cpu(l.outputs * l.batch * l.steps, 0, wf.delta, 1); + fill_cpu(l.outputs * l.batch * l.steps, 0, wi.delta, 1); + fill_cpu(l.outputs * l.batch * l.steps, 0, wg.delta, 1); + fill_cpu(l.outputs * l.batch * l.steps, 0, wo.delta, 1); + + fill_cpu(l.outputs * l.batch * l.steps, 0, uf.delta, 1); + fill_cpu(l.outputs * l.batch * l.steps, 0, ui.delta, 1); + fill_cpu(l.outputs * l.batch * l.steps, 0, ug.delta, 1); + fill_cpu(l.outputs * l.batch * l.steps, 0, uo.delta, 1); + if (state.train) { + fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1); + } + + for (i = 0; i < l.steps; ++i) { + s.input = l.h_cpu; + forward_connected_layer(wf, s); + forward_connected_layer(wi, s); + forward_connected_layer(wg, s); + forward_connected_layer(wo, s); + + s.input = state.input; + forward_connected_layer(uf, s); + forward_connected_layer(ui, s); + forward_connected_layer(ug, s); + forward_connected_layer(uo, s); + + copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1); + + copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1); + + copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1); + + copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1); + + activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC); + activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC); + activate_array(l.g_cpu, l.outputs*l.batch, TANH); + activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC); + + copy_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1); + mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1); + mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.c_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, l.temp_cpu, 1, l.c_cpu, 1); + + copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.h_cpu, 1); + activate_array(l.h_cpu, l.outputs*l.batch, TANH); + mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.h_cpu, 1); + + copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.cell_cpu, 1); + copy_cpu(l.outputs*l.batch, l.h_cpu, 1, l.output, 1); + + state.input += l.inputs*l.batch; + l.output += l.outputs*l.batch; + l.cell_cpu += l.outputs*l.batch; + + increment_layer(&wf, 1); + increment_layer(&wi, 1); + increment_layer(&wg, 1); + increment_layer(&wo, 1); + + increment_layer(&uf, 1); + increment_layer(&ui, 1); + increment_layer(&ug, 1); + increment_layer(&uo, 1); + } +} + +void backward_lstm_layer(layer l, network_state state) +{ + network_state s = { 0 }; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer wf = *(l.wf); + layer wi = *(l.wi); + layer wg = *(l.wg); + layer wo = *(l.wo); + + layer uf = *(l.uf); + layer ui = *(l.ui); + layer ug = *(l.ug); + layer uo = *(l.uo); + + increment_layer(&wf, l.steps - 1); + increment_layer(&wi, l.steps - 1); + increment_layer(&wg, l.steps - 1); + increment_layer(&wo, l.steps - 1); + + increment_layer(&uf, l.steps - 1); + increment_layer(&ui, l.steps - 1); + increment_layer(&ug, l.steps - 1); + increment_layer(&uo, l.steps - 1); + + state.input += l.inputs*l.batch*(l.steps - 1); + if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1); + + l.output += l.outputs*l.batch*(l.steps - 1); + l.cell_cpu += l.outputs*l.batch*(l.steps - 1); + l.delta += l.outputs*l.batch*(l.steps - 1); + + for (i = l.steps - 1; i >= 0; --i) { + if (i != 0) copy_cpu(l.outputs*l.batch, l.cell_cpu - l.outputs*l.batch, 1, l.prev_cell_cpu, 1); + copy_cpu(l.outputs*l.batch, l.cell_cpu, 1, l.c_cpu, 1); + if (i != 0) copy_cpu(l.outputs*l.batch, l.output - l.outputs*l.batch, 1, l.prev_state_cpu, 1); + copy_cpu(l.outputs*l.batch, l.output, 1, l.h_cpu, 1); + + l.dh_cpu = (i == 0) ? 0 : l.delta - l.outputs*l.batch; + + copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1); + + copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1); + + copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1); + + copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1); + axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1); + + activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC); + activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC); + activate_array(l.g_cpu, l.outputs*l.batch, TANH); + activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC); + + copy_cpu(l.outputs*l.batch, l.delta, 1, l.temp3_cpu, 1); + + copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1); + activate_array(l.temp_cpu, l.outputs*l.batch, TANH); + + copy_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp2_cpu, 1); + mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.temp2_cpu, 1); + + gradient_array(l.temp_cpu, l.outputs*l.batch, TANH, l.temp2_cpu); + axpy_cpu(l.outputs*l.batch, 1, l.dc_cpu, 1, l.temp2_cpu, 1); + + copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1); + activate_array(l.temp_cpu, l.outputs*l.batch, TANH); + mul_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp_cpu, 1); + gradient_array(l.o_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); + copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wo.delta, 1); + s.input = l.prev_state_cpu; + s.delta = l.dh_cpu; + backward_connected_layer(wo, s); + + copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uo.delta, 1); + s.input = state.input; + s.delta = state.delta; + backward_connected_layer(uo, s); + + copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); + mul_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1); + gradient_array(l.g_cpu, l.outputs*l.batch, TANH, l.temp_cpu); + copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wg.delta, 1); + s.input = l.prev_state_cpu; + s.delta = l.dh_cpu; + backward_connected_layer(wg, s); + + copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ug.delta, 1); + s.input = state.input; + s.delta = state.delta; + backward_connected_layer(ug, s); + + copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); + mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1); + gradient_array(l.i_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); + copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wi.delta, 1); + s.input = l.prev_state_cpu; + s.delta = l.dh_cpu; + backward_connected_layer(wi, s); + + copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ui.delta, 1); + s.input = state.input; + s.delta = state.delta; + backward_connected_layer(ui, s); + + copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); + mul_cpu(l.outputs*l.batch, l.prev_cell_cpu, 1, l.temp_cpu, 1); + gradient_array(l.f_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); + copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wf.delta, 1); + s.input = l.prev_state_cpu; + s.delta = l.dh_cpu; + backward_connected_layer(wf, s); + + copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uf.delta, 1); + s.input = state.input; + s.delta = state.delta; + backward_connected_layer(uf, s); + + copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); + mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.temp_cpu, 1); + copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, l.dc_cpu, 1); + + state.input -= l.inputs*l.batch; + if (state.delta) state.delta -= l.inputs*l.batch; + l.output -= l.outputs*l.batch; + l.cell_cpu -= l.outputs*l.batch; + l.delta -= l.outputs*l.batch; + + increment_layer(&wf, -1); + increment_layer(&wi, -1); + increment_layer(&wg, -1); + increment_layer(&wo, -1); + + increment_layer(&uf, -1); + increment_layer(&ui, -1); + increment_layer(&ug, -1); + increment_layer(&uo, -1); + } +} + +#ifdef GPU +void update_lstm_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) +{ + update_connected_layer_gpu(*(l.wf), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.wi), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.wg), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.wo), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.uf), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.ui), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.ug), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.uo), batch, learning_rate, momentum, decay, loss_scale); +} + +void forward_lstm_layer_gpu(layer l, network_state state) +{ + network_state s = { 0 }; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer wf = *(l.wf); + layer wi = *(l.wi); + layer wg = *(l.wg); + layer wo = *(l.wo); + + layer uf = *(l.uf); + layer ui = *(l.ui); + layer ug = *(l.ug); + layer uo = *(l.uo); + + fill_ongpu(l.outputs * l.batch * l.steps, 0, wf.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, wi.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, wg.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, wo.delta_gpu, 1); + + fill_ongpu(l.outputs * l.batch * l.steps, 0, uf.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, ui.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, ug.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, uo.delta_gpu, 1); + if (state.train) { + fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); + } + + for (i = 0; i < l.steps; ++i) { + s.input = l.h_gpu; + forward_connected_layer_gpu(wf, s); + forward_connected_layer_gpu(wi, s); + forward_connected_layer_gpu(wg, s); + forward_connected_layer_gpu(wo, s); + + s.input = state.input; + forward_connected_layer_gpu(uf, s); + forward_connected_layer_gpu(ui, s); + forward_connected_layer_gpu(ug, s); + forward_connected_layer_gpu(uo, s); + + copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1); + + copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1); + + copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1); + + copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1); + + activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC); + activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC); + activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH); + activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC); + + copy_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.c_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, l.temp_gpu, 1, l.c_gpu, 1); + + copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.h_gpu, 1); + activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); + mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.h_gpu, 1); + + copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.cell_gpu, 1); + copy_ongpu(l.outputs*l.batch, l.h_gpu, 1, l.output_gpu, 1); + + state.input += l.inputs*l.batch; + l.output_gpu += l.outputs*l.batch; + l.cell_gpu += l.outputs*l.batch; + + increment_layer(&wf, 1); + increment_layer(&wi, 1); + increment_layer(&wg, 1); + increment_layer(&wo, 1); + + increment_layer(&uf, 1); + increment_layer(&ui, 1); + increment_layer(&ug, 1); + increment_layer(&uo, 1); + } +} + +void backward_lstm_layer_gpu(layer l, network_state state) +{ + network_state s = { 0 }; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer wf = *(l.wf); + layer wi = *(l.wi); + layer wg = *(l.wg); + layer wo = *(l.wo); + + layer uf = *(l.uf); + layer ui = *(l.ui); + layer ug = *(l.ug); + layer uo = *(l.uo); + + increment_layer(&wf, l.steps - 1); + increment_layer(&wi, l.steps - 1); + increment_layer(&wg, l.steps - 1); + increment_layer(&wo, l.steps - 1); + + increment_layer(&uf, l.steps - 1); + increment_layer(&ui, l.steps - 1); + increment_layer(&ug, l.steps - 1); + increment_layer(&uo, l.steps - 1); + + state.input += l.inputs*l.batch*(l.steps - 1); + if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1); + + l.output_gpu += l.outputs*l.batch*(l.steps - 1); + l.cell_gpu += l.outputs*l.batch*(l.steps - 1); + l.delta_gpu += l.outputs*l.batch*(l.steps - 1); + + for (i = l.steps - 1; i >= 0; --i) { + if (i != 0) copy_ongpu(l.outputs*l.batch, l.cell_gpu - l.outputs*l.batch, 1, l.prev_cell_gpu, 1); + copy_ongpu(l.outputs*l.batch, l.cell_gpu, 1, l.c_gpu, 1); + if (i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1); + copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.h_gpu, 1); + + l.dh_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; + + copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1); + + copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1); + + copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1); + + copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1); + + activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC); + activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC); + activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH); + activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC); + + copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, l.temp3_gpu, 1); + + copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.temp_gpu, 1); + activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); + + copy_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp2_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.temp2_gpu, 1); + + gradient_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH, l.temp2_gpu); + axpy_ongpu(l.outputs*l.batch, 1, l.dc_gpu, 1, l.temp2_gpu, 1); + + copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.temp_gpu, 1); + activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); + mul_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp_gpu, 1); + gradient_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); + copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wo.delta_gpu, 1); + s.input = l.prev_state_gpu; + s.delta = l.dh_gpu; + backward_connected_layer_gpu(wo, s); + + copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, uo.delta_gpu, 1); + s.input = state.input; + s.delta = state.delta; + backward_connected_layer_gpu(uo, s); + + copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1); + gradient_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH, l.temp_gpu); + copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wg.delta_gpu, 1); + s.input = l.prev_state_gpu; + s.delta = l.dh_gpu; + backward_connected_layer_gpu(wg, s); + + copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, ug.delta_gpu, 1); + s.input = state.input; + s.delta = state.delta; + backward_connected_layer_gpu(ug, s); + + copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1); + gradient_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); + copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wi.delta_gpu, 1); + s.input = l.prev_state_gpu; + s.delta = l.dh_gpu; + backward_connected_layer_gpu(wi, s); + + copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, ui.delta_gpu, 1); + s.input = state.input; + s.delta = state.delta; + backward_connected_layer_gpu(ui, s); + + copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.prev_cell_gpu, 1, l.temp_gpu, 1); + gradient_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); + copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wf.delta_gpu, 1); + s.input = l.prev_state_gpu; + s.delta = l.dh_gpu; + backward_connected_layer_gpu(wf, s); + + copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, uf.delta_gpu, 1); + s.input = state.input; + s.delta = state.delta; + backward_connected_layer_gpu(uf, s); + + copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.temp_gpu, 1); + copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, l.dc_gpu, 1); + + state.input -= l.inputs*l.batch; + if (state.delta) state.delta -= l.inputs*l.batch; + l.output_gpu -= l.outputs*l.batch; + l.cell_gpu -= l.outputs*l.batch; + l.delta_gpu -= l.outputs*l.batch; + + increment_layer(&wf, -1); + increment_layer(&wi, -1); + increment_layer(&wg, -1); + increment_layer(&wo, -1); + + increment_layer(&uf, -1); + increment_layer(&ui, -1); + increment_layer(&ug, -1); + increment_layer(&uo, -1); + } +} +#endif -- Gitblit v1.8.0