From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/network_kernels.cu | 1411 ++++++++++++++++++++++++++++++----------------------------
 1 files changed, 734 insertions(+), 677 deletions(-)

diff --git a/lib/detecter_tools/darknet/network_kernels.cu b/lib/detecter_tools/darknet/network_kernels.cu
index d2049eb..f25e39a 100644
--- a/lib/detecter_tools/darknet/network_kernels.cu
+++ b/lib/detecter_tools/darknet/network_kernels.cu
@@ -1,677 +1,734 @@
-#include "dark_cuda.h"
-
-#include <stdio.h>
-#include <time.h>
-#include <assert.h>
-
-#include "network.h"
-#include "image.h"
-#include "data.h"
-#include "utils.h"
-#include "parser.h"
-
-#include "crop_layer.h"
-#include "connected_layer.h"
-#include "rnn_layer.h"
-#include "gru_layer.h"
-#include "crnn_layer.h"
-#include "detection_layer.h"
-#include "region_layer.h"
-#include "convolutional_layer.h"
-#include "activation_layer.h"
-#include "maxpool_layer.h"
-#include "reorg_layer.h"
-#include "avgpool_layer.h"
-#include "normalization_layer.h"
-#include "batchnorm_layer.h"
-#include "cost_layer.h"
-#include "local_layer.h"
-#include "softmax_layer.h"
-#include "dropout_layer.h"
-#include "route_layer.h"
-#include "shortcut_layer.h"
-#include "blas.h"
-
-//#ifdef OPENCV
-//#include <opencv2/highgui/highgui_c.h>
-//#endif
-
-#include "http_stream.h"
-
-float * get_network_output_gpu_layer(network net, int i);
-float * get_network_delta_gpu_layer(network net, int i);
-float * get_network_output_gpu(network net);
-
-typedef struct time_benchmark_layers {
-    float time;
-    int layer_id, layer_type;
-} time_benchmark_layers;
-
-int time_comparator(const void *pa, const void *pb)
-{
-    time_benchmark_layers a = *(time_benchmark_layers *)pa;
-    time_benchmark_layers b = *(time_benchmark_layers *)pb;
-    float diff = a.time - b.time;
-    if (diff < 0) return 1;
-    else if (diff > 0) return -1;
-    return 0;
-}
-
-void forward_network_gpu(network net, network_state state)
-{
-    static time_benchmark_layers *avg_time_per_layer = NULL;
-    static time_benchmark_layers *sorted_avg_time_per_layer = NULL;
-    double start_time, end_time;
-    if (net.benchmark_layers) {
-        if (!avg_time_per_layer) {
-            avg_time_per_layer = (time_benchmark_layers *)calloc(net.n, sizeof(time_benchmark_layers));
-            sorted_avg_time_per_layer = (time_benchmark_layers *)calloc(net.n, sizeof(time_benchmark_layers));
-        }
-        cudaDeviceSynchronize();
-    }
-
-    //printf("\n");
-    state.workspace = net.workspace;
-    int i;
-    for(i = 0; i < net.n; ++i){
-        state.index = i;
-        layer l = net.layers[i];
-        if(l.delta_gpu && state.train){
-            fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
-        }
-
-        if (net.benchmark_layers) {
-            start_time = get_time_point();
-        }
-
-        l.forward_gpu(l, state);
-
-        if (net.benchmark_layers) {
-            CHECK_CUDA(cudaDeviceSynchronize());
-            end_time = get_time_point();
-            const double took_time = (end_time - start_time) / 1000;
-            const double alpha = 0.9;
-            if (avg_time_per_layer[i].time == 0) {
-                avg_time_per_layer[i].layer_id = i;
-                avg_time_per_layer[i].layer_type = l.type;
-                avg_time_per_layer[i].time = took_time;
-            }
-            else avg_time_per_layer[i].time = avg_time_per_layer[i].time * alpha + took_time * (1 - alpha);
-
-            sorted_avg_time_per_layer[i] = avg_time_per_layer[i];
-            printf("\n fw-layer %d - type: %d - %lf ms - avg_time %lf ms \n", i, l.type, took_time, avg_time_per_layer[i].time);
-        }
-
-        if(net.wait_stream)
-            cudaStreamSynchronize(get_cuda_stream());
-        state.input = l.output_gpu;
-        //cudaDeviceSynchronize();
-
-        /*
-        cuda_pull_array(l.output_gpu, l.output, l.outputs);
-        cudaStreamSynchronize(get_cuda_stream());
-        float avg_val = 0;
-        int k;
-        for (k = 0; k < l.outputs; ++k) avg_val += l.output[k];
-        printf(" i: %d - avg_val = %f \n", i, avg_val / l.outputs);
-        */
-
-/*
-        cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
-        if (l.out_w >= 0 && l.out_h >= 1 && l.c >= 3) {
-            int j;
-            for (j = 0; j < l.out_c; ++j) {
-                image img = make_image(l.out_w, l.out_h, 3);
-                memcpy(img.data, l.output + l.out_w*l.out_h*j, l.out_w*l.out_h * 1 * sizeof(float));
-                memcpy(img.data + l.out_w*l.out_h * 1, l.output + l.out_w*l.out_h*j, l.out_w*l.out_h * 1 * sizeof(float));
-                memcpy(img.data + l.out_w*l.out_h * 2, l.output + l.out_w*l.out_h*j, l.out_w*l.out_h * 1 * sizeof(float));
-                char buff[256];
-                sprintf(buff, "layer-%d slice-%d", i, j);
-                show_image(img, buff);
-                save_image(img, buff);
-            }
-            cvWaitKey(0); // wait press-key in console
-            cvDestroyAllWindows();
-        }
-*/
-    }
-
-    if (net.benchmark_layers) {
-        printf("\n\nSorted by time (forward):\n");
-        qsort(sorted_avg_time_per_layer, net.n, sizeof(time_benchmark_layers), time_comparator);
-        for (i = 0; i < net.n; ++i) {
-            //printf("layer %d - type: %d - avg_time %lf ms \n", avg_time_per_layer[i].layer_id, avg_time_per_layer[i].layer_type, avg_time_per_layer[i].time);
-            printf("%d - fw-sort-layer %d - type: %d - avg_time %lf ms \n", i, sorted_avg_time_per_layer[i].layer_id, sorted_avg_time_per_layer[i].layer_type, sorted_avg_time_per_layer[i].time);
-        }
-    }
-
-    //cudaStreamSynchronize(get_cuda_stream());   // sync CUDA-functions
-    //cudaDeviceSynchronize();
-}
-
-void backward_network_gpu(network net, network_state state)
-{
-    static time_benchmark_layers *avg_time_per_layer = NULL;
-    static time_benchmark_layers *sorted_avg_time_per_layer = NULL;
-    double start_time, end_time;
-    if (net.benchmark_layers) {
-        if (!avg_time_per_layer) {
-            avg_time_per_layer = (time_benchmark_layers *)calloc(net.n, sizeof(time_benchmark_layers));
-            sorted_avg_time_per_layer = (time_benchmark_layers *)calloc(net.n, sizeof(time_benchmark_layers));
-        }
-        cudaDeviceSynchronize();
-    }
-
-    state.workspace = net.workspace;
-    int i;
-    float * original_input = state.input;
-    float * original_delta = state.delta;
-    for(i = net.n-1; i >= 0; --i){
-        state.index = i;
-        layer l = net.layers[i];
-        if (l.stopbackward == 1) break;
-        if (l.stopbackward > get_current_iteration(net)) break;
-        if(i == 0){
-            state.input = original_input;
-            state.delta = original_delta;
-        }else{
-            layer prev = net.layers[i-1];
-            state.input = prev.output_gpu;
-            state.delta = prev.delta_gpu;
-            if (net.optimized_memory && !prev.keep_delta_gpu) {
-                state.delta = net.state_delta_gpu;
-            }
-        }
-        if (l.onlyforward) continue;
-
-        if (net.benchmark_layers) {
-            start_time = get_time_point();
-        }
-
-        l.backward_gpu(l, state);
-
-        if (net.benchmark_layers) {
-            CHECK_CUDA(cudaDeviceSynchronize());
-            end_time = get_time_point();
-            const double took_time = (end_time - start_time) / 1000;
-            const double alpha = 0.9;
-            if (avg_time_per_layer[i].time == 0) {
-                avg_time_per_layer[i].layer_id = i;
-                avg_time_per_layer[i].layer_type = l.type;
-                avg_time_per_layer[i].time = took_time;
-            }
-            else avg_time_per_layer[i].time = avg_time_per_layer[i].time * alpha + took_time * (1 - alpha);
-
-            sorted_avg_time_per_layer[i] = avg_time_per_layer[i];
-            printf("\n bw-layer %d - type: %d - %lf ms - avg_time %lf ms \n", i, l.type, took_time, avg_time_per_layer[i].time);
-        }
-
-        if (i != 0) {
-            layer prev = net.layers[i - 1];
-            if (net.optimized_memory && state.delta && !prev.keep_delta_gpu) {
-                if (prev.delta_gpu != state.delta) simple_copy_ongpu(prev.outputs*prev.batch, state.delta, prev.delta_gpu);
-                fill_ongpu(prev.outputs*prev.batch, 0, net.state_delta_gpu, 1);
-            }
-        }
-
-        /*
-        if(i != 0)
-        {
-            layer l = net.layers[i - 1];
-            int state_delta_nan_inf = is_nan_or_inf(state.delta, l.outputs * l.batch);
-            int state_input_nan_inf = is_nan_or_inf(state.input, l.outputs * l.batch);
-            printf("\n i - %d  is_nan_or_inf(s.delta) = %d \n", i, state_delta_nan_inf);
-            printf(" i - %d  is_nan_or_inf(s.input) = %d \n", i, state_input_nan_inf);
-            if (state_delta_nan_inf || state_input_nan_inf) { printf(" found "); getchar(); }
-        }
-        */
-    }
-
-    if (net.adversarial && net.attention)
-    {
-        int img_size = net.w * net.h * net.c;
-        float *original_input_cpu = (float *)xcalloc(img_size, sizeof(float));
-        float *original_delta_cpu = (float *)xcalloc(img_size, sizeof(float));
-        cuda_pull_array(original_input, original_input_cpu, img_size);
-        cuda_pull_array(original_delta, original_delta_cpu, img_size);
-
-        image attention_img = make_attention_image(img_size, original_delta_cpu, original_input_cpu, net.w, net.h, net.c);
-        show_image(attention_img, "attention_img");
-
-        free_image(attention_img);
-
-        free(original_input_cpu);
-        free(original_delta_cpu);
-    }
-    if (net.adversarial) {
-        int x_size = get_network_input_size(net)*net.batch;
-        printf(" x_size = %d, original_delta = %p, original_input = %p, net.learning_rate = %f \n",
-            x_size, original_delta, original_input, net.learning_rate);
-        axpy_ongpu(x_size, net.learning_rate, original_delta, 1, original_input, 1);
-        constrain_min_max_ongpu(x_size, 0, 1, original_input, 1);
-    }
-
-    if (net.benchmark_layers) {
-        printf("\n\nSorted by time (backward):\n");
-        qsort(sorted_avg_time_per_layer, net.n, sizeof(time_benchmark_layers), time_comparator);
-        for (i = 0; i < net.n; ++i) {
-            //printf("layer %d - type: %d - avg_time %lf ms \n", avg_time_per_layer[i].layer_id, avg_time_per_layer[i].layer_type, avg_time_per_layer[i].time);
-            printf("%d - bw-sort-layer %d - type: %d - avg_time %lf ms \n", i, sorted_avg_time_per_layer[i].layer_id, sorted_avg_time_per_layer[i].layer_type, sorted_avg_time_per_layer[i].time);
-        }
-    }
-}
-
-void update_network_gpu(network net)
-{
-    cuda_set_device(net.gpu_index);
-    const int iteration_num = (*net.seen) / (net.batch * net.subdivisions);
-    int i;
-    int update_batch = net.batch*net.subdivisions * get_sequence_value(net);
-    float rate = get_current_rate(net);
-    for(i = 0; i < net.n; ++i){
-        layer l = net.layers[i];
-        l.t = get_current_batch(net);
-        if (iteration_num > (net.max_batches * 1 / 2)) l.deform = 0;
-        if (l.burnin_update && (l.burnin_update*net.burn_in > iteration_num)) continue;
-        if (l.train_only_bn) continue;
-
-        if(l.update_gpu && l.dont_update < iteration_num){
-            l.update_gpu(l, update_batch, rate, net.momentum, net.decay, net.loss_scale);
-        }
-    }
-}
-
-void forward_backward_network_gpu(network net, float *x, float *y)
-{
-    network_state state;
-    state.index = 0;
-    state.net = net;
-    int x_size = get_network_input_size(net)*net.batch;
-    int y_size = get_network_output_size(net)*net.batch;
-    if(net.layers[net.n-1].truths) y_size = net.layers[net.n-1].truths*net.batch;
-    if(!*net.input_gpu){
-        *net.input_gpu = cuda_make_array(x, x_size);
-        *net.truth_gpu = cuda_make_array(y, y_size);
-    }else{
-        cuda_push_array(*net.input_gpu, x, x_size);
-        cuda_push_array(*net.truth_gpu, y, y_size);
-    }
-    state.input = *net.input_gpu;
-    state.delta = 0;
-    if (net.adversarial) {
-        state.train = 0;
-        state.delta = cuda_make_array(NULL, x_size);
-    }
-    state.truth = *net.truth_gpu;
-    state.train = 1;
-#if defined(CUDNN_HALF) && defined(CUDNN)
-    int i;
-    for (i = 0; i < net.n; ++i) {
-        layer l = net.layers[i];
-        if (net.cudnn_half){
-            if (l.type == CONVOLUTIONAL && l.weights_gpu && l.weights_gpu16) {
-                assert((l.nweights) > 0);
-                cuda_convert_f32_to_f16(l.weights_gpu, l.nweights, l.weights_gpu16);
-            }
-            else if (l.type == CRNN && l.input_layer->weights_gpu && l.input_layer->weights_gpu16) {
-                assert((l.input_layer->c*l.input_layer->n*l.input_layer->size*l.input_layer->size) > 0);
-                cuda_convert_f32_to_f16(l.input_layer->weights_gpu, l.input_layer->nweights, l.input_layer->weights_gpu16);
-                cuda_convert_f32_to_f16(l.self_layer->weights_gpu, l.self_layer->nweights, l.self_layer->weights_gpu16);
-                cuda_convert_f32_to_f16(l.output_layer->weights_gpu, l.output_layer->nweights, l.output_layer->weights_gpu16);
-            }
-            else if (l.type == CONV_LSTM && l.wf->weights_gpu && l.wf->weights_gpu16) {
-                assert((l.wf->c * l.wf->n * l.wf->size * l.wf->size) > 0);
-                if (l.peephole) {
-                    cuda_convert_f32_to_f16(l.vf->weights_gpu, l.vf->nweights, l.vf->weights_gpu16);
-                    cuda_convert_f32_to_f16(l.vi->weights_gpu, l.vi->nweights, l.vi->weights_gpu16);
-                    cuda_convert_f32_to_f16(l.vo->weights_gpu, l.vo->nweights, l.vo->weights_gpu16);
-                }
-                cuda_convert_f32_to_f16(l.wf->weights_gpu, l.wf->nweights, l.wf->weights_gpu16);
-                cuda_convert_f32_to_f16(l.wi->weights_gpu, l.wi->nweights, l.wi->weights_gpu16);
-                cuda_convert_f32_to_f16(l.wg->weights_gpu, l.wg->nweights, l.wg->weights_gpu16);
-                cuda_convert_f32_to_f16(l.wo->weights_gpu, l.wo->nweights, l.wo->weights_gpu16);
-                cuda_convert_f32_to_f16(l.uf->weights_gpu, l.uf->nweights, l.uf->weights_gpu16);
-                cuda_convert_f32_to_f16(l.ui->weights_gpu, l.ui->nweights, l.ui->weights_gpu16);
-                cuda_convert_f32_to_f16(l.ug->weights_gpu, l.ug->nweights, l.ug->weights_gpu16);
-                cuda_convert_f32_to_f16(l.uo->weights_gpu, l.uo->nweights, l.uo->weights_gpu16);
-            }
-        }
-    }
-#endif
-    forward_network_gpu(net, state);
-    //cudaStreamSynchronize(get_cuda_stream());
-    backward_network_gpu(net, state);
-
-    if (net.adversarial) {
-        cuda_free(state.delta);
-        cuda_pull_array(*net.input_gpu, x, x_size);
-    }
-}
-
-float train_network_datum_gpu(network net, float *x, float *y)
-{
-    *net.seen += net.batch;
-    if (net.adversarial_lr && rand_int(0, 1) == 1 && get_current_iteration(net) > net.burn_in) {
-        net.adversarial = 1;
-        float lr_old = net.learning_rate;
-        float scale = 1.0 - (get_current_iteration(net) / ((float)net.max_batches));
-        net.learning_rate = net.adversarial_lr * scale;
-        layer l = net.layers[net.n - 1];
-        int y_size = get_network_output_size(net)*net.batch;
-        if (net.layers[net.n - 1].truths) y_size = net.layers[net.n - 1].truths*net.batch;
-        float *truth_cpu = (float *)xcalloc(y_size, sizeof(float));
-
-        printf("\n adversarial training, adversarial_lr = %f \n", net.adversarial_lr);
-
-        forward_backward_network_gpu(net, x, truth_cpu);
-
-        image im;
-        im.w = net.w;
-        im.h = net.h;
-        im.c = net.c;
-        im.data = x;
-        //show_image(im, "adversarial data augmentation");
-
-        free(truth_cpu);
-        net.learning_rate = lr_old;
-        net.adversarial = 0;
-    }
-    forward_backward_network_gpu(net, x, y);
-    float error = get_network_cost(net);
-    //if (((*net.seen) / net.batch) % net.subdivisions == 0) update_network_gpu(net);
-    const int sequence = get_sequence_value(net);
-    //if (((*net.seen) / net.batch) % (net.subdivisions*sequence) == 0) update_network_gpu(net);
-
-    return error;
-}
-
-typedef struct {
-    network net;
-    data d;
-    float *err;
-} train_args;
-
-void *train_thread(void *ptr)
-{
-    train_args args = *(train_args*)ptr;
-    free(ptr);
-    cuda_set_device(args.net.gpu_index);
-    *args.err = train_network(args.net, args.d);
-    return 0;
-}
-
-pthread_t train_network_in_thread(network net, data d, float *err)
-{
-    pthread_t thread;
-    train_args *ptr = (train_args *)calloc(1, sizeof(train_args));
-    ptr->net = net;
-    ptr->d = d;
-    ptr->err = err;
-    if(pthread_create(&thread, 0, train_thread, ptr)) error("Thread creation failed");
-    return thread;
-}
-
-void pull_updates(layer l)
-{
-    if(l.type == CONVOLUTIONAL){
-        cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.n);
-        cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.nweights);
-        if(l.scale_updates) cuda_pull_array(l.scale_updates_gpu, l.scale_updates, l.n);
-    } else if(l.type == CONNECTED){
-        cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
-        cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.outputs*l.inputs);
-    }
-}
-
-void push_updates(layer l)
-{
-    if(l.type == CONVOLUTIONAL){
-        cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
-        cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.nweights);
-        if(l.scale_updates) cuda_push_array(l.scale_updates_gpu, l.scale_updates, l.n);
-    } else if(l.type == CONNECTED){
-        cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
-        cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.outputs*l.inputs);
-    }
-}
-
-void update_layer(layer l, network net)
-{
-    int update_batch = net.batch*net.subdivisions;
-    float rate = get_current_rate(net);
-    l.t = get_current_batch(net);
-    if(l.update_gpu){
-        l.update_gpu(l, update_batch, rate, net.momentum, net.decay, net.loss_scale);
-    }
-}
-
-void merge_weights(layer l, layer base)
-{
-    if (l.type == CONVOLUTIONAL) {
-        axpy_cpu(l.n, 1, l.biases, 1, base.biases, 1);
-        axpy_cpu(l.nweights, 1, l.weights, 1, base.weights, 1);
-        if (l.scales) {
-            axpy_cpu(l.n, 1, l.scales, 1, base.scales, 1);
-        }
-    } else if(l.type == CONNECTED) {
-        axpy_cpu(l.outputs, 1, l.biases, 1, base.biases, 1);
-        axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, base.weights, 1);
-    }
-}
-
-void scale_weights(layer l, float s)
-{
-    if (l.type == CONVOLUTIONAL) {
-        scal_cpu(l.n, s, l.biases, 1);
-        scal_cpu(l.nweights, s, l.weights, 1);
-        if (l.scales) {
-            scal_cpu(l.n, s, l.scales, 1);
-        }
-    } else if(l.type == CONNECTED) {
-        scal_cpu(l.outputs, s, l.biases, 1);
-        scal_cpu(l.outputs*l.inputs, s, l.weights, 1);
-    }
-}
-
-
-void pull_weights(layer l)
-{
-    if(l.type == CONVOLUTIONAL){
-        cuda_pull_array(l.biases_gpu, l.biases, l.n);
-        cuda_pull_array(l.weights_gpu, l.weights, l.nweights);
-        if(l.scales) cuda_pull_array(l.scales_gpu, l.scales, l.n);
-    } else if(l.type == CONNECTED){
-        cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
-        cuda_pull_array(l.weights_gpu, l.weights, l.outputs*l.inputs);
-    }
-}
-
-void push_weights(layer l)
-{
-    if(l.type == CONVOLUTIONAL){
-        cuda_push_array(l.biases_gpu, l.biases, l.n);
-        cuda_push_array(l.weights_gpu, l.weights, l.nweights);
-        if(l.scales) cuda_push_array(l.scales_gpu, l.scales, l.n);
-    } else if(l.type == CONNECTED){
-        cuda_push_array(l.biases_gpu, l.biases, l.outputs);
-        cuda_push_array(l.weights_gpu, l.weights, l.outputs*l.inputs);
-    }
-}
-
-void distribute_weights(layer l, layer base)
-{
-    if(l.type == CONVOLUTIONAL){
-        cuda_push_array(l.biases_gpu, base.biases, l.n);
-        cuda_push_array(l.weights_gpu, base.weights, l.nweights);
-        if(base.scales) cuda_push_array(l.scales_gpu, base.scales, l.n);
-    } else if(l.type == CONNECTED){
-        cuda_push_array(l.biases_gpu, base.biases, l.outputs);
-        cuda_push_array(l.weights_gpu, base.weights, l.outputs*l.inputs);
-    }
-}
-
-
-void merge_updates(layer l, layer base)
-{
-    if (l.type == CONVOLUTIONAL) {
-        axpy_cpu(l.n, 1, l.bias_updates, 1, base.bias_updates, 1);
-        axpy_cpu(l.nweights, 1, l.weight_updates, 1, base.weight_updates, 1);
-        if (l.scale_updates) {
-            axpy_cpu(l.n, 1, l.scale_updates, 1, base.scale_updates, 1);
-        }
-    } else if(l.type == CONNECTED) {
-        axpy_cpu(l.outputs, 1, l.bias_updates, 1, base.bias_updates, 1);
-        axpy_cpu(l.outputs*l.inputs, 1, l.weight_updates, 1, base.weight_updates, 1);
-    }
-}
-
-void distribute_updates(layer l, layer base)
-{
-    if(l.type == CONVOLUTIONAL){
-        cuda_push_array(l.bias_updates_gpu, base.bias_updates, l.n);
-        cuda_push_array(l.weight_updates_gpu, base.weight_updates, l.nweights);
-        if(base.scale_updates) cuda_push_array(l.scale_updates_gpu, base.scale_updates, l.n);
-    } else if(l.type == CONNECTED){
-        cuda_push_array(l.bias_updates_gpu, base.bias_updates, l.outputs);
-        cuda_push_array(l.weight_updates_gpu, base.weight_updates, l.outputs*l.inputs);
-    }
-}
-
-void sync_layer(network *nets, int n, int j)
-{
-    //printf("Syncing layer %d\n", j);
-    int i;
-    network net = nets[0];
-    layer base = net.layers[j];
-    cuda_set_device(net.gpu_index);
-    pull_weights(base);
-    for (i = 1; i < n; ++i) {
-        cuda_set_device(nets[i].gpu_index);
-        layer l = nets[i].layers[j];
-        pull_weights(l);
-        merge_weights(l, base);
-    }
-    scale_weights(base, 1./n);
-    for (i = 0; i < n; ++i) {
-        cuda_set_device(nets[i].gpu_index);
-        layer l = nets[i].layers[j];
-        distribute_weights(l, base);
-    }
-    //printf("Done syncing layer %d\n", j);
-}
-
-typedef struct{
-    network *nets;
-    int n;
-    int j;
-} sync_args;
-
-void *sync_layer_thread(void *ptr)
-{
-    sync_args args = *(sync_args*)ptr;
-    sync_layer(args.nets, args.n, args.j);
-    free(ptr);
-    return 0;
-}
-
-pthread_t sync_layer_in_thread(network *nets, int n, int j)
-{
-    pthread_t thread;
-    sync_args *ptr = (sync_args *)calloc(1, sizeof(sync_args));
-    ptr->nets = nets;
-    ptr->n = n;
-    ptr->j = j;
-    if(pthread_create(&thread, 0, sync_layer_thread, ptr)) error("Thread creation failed");
-    return thread;
-}
-
-void sync_nets(network *nets, int n, int interval)
-{
-    int j;
-    int layers = nets[0].n;
-    pthread_t *threads = (pthread_t *) calloc(layers, sizeof(pthread_t));
-
-    *nets[0].seen += interval * (n-1) * nets[0].batch * nets[0].subdivisions;
-    for (j = 0; j < n; ++j){
-        *nets[j].seen = *nets[0].seen;
-    }
-    for (j = 0; j < layers; ++j) {
-        threads[j] = sync_layer_in_thread(nets, n, j);
-    }
-    for (j = 0; j < layers; ++j) {
-        pthread_join(threads[j], 0);
-    }
-    free(threads);
-}
-
-float train_networks(network *nets, int n, data d, int interval)
-{
-    int i;
-#ifdef _DEBUG
-    int batch = nets[0].batch;
-    int subdivisions = nets[0].subdivisions;
-    assert(batch * subdivisions * n == d.X.rows);
-#endif
-    pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
-    float *errors = (float *) calloc(n, sizeof(float));
-
-    float sum = 0;
-    for(i = 0; i < n; ++i){
-        data p = get_data_part(d, i, n);
-        threads[i] = train_network_in_thread(nets[i], p, errors + i);
-    }
-    for(i = 0; i < n; ++i){
-        pthread_join(threads[i], 0);
-        //printf("%f\n", errors[i]);
-        sum += errors[i];
-    }
-    //cudaDeviceSynchronize();
-    *nets[0].cur_iteration += (n - 1);
-    *nets[0].seen = nets[0].batch * nets[0].subdivisions * get_current_iteration(nets[0]); // remove this line, when you will save to weights-file both: seen & cur_iteration
-    if (get_current_iteration(nets[0]) % interval == 0)
-    {
-        printf("Syncing... ");
-        fflush(stdout);
-        sync_nets(nets, n, interval);
-        printf("Done!\n");
-    }
-    //cudaDeviceSynchronize();
-    free(threads);
-    free(errors);
-    return (float)sum/(n);
-}
-
-float *get_network_output_layer_gpu(network net, int i)
-{
-    layer l = net.layers[i];
-    if(l.type != REGION) cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
-    return l.output;
-}
-
-float *get_network_output_gpu(network net)
-{
-    int i;
-    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
-    return get_network_output_layer_gpu(net, i);
-}
-
-float *network_predict_gpu(network net, float *input)
-{
-    if (net.gpu_index != cuda_get_device())
-        cuda_set_device(net.gpu_index);
-    int size = get_network_input_size(net) * net.batch;
-    network_state state;
-    state.index = 0;
-    state.net = net;
-    //state.input = cuda_make_array(input, size);   // memory will be allocated in the parse_network_cfg_custom()
-    state.input = net.input_state_gpu;
-    memcpy(net.input_pinned_cpu, input, size * sizeof(float));
-    cuda_push_array(state.input, net.input_pinned_cpu, size);
-    state.truth = 0;
-    state.train = 0;
-    state.delta = 0;
-    forward_network_gpu(net, state);
-    float *out = get_network_output_gpu(net);
-    //cuda_free(state.input);   // will be freed in the free_network()
-    return out;
-}
+#include "dark_cuda.h"
+
+#include <stdio.h>
+#include <time.h>
+#include <assert.h>
+
+#include "network.h"
+#include "image.h"
+#include "data.h"
+#include "utils.h"
+#include "parser.h"
+
+#include "crop_layer.h"
+#include "connected_layer.h"
+#include "rnn_layer.h"
+#include "gru_layer.h"
+#include "crnn_layer.h"
+#include "detection_layer.h"
+#include "region_layer.h"
+#include "convolutional_layer.h"
+#include "activation_layer.h"
+#include "maxpool_layer.h"
+#include "reorg_layer.h"
+#include "avgpool_layer.h"
+#include "normalization_layer.h"
+#include "batchnorm_layer.h"
+#include "cost_layer.h"
+#include "local_layer.h"
+#include "softmax_layer.h"
+#include "dropout_layer.h"
+#include "route_layer.h"
+#include "shortcut_layer.h"
+#include "blas.h"
+
+//#ifdef OPENCV
+//#include <opencv2/highgui/highgui_c.h>
+//#endif
+
+#include "http_stream.h"
+
+float * get_network_output_gpu_layer(network net, int i);
+float * get_network_delta_gpu_layer(network net, int i);
+float * get_network_output_gpu(network net);
+
+typedef struct time_benchmark_layers {
+    float time;
+    int layer_id, layer_type;
+} time_benchmark_layers;
+
+int time_comparator(const void *pa, const void *pb)
+{
+    time_benchmark_layers a = *(time_benchmark_layers *)pa;
+    time_benchmark_layers b = *(time_benchmark_layers *)pb;
+    float diff = a.time - b.time;
+    if (diff < 0) return 1;
+    else if (diff > 0) return -1;
+    return 0;
+}
+
+void forward_network_gpu(network net, network_state state)
+{
+    static time_benchmark_layers *avg_time_per_layer = NULL;
+    static time_benchmark_layers *sorted_avg_time_per_layer = NULL;
+    double start_time, end_time;
+    if (net.benchmark_layers) {
+        if (!avg_time_per_layer) {
+            avg_time_per_layer = (time_benchmark_layers *)calloc(net.n, sizeof(time_benchmark_layers));
+            sorted_avg_time_per_layer = (time_benchmark_layers *)calloc(net.n, sizeof(time_benchmark_layers));
+        }
+        cudaDeviceSynchronize();
+    }
+
+    //printf("\n");
+    state.workspace = net.workspace;
+    int i;
+    for(i = 0; i < net.n; ++i){
+        state.index = i;
+        layer l = net.layers[i];
+        if(l.delta_gpu && state.train){
+            fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
+        }
+
+        if (net.benchmark_layers) {
+            start_time = get_time_point();
+        }
+
+        l.forward_gpu(l, state);
+
+        if (net.benchmark_layers) {
+            CHECK_CUDA(cudaDeviceSynchronize());
+            end_time = get_time_point();
+            const double took_time = (end_time - start_time) / 1000;
+            const double alpha = 0.9;
+            if (avg_time_per_layer[i].time == 0) {
+                avg_time_per_layer[i].layer_id = i;
+                avg_time_per_layer[i].layer_type = l.type;
+                avg_time_per_layer[i].time = took_time;
+            }
+            else avg_time_per_layer[i].time = avg_time_per_layer[i].time * alpha + took_time * (1 - alpha);
+
+            sorted_avg_time_per_layer[i] = avg_time_per_layer[i];
+            printf("\n fw-layer %d - type: %d - %lf ms - avg_time %lf ms \n", i, l.type, took_time, avg_time_per_layer[i].time);
+        }
+
+        if(net.wait_stream)
+            cudaStreamSynchronize(get_cuda_stream());
+        state.input = l.output_gpu;
+        //cudaDeviceSynchronize();
+
+        /*
+        cuda_pull_array(l.output_gpu, l.output, l.outputs);
+        cudaStreamSynchronize(get_cuda_stream());
+        float avg_val = 0;
+        int k;
+        for (k = 0; k < l.outputs; ++k) avg_val += l.output[k];
+        printf(" i: %d - avg_val = %f \n", i, avg_val / l.outputs);
+        */
+
+/*
+        cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
+        if (l.out_w >= 0 && l.out_h >= 1 && l.c >= 3) {
+            int j;
+            for (j = 0; j < l.out_c; ++j) {
+                image img = make_image(l.out_w, l.out_h, 3);
+                memcpy(img.data, l.output + l.out_w*l.out_h*j, l.out_w*l.out_h * 1 * sizeof(float));
+                memcpy(img.data + l.out_w*l.out_h * 1, l.output + l.out_w*l.out_h*j, l.out_w*l.out_h * 1 * sizeof(float));
+                memcpy(img.data + l.out_w*l.out_h * 2, l.output + l.out_w*l.out_h*j, l.out_w*l.out_h * 1 * sizeof(float));
+                char buff[256];
+                sprintf(buff, "layer-%d slice-%d", i, j);
+                show_image(img, buff);
+                save_image(img, buff);
+            }
+            cvWaitKey(0); // wait press-key in console
+            cvDestroyAllWindows();
+        }
+*/
+    }
+
+    if (net.benchmark_layers) {
+        printf("\n\nSorted by time (forward):\n");
+        qsort(sorted_avg_time_per_layer, net.n, sizeof(time_benchmark_layers), time_comparator);
+        for (i = 0; i < net.n; ++i) {
+            //printf("layer %d - type: %d - avg_time %lf ms \n", avg_time_per_layer[i].layer_id, avg_time_per_layer[i].layer_type, avg_time_per_layer[i].time);
+            printf("%d - fw-sort-layer %d - type: %d - avg_time %lf ms \n", i, sorted_avg_time_per_layer[i].layer_id, sorted_avg_time_per_layer[i].layer_type, sorted_avg_time_per_layer[i].time);
+        }
+    }
+
+    //cudaStreamSynchronize(get_cuda_stream());   // sync CUDA-functions
+    //cudaDeviceSynchronize();
+}
+
+void backward_network_gpu(network net, network_state state)
+{
+    static time_benchmark_layers *avg_time_per_layer = NULL;
+    static time_benchmark_layers *sorted_avg_time_per_layer = NULL;
+    double start_time, end_time;
+    if (net.benchmark_layers) {
+        if (!avg_time_per_layer) {
+            avg_time_per_layer = (time_benchmark_layers *)calloc(net.n, sizeof(time_benchmark_layers));
+            sorted_avg_time_per_layer = (time_benchmark_layers *)calloc(net.n, sizeof(time_benchmark_layers));
+        }
+        cudaDeviceSynchronize();
+    }
+
+    state.workspace = net.workspace;
+    int i;
+    float * original_input = state.input;
+    float * original_delta = state.delta;
+    for(i = net.n-1; i >= 0; --i){
+        state.index = i;
+        layer l = net.layers[i];
+        if (l.stopbackward == 1) break;
+        if (l.stopbackward > get_current_iteration(net)) break;
+        if(i == 0){
+            state.input = original_input;
+            state.delta = original_delta;
+        }else{
+            layer prev = net.layers[i-1];
+            state.input = prev.output_gpu;
+            state.delta = prev.delta_gpu;
+            if (net.optimized_memory && !prev.keep_delta_gpu) {
+                state.delta = net.state_delta_gpu;
+            }
+        }
+        if (l.onlyforward) continue;
+
+        if (net.benchmark_layers) {
+            start_time = get_time_point();
+        }
+
+        l.backward_gpu(l, state);
+
+        if (net.benchmark_layers) {
+            CHECK_CUDA(cudaDeviceSynchronize());
+            end_time = get_time_point();
+            const double took_time = (end_time - start_time) / 1000;
+            const double alpha = 0.9;
+            if (avg_time_per_layer[i].time == 0) {
+                avg_time_per_layer[i].layer_id = i;
+                avg_time_per_layer[i].layer_type = l.type;
+                avg_time_per_layer[i].time = took_time;
+            }
+            else avg_time_per_layer[i].time = avg_time_per_layer[i].time * alpha + took_time * (1 - alpha);
+
+            sorted_avg_time_per_layer[i] = avg_time_per_layer[i];
+            printf("\n bw-layer %d - type: %d - %lf ms - avg_time %lf ms \n", i, l.type, took_time, avg_time_per_layer[i].time);
+        }
+
+        if (i != 0) {
+            layer prev = net.layers[i - 1];
+            if (net.optimized_memory && state.delta && !prev.keep_delta_gpu) {
+                if (prev.delta_gpu != state.delta) simple_copy_ongpu(prev.outputs*prev.batch, state.delta, prev.delta_gpu);
+                fill_ongpu(prev.outputs*prev.batch, 0, net.state_delta_gpu, 1);
+            }
+        }
+
+        /*
+        if(i != 0)
+        {
+            layer l = net.layers[i - 1];
+            int state_delta_nan_inf = is_nan_or_inf(state.delta, l.outputs * l.batch);
+            int state_input_nan_inf = is_nan_or_inf(state.input, l.outputs * l.batch);
+            printf("\n i - %d  is_nan_or_inf(s.delta) = %d \n", i, state_delta_nan_inf);
+            printf(" i - %d  is_nan_or_inf(s.input) = %d \n", i, state_input_nan_inf);
+            if (state_delta_nan_inf || state_input_nan_inf) { printf(" found "); getchar(); }
+        }
+        */
+    }
+
+    if (net.adversarial && net.attention)
+    {
+        int img_size = net.w * net.h * net.c;
+        float *original_input_cpu = (float *)xcalloc(img_size, sizeof(float));
+        float *original_delta_cpu = (float *)xcalloc(img_size, sizeof(float));
+        cuda_pull_array(original_input, original_input_cpu, img_size);
+        cuda_pull_array(original_delta, original_delta_cpu, img_size);
+
+        image attention_img = make_attention_image(img_size, original_delta_cpu, original_input_cpu, net.w, net.h, net.c);
+        show_image(attention_img, "attention_img");
+        resize_window_cv("attention_img", 500, 500);
+
+        free_image(attention_img);
+
+        free(original_input_cpu);
+        free(original_delta_cpu);
+    }
+    if (net.adversarial) {
+        int x_size = get_network_input_size(net)*net.batch;
+        printf(" x_size = %d, original_delta = %p, original_input = %p, net.learning_rate = %f \n",
+            x_size, original_delta, original_input, net.learning_rate);
+        axpy_ongpu(x_size, net.learning_rate, original_delta, 1, original_input, 1);
+        constrain_min_max_ongpu(x_size, 0, 1, original_input, 1);
+    }
+
+    if (net.benchmark_layers) {
+        printf("\n\nSorted by time (backward):\n");
+        qsort(sorted_avg_time_per_layer, net.n, sizeof(time_benchmark_layers), time_comparator);
+        for (i = 0; i < net.n; ++i) {
+            //printf("layer %d - type: %d - avg_time %lf ms \n", avg_time_per_layer[i].layer_id, avg_time_per_layer[i].layer_type, avg_time_per_layer[i].time);
+            printf("%d - bw-sort-layer %d - type: %d - avg_time %lf ms \n", i, sorted_avg_time_per_layer[i].layer_id, sorted_avg_time_per_layer[i].layer_type, sorted_avg_time_per_layer[i].time);
+        }
+    }
+}
+
+void update_network_gpu(network net)
+{
+    cuda_set_device(net.gpu_index);
+    const int iteration_num = (*net.seen) / (net.batch * net.subdivisions);
+    int i;
+    int update_batch = net.batch*net.subdivisions * get_sequence_value(net);
+    float rate = get_current_rate(net);
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        l.t = get_current_batch(net);
+        if (iteration_num > (net.max_batches * 1 / 2)) l.deform = 0;
+        if (l.burnin_update && (l.burnin_update*net.burn_in > iteration_num)) continue;
+        if (l.train_only_bn) continue;
+
+        if(l.update_gpu && l.dont_update < iteration_num){
+            l.update_gpu(l, update_batch, rate, net.momentum, net.decay, net.loss_scale);
+        }
+    }
+}
+
+void forward_backward_network_gpu(network net, float *x, float *y)
+{
+    network_state state;
+    state.index = 0;
+    state.net = net;
+    int x_size = get_network_input_size(net)*net.batch;
+    int y_size = get_network_output_size(net)*net.batch;
+    if(net.layers[net.n-1].truths) y_size = net.layers[net.n-1].truths*net.batch;
+    if(!*net.input_gpu){
+        *net.input_gpu = cuda_make_array(x, x_size);
+        *net.truth_gpu = cuda_make_array(y, y_size);
+    }else{
+        cuda_push_array(*net.input_gpu, x, x_size);
+        cuda_push_array(*net.truth_gpu, y, y_size);
+    }
+    state.input = *net.input_gpu;
+    state.delta = 0;
+    if (net.adversarial) {
+        state.delta = cuda_make_array(NULL, x_size);
+    }
+    state.truth = *net.truth_gpu;
+    state.train = 1;
+#if defined(CUDNN_HALF) && defined(CUDNN)
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        layer l = net.layers[i];
+        if (net.cudnn_half){
+            if (l.type == CONVOLUTIONAL && l.weights_gpu && l.weights_gpu16) {
+                assert((l.nweights) > 0);
+                cuda_convert_f32_to_f16(l.weights_gpu, l.nweights, l.weights_gpu16);
+            }
+            else if (l.type == CRNN && l.input_layer->weights_gpu && l.input_layer->weights_gpu16) {
+                assert((l.input_layer->c*l.input_layer->n*l.input_layer->size*l.input_layer->size) > 0);
+                cuda_convert_f32_to_f16(l.input_layer->weights_gpu, l.input_layer->nweights, l.input_layer->weights_gpu16);
+                cuda_convert_f32_to_f16(l.self_layer->weights_gpu, l.self_layer->nweights, l.self_layer->weights_gpu16);
+                cuda_convert_f32_to_f16(l.output_layer->weights_gpu, l.output_layer->nweights, l.output_layer->weights_gpu16);
+            }
+            else if (l.type == CONV_LSTM && l.wf->weights_gpu && l.wf->weights_gpu16) {
+                assert((l.wf->c * l.wf->n * l.wf->size * l.wf->size) > 0);
+                if (l.peephole) {
+                    cuda_convert_f32_to_f16(l.vf->weights_gpu, l.vf->nweights, l.vf->weights_gpu16);
+                    cuda_convert_f32_to_f16(l.vi->weights_gpu, l.vi->nweights, l.vi->weights_gpu16);
+                    cuda_convert_f32_to_f16(l.vo->weights_gpu, l.vo->nweights, l.vo->weights_gpu16);
+                }
+                cuda_convert_f32_to_f16(l.wf->weights_gpu, l.wf->nweights, l.wf->weights_gpu16);
+                if (!l.bottleneck) {
+                    cuda_convert_f32_to_f16(l.wi->weights_gpu, l.wi->nweights, l.wi->weights_gpu16);
+                    cuda_convert_f32_to_f16(l.wg->weights_gpu, l.wg->nweights, l.wg->weights_gpu16);
+                    cuda_convert_f32_to_f16(l.wo->weights_gpu, l.wo->nweights, l.wo->weights_gpu16);
+                }
+                cuda_convert_f32_to_f16(l.uf->weights_gpu, l.uf->nweights, l.uf->weights_gpu16);
+                cuda_convert_f32_to_f16(l.ui->weights_gpu, l.ui->nweights, l.ui->weights_gpu16);
+                cuda_convert_f32_to_f16(l.ug->weights_gpu, l.ug->nweights, l.ug->weights_gpu16);
+                cuda_convert_f32_to_f16(l.uo->weights_gpu, l.uo->nweights, l.uo->weights_gpu16);
+            }
+        }
+    }
+#endif
+    forward_network_gpu(net, state);
+    //cudaStreamSynchronize(get_cuda_stream());
+    backward_network_gpu(net, state);
+
+    if (net.adversarial) {
+        cuda_free(state.delta);
+        cuda_pull_array(*net.input_gpu, x, x_size);
+    }
+    if(*(state.net.total_bbox) > 0)
+        fprintf(stderr, " total_bbox = %d, rewritten_bbox = %f %% \n", *(state.net.total_bbox), 100 * (float)*(state.net.rewritten_bbox) / *(state.net.total_bbox));
+}
+
+float train_network_datum_gpu(network net, float *x, float *y)
+{
+    *net.seen += net.batch;
+    if (net.adversarial_lr && rand_int(0, 1) == 1 && get_current_iteration(net) > net.burn_in) {
+        net.adversarial = 1;
+        float lr_old = net.learning_rate;
+        float scale = (get_current_iteration(net) / ((float)net.max_batches));
+        //scale = sin(scale * M_PI);
+        net.learning_rate = net.adversarial_lr * scale;
+        layer l = net.layers[net.n - 1];
+        int y_size = get_network_output_size(net)*net.batch;
+        if (net.layers[net.n - 1].truths) y_size = net.layers[net.n - 1].truths*net.batch;
+        float *truth_cpu = (float *)xcalloc(y_size, sizeof(float));
+
+        const int img_size = net.w*net.h*net.c;
+        float *old_input = (float *)xcalloc(img_size*net.batch, sizeof(float));
+        memcpy(old_input, x, img_size*net.batch * sizeof(float));
+
+        printf("\n adversarial training, adversarial_lr = %f \n", net.adversarial_lr * scale);
+
+        forward_backward_network_gpu(net, x, truth_cpu);
+
+        int b;
+        for (b = 0; b < net.batch; ++b) {
+            if (b % 2 == 1 && net.contrastive) {
+                //printf(" b = %d old img, ", b);
+                memcpy(x + img_size*b, old_input + img_size*b, img_size * sizeof(float));
+            }
+        }
+
+        image im;
+        im.w = net.w;
+        im.h = net.h;
+        im.c = net.c;
+        im.data = x;
+        show_image(im, "adversarial data augmentation");
+        resize_window_cv("adversarial data augmentation", 500, 500);
+        wait_key_cv(1);
+
+        free(old_input);
+        free(truth_cpu);
+        net.learning_rate = lr_old;
+        net.adversarial = 0;
+    }
+    forward_backward_network_gpu(net, x, y);
+    float error = get_network_cost(net);
+    //if (((*net.seen) / net.batch) % net.subdivisions == 0) update_network_gpu(net);
+    const int sequence = get_sequence_value(net);
+    //if (((*net.seen) / net.batch) % (net.subdivisions*sequence) == 0) update_network_gpu(net);
+
+    return error;
+}
+
+typedef struct {
+    network net;
+    data d;
+    float *err;
+} train_args;
+
+void *train_thread(void *ptr)
+{
+    train_args args = *(train_args*)ptr;
+    free(ptr);
+    cuda_set_device(args.net.gpu_index);
+    *args.err = train_network(args.net, args.d);
+    return 0;
+}
+
+pthread_t train_network_in_thread(network net, data d, float *err)
+{
+    pthread_t thread;
+    train_args *ptr = (train_args *)calloc(1, sizeof(train_args));
+    ptr->net = net;
+    ptr->d = d;
+    ptr->err = err;
+    if(pthread_create(&thread, 0, train_thread, ptr)) error("Thread creation failed");
+    return thread;
+}
+
+void pull_updates(layer l)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.n);
+        cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.nweights);
+        if(l.scale_updates) cuda_pull_array(l.scale_updates_gpu, l.scale_updates, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
+        cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.outputs*l.inputs);
+    }
+}
+
+void push_updates(layer l)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
+        cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.nweights);
+        if(l.scale_updates) cuda_push_array(l.scale_updates_gpu, l.scale_updates, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
+        cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.outputs*l.inputs);
+    }
+}
+
+void update_layer(layer l, network net)
+{
+    int update_batch = net.batch*net.subdivisions;
+    float rate = get_current_rate(net);
+    l.t = get_current_batch(net);
+    if(l.update_gpu){
+        l.update_gpu(l, update_batch, rate, net.momentum, net.decay, net.loss_scale);
+    }
+}
+
+void merge_weights(layer l, layer base)
+{
+    if (l.type == CONVOLUTIONAL) {
+        axpy_cpu(l.n, 1, l.biases, 1, base.biases, 1);
+        axpy_cpu(l.nweights, 1, l.weights, 1, base.weights, 1);
+        if (l.scales) {
+            axpy_cpu(l.n, 1, l.scales, 1, base.scales, 1);
+        }
+    } else if(l.type == CONNECTED) {
+        axpy_cpu(l.outputs, 1, l.biases, 1, base.biases, 1);
+        axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, base.weights, 1);
+    }
+}
+
+void scale_weights(layer l, float s)
+{
+    if (l.type == CONVOLUTIONAL) {
+        scal_cpu(l.n, s, l.biases, 1);
+        scal_cpu(l.nweights, s, l.weights, 1);
+        if (l.scales) {
+            scal_cpu(l.n, s, l.scales, 1);
+        }
+    } else if(l.type == CONNECTED) {
+        scal_cpu(l.outputs, s, l.biases, 1);
+        scal_cpu(l.outputs*l.inputs, s, l.weights, 1);
+    }
+}
+
+
+void pull_weights(layer l)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_pull_array(l.biases_gpu, l.biases, l.n);
+        cuda_pull_array(l.weights_gpu, l.weights, l.nweights);
+        if(l.scales) cuda_pull_array(l.scales_gpu, l.scales, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
+        cuda_pull_array(l.weights_gpu, l.weights, l.outputs*l.inputs);
+    }
+}
+
+void push_weights(layer l)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_push_array(l.biases_gpu, l.biases, l.n);
+        cuda_push_array(l.weights_gpu, l.weights, l.nweights);
+        if(l.scales) cuda_push_array(l.scales_gpu, l.scales, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_push_array(l.biases_gpu, l.biases, l.outputs);
+        cuda_push_array(l.weights_gpu, l.weights, l.outputs*l.inputs);
+    }
+}
+
+void distribute_weights(layer l, layer base)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_push_array(l.biases_gpu, base.biases, l.n);
+        cuda_push_array(l.weights_gpu, base.weights, l.nweights);
+        if(base.scales) cuda_push_array(l.scales_gpu, base.scales, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_push_array(l.biases_gpu, base.biases, l.outputs);
+        cuda_push_array(l.weights_gpu, base.weights, l.outputs*l.inputs);
+    }
+}
+
+
+void merge_updates(layer l, layer base)
+{
+    if (l.type == CONVOLUTIONAL) {
+        axpy_cpu(l.n, 1, l.bias_updates, 1, base.bias_updates, 1);
+        axpy_cpu(l.nweights, 1, l.weight_updates, 1, base.weight_updates, 1);
+        if (l.scale_updates) {
+            axpy_cpu(l.n, 1, l.scale_updates, 1, base.scale_updates, 1);
+        }
+    } else if(l.type == CONNECTED) {
+        axpy_cpu(l.outputs, 1, l.bias_updates, 1, base.bias_updates, 1);
+        axpy_cpu(l.outputs*l.inputs, 1, l.weight_updates, 1, base.weight_updates, 1);
+    }
+}
+
+void distribute_updates(layer l, layer base)
+{
+    if(l.type == CONVOLUTIONAL){
+        cuda_push_array(l.bias_updates_gpu, base.bias_updates, l.n);
+        cuda_push_array(l.weight_updates_gpu, base.weight_updates, l.nweights);
+        if(base.scale_updates) cuda_push_array(l.scale_updates_gpu, base.scale_updates, l.n);
+    } else if(l.type == CONNECTED){
+        cuda_push_array(l.bias_updates_gpu, base.bias_updates, l.outputs);
+        cuda_push_array(l.weight_updates_gpu, base.weight_updates, l.outputs*l.inputs);
+    }
+}
+
+void sync_layer(network *nets, int n, int j)
+{
+    //printf("Syncing layer %d\n", j);
+    int i;
+    network net = nets[0];
+    layer base = net.layers[j];
+    cuda_set_device(net.gpu_index);
+    pull_weights(base);
+    for (i = 1; i < n; ++i) {
+        cuda_set_device(nets[i].gpu_index);
+        layer l = nets[i].layers[j];
+        pull_weights(l);
+        merge_weights(l, base);
+    }
+    scale_weights(base, 1./n);
+    for (i = 0; i < n; ++i) {
+        cuda_set_device(nets[i].gpu_index);
+        layer l = nets[i].layers[j];
+        distribute_weights(l, base);
+    }
+    //printf("Done syncing layer %d\n", j);
+}
+
+typedef struct{
+    network *nets;
+    int n;
+    int j;
+} sync_args;
+
+void *sync_layer_thread(void *ptr)
+{
+    sync_args args = *(sync_args*)ptr;
+    sync_layer(args.nets, args.n, args.j);
+    free(ptr);
+    return 0;
+}
+
+pthread_t sync_layer_in_thread(network *nets, int n, int j)
+{
+    pthread_t thread;
+    sync_args *ptr = (sync_args *)calloc(1, sizeof(sync_args));
+    ptr->nets = nets;
+    ptr->n = n;
+    ptr->j = j;
+    if(pthread_create(&thread, 0, sync_layer_thread, ptr)) error("Thread creation failed");
+    return thread;
+}
+
+void sync_nets(network *nets, int n, int interval)
+{
+    int j;
+    int layers = nets[0].n;
+    pthread_t *threads = (pthread_t *) calloc(layers, sizeof(pthread_t));
+
+    *nets[0].seen += interval * (n-1) * nets[0].batch * nets[0].subdivisions;
+    for (j = 0; j < n; ++j){
+        *nets[j].seen = *nets[0].seen;
+    }
+    for (j = 0; j < layers; ++j) {
+        threads[j] = sync_layer_in_thread(nets, n, j);
+    }
+    for (j = 0; j < layers; ++j) {
+        pthread_join(threads[j], 0);
+    }
+    free(threads);
+}
+
+float train_networks(network *nets, int n, data d, int interval)
+{
+    int i;
+#ifdef _DEBUG
+    int batch = nets[0].batch;
+    int subdivisions = nets[0].subdivisions;
+    assert(batch * subdivisions * n == d.X.rows);
+#endif
+    pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
+    float *errors = (float *) calloc(n, sizeof(float));
+
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        data p = get_data_part(d, i, n);
+        threads[i] = train_network_in_thread(nets[i], p, errors + i);
+    }
+    for(i = 0; i < n; ++i){
+        pthread_join(threads[i], 0);
+        //printf("%f\n", errors[i]);
+        sum += errors[i];
+    }
+    //cudaDeviceSynchronize();
+    *nets[0].cur_iteration += (n - 1);
+    *nets[0].seen = nets[0].batch * nets[0].subdivisions * get_current_iteration(nets[0]); // remove this line, when you will save to weights-file both: seen & cur_iteration
+    if (get_current_iteration(nets[0]) % interval == 0)
+    {
+        printf("Syncing... ");
+        fflush(stdout);
+        sync_nets(nets, n, interval);
+        printf("Done!\n");
+    }
+    //cudaDeviceSynchronize();
+    free(threads);
+    free(errors);
+    return (float)sum/(n);
+}
+
+float *get_network_output_layer_gpu(network net, int i)
+{
+    layer l = net.layers[i];
+    if(l.type != REGION && l.type != YOLO && (*net.cuda_graph_ready) == 0) cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
+    return l.output;
+}
+
+float *get_network_output_gpu(network net)
+{
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+    return get_network_output_layer_gpu(net, i);
+}
+
+float *network_predict_gpu(network net, float *input)
+{
+    if (net.gpu_index != cuda_get_device())
+        cuda_set_device(net.gpu_index);
+    int size = get_network_input_size(net) * net.batch;
+    network_state state;
+    state.index = 0;
+    state.net = net;
+    //state.input = cuda_make_array(input, size);   // memory will be allocated in the parse_network_cfg_custom()
+    state.input = net.input_state_gpu;
+    memcpy(net.input_pinned_cpu, input, size * sizeof(float));
+    state.truth = 0;
+    state.train = 0;
+    state.delta = 0;
+
+    //cudaGraphExec_t instance = (cudaGraphExec_t)net.cuda_graph_exec;
+    static cudaGraphExec_t instance;
+
+    if ((*net.cuda_graph_ready) == 0) {
+        static cudaGraph_t graph;
+        if (net.use_cuda_graph == 1) {
+            int i;
+            for (i = 0; i < 16; ++i) switch_stream(i);
+
+            cudaStream_t stream0 = switch_stream(0);
+            CHECK_CUDA(cudaDeviceSynchronize());
+            printf("Try to capture graph... \n");
+            //cudaGraph_t graph = (cudaGraph_t)net.cuda_graph;
+            //CHECK_CUDA(cudaStreamBeginCapture(stream0, cudaStreamCaptureModeGlobal));
+        }
+
+        cuda_push_array(state.input, net.input_pinned_cpu, size);
+        forward_network_gpu(net, state);
+
+        if (net.use_cuda_graph == 1) {
+            cudaStream_t stream0 = switch_stream(0);
+            CHECK_CUDA(cudaStreamEndCapture(stream0, &graph));
+            CHECK_CUDA(cudaGraphInstantiate(&instance, graph, NULL, NULL, 0));
+            (*net.cuda_graph_ready) = 1;
+            printf(" graph is captured... \n");
+            CHECK_CUDA(cudaDeviceSynchronize());
+        }
+        CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream()));
+    }
+    else {
+        cudaStream_t stream0 = switch_stream(0);
+        //printf(" cudaGraphLaunch \n");
+        CHECK_CUDA( cudaGraphLaunch(instance, stream0) );
+        CHECK_CUDA( cudaStreamSynchronize(stream0) );
+        //printf(" ~cudaGraphLaunch \n");
+    }
+
+    float *out = get_network_output_gpu(net);
+    reset_wait_stream_events();
+    //cuda_free(state.input);   // will be freed in the free_network()
+    return out;
+}

--
Gitblit v1.8.0