From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/region_layer.c | 1191 +++++++++++++++++++++++++++++-----------------------------
 1 files changed, 596 insertions(+), 595 deletions(-)

diff --git a/lib/detecter_tools/darknet/region_layer.c b/lib/detecter_tools/darknet/region_layer.c
index 59adfe5..7aa1a19 100644
--- a/lib/detecter_tools/darknet/region_layer.c
+++ b/lib/detecter_tools/darknet/region_layer.c
@@ -1,595 +1,596 @@
-#include "region_layer.h"
-#include "activations.h"
-#include "blas.h"
-#include "box.h"
-#include "dark_cuda.h"
-#include "utils.h"
-#include <stdio.h>
-#include <assert.h>
-#include <string.h>
-#include <stdlib.h>
-
-#define DOABS 1
-
-region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords, int max_boxes)
-{
-    region_layer l = { (LAYER_TYPE)0 };
-    l.type = REGION;
-
-    l.n = n;
-    l.batch = batch;
-    l.h = h;
-    l.w = w;
-    l.classes = classes;
-    l.coords = coords;
-    l.cost = (float*)xcalloc(1, sizeof(float));
-    l.biases = (float*)xcalloc(n * 2, sizeof(float));
-    l.bias_updates = (float*)xcalloc(n * 2, sizeof(float));
-    l.outputs = h*w*n*(classes + coords + 1);
-    l.inputs = l.outputs;
-    l.max_boxes = max_boxes;
-    l.truths = max_boxes*(5);
-    l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
-    l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
-    int i;
-    for(i = 0; i < n*2; ++i){
-        l.biases[i] = .5;
-    }
-
-    l.forward = forward_region_layer;
-    l.backward = backward_region_layer;
-#ifdef GPU
-    l.forward_gpu = forward_region_layer_gpu;
-    l.backward_gpu = backward_region_layer_gpu;
-    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
-    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
-#endif
-
-    fprintf(stderr, "detection\n");
-    srand(time(0));
-
-    return l;
-}
-
-void resize_region_layer(layer *l, int w, int h)
-{
-#ifdef GPU
-    int old_w = l->w;
-    int old_h = l->h;
-#endif
-    l->w = w;
-    l->h = h;
-
-    l->outputs = h*w*l->n*(l->classes + l->coords + 1);
-    l->inputs = l->outputs;
-
-    l->output = (float*)xrealloc(l->output, l->batch * l->outputs * sizeof(float));
-    l->delta = (float*)xrealloc(l->delta, l->batch * l->outputs * sizeof(float));
-
-#ifdef GPU
-    //if (old_w < w || old_h < h)
-    {
-        cuda_free(l->delta_gpu);
-        cuda_free(l->output_gpu);
-
-        l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
-        l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
-    }
-#endif
-}
-
-box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
-{
-    box b;
-    b.x = (i + logistic_activate(x[index + 0])) / w;
-    b.y = (j + logistic_activate(x[index + 1])) / h;
-    b.w = exp(x[index + 2]) * biases[2*n];
-    b.h = exp(x[index + 3]) * biases[2*n+1];
-    if(DOABS){
-        b.w = exp(x[index + 2]) * biases[2*n]   / w;
-        b.h = exp(x[index + 3]) * biases[2*n+1] / h;
-    }
-    return b;
-}
-
-float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale)
-{
-    box pred = get_region_box(x, biases, n, index, i, j, w, h);
-    float iou = box_iou(pred, truth);
-
-    float tx = (truth.x*w - i);
-    float ty = (truth.y*h - j);
-    float tw = log(truth.w / biases[2*n]);
-    float th = log(truth.h / biases[2*n + 1]);
-    if(DOABS){
-        tw = log(truth.w*w / biases[2*n]);
-        th = log(truth.h*h / biases[2*n + 1]);
-    }
-
-    delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
-    delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
-    delta[index + 2] = scale * (tw - x[index + 2]);
-    delta[index + 3] = scale * (th - x[index + 3]);
-    return iou;
-}
-
-void delta_region_class(float *output, float *delta, int index, int class_id, int classes, tree *hier, float scale, float *avg_cat, int focal_loss)
-{
-    int i, n;
-    if(hier){
-        float pred = 1;
-        while(class_id >= 0){
-            pred *= output[index + class_id];
-            int g = hier->group[class_id];
-            int offset = hier->group_offset[g];
-            for(i = 0; i < hier->group_size[g]; ++i){
-                delta[index + offset + i] = scale * (0 - output[index + offset + i]);
-            }
-            delta[index + class_id] = scale * (1 - output[index + class_id]);
-
-            class_id = hier->parent[class_id];
-        }
-        *avg_cat += pred;
-    } else {
-        // Focal loss
-        if (focal_loss) {
-            // Focal Loss
-            float alpha = 0.5;    // 0.25 or 0.5
-            //float gamma = 2;    // hardcoded in many places of the grad-formula
-
-            int ti = index + class_id;
-            float pt = output[ti] + 0.000000000000001F;
-            // http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d
-            float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1);    // http://blog.csdn.net/linmingan/article/details/77885832
-            //float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1);    // https://github.com/unsky/focal-loss
-
-            for (n = 0; n < classes; ++n) {
-                delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
-
-                delta[index + n] *= alpha*grad;
-
-                if (n == class_id) *avg_cat += output[index + n];
-            }
-        }
-        else {
-            // default
-            for (n = 0; n < classes; ++n) {
-                delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
-                if (n == class_id) *avg_cat += output[index + n];
-            }
-        }
-    }
-}
-
-float logit(float x)
-{
-    return log(x/(1.-x));
-}
-
-float tisnan(float x)
-{
-    return (x != x);
-}
-
-static int entry_index(layer l, int batch, int location, int entry)
-{
-    int n = location / (l.w*l.h);
-    int loc = location % (l.w*l.h);
-    return batch*l.outputs + n*l.w*l.h*(l.coords + l.classes + 1) + entry*l.w*l.h + loc;
-}
-
-void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output);
-void forward_region_layer(const region_layer l, network_state state)
-{
-    int i,j,b,t,n;
-    int size = l.coords + l.classes + 1;
-    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
-    #ifndef GPU
-    flatten(l.output, l.w*l.h, size*l.n, l.batch, 1);
-    #endif
-    for (b = 0; b < l.batch; ++b){
-        for(i = 0; i < l.h*l.w*l.n; ++i){
-            int index = size*i + b*l.outputs;
-            l.output[index + 4] = logistic_activate(l.output[index + 4]);
-        }
-    }
-
-
-#ifndef GPU
-    if (l.softmax_tree){
-        for (b = 0; b < l.batch; ++b){
-            for(i = 0; i < l.h*l.w*l.n; ++i){
-                int index = size*i + b*l.outputs;
-                softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
-            }
-        }
-    } else if (l.softmax){
-        for (b = 0; b < l.batch; ++b){
-            for(i = 0; i < l.h*l.w*l.n; ++i){
-                int index = size*i + b*l.outputs;
-                softmax(l.output + index + 5, l.classes, 1, l.output + index + 5, 1);
-            }
-        }
-    }
-#endif
-    if(!state.train) return;
-    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
-    float avg_iou = 0;
-    float recall = 0;
-    float avg_cat = 0;
-    float avg_obj = 0;
-    float avg_anyobj = 0;
-    int count = 0;
-    int class_count = 0;
-    *(l.cost) = 0;
-    for (b = 0; b < l.batch; ++b) {
-        if(l.softmax_tree){
-            int onlyclass_id = 0;
-            for(t = 0; t < l.max_boxes; ++t){
-                box truth = float_to_box(state.truth + t*5 + b*l.truths);
-                if(!truth.x) break; // continue;
-                int class_id = state.truth[t*5 + b*l.truths + 4];
-                float maxp = 0;
-                int maxi = 0;
-                if(truth.x > 100000 && truth.y > 100000){
-                    for(n = 0; n < l.n*l.w*l.h; ++n){
-                        int index = size*n + b*l.outputs + 5;
-                        float scale =  l.output[index-1];
-                        float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class_id);
-                        if(p > maxp){
-                            maxp = p;
-                            maxi = n;
-                        }
-                    }
-                    int index = size*maxi + b*l.outputs + 5;
-                    delta_region_class(l.output, l.delta, index, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
-                    ++class_count;
-                    onlyclass_id = 1;
-                    break;
-                }
-            }
-            if(onlyclass_id) continue;
-        }
-        for (j = 0; j < l.h; ++j) {
-            for (i = 0; i < l.w; ++i) {
-                for (n = 0; n < l.n; ++n) {
-                    int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
-                    box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
-                    float best_iou = 0;
-                    int best_class_id = -1;
-                    for(t = 0; t < l.max_boxes; ++t){
-                        box truth = float_to_box(state.truth + t*5 + b*l.truths);
-                        int class_id = state.truth[t * 5 + b*l.truths + 4];
-                        if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file
-                        if(!truth.x) break; // continue;
-                        float iou = box_iou(pred, truth);
-                        if (iou > best_iou) {
-                            best_class_id = state.truth[t*5 + b*l.truths + 4];
-                            best_iou = iou;
-                        }
-                    }
-                    avg_anyobj += l.output[index + 4];
-                    l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
-                    if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
-                    else{
-                        if (best_iou > l.thresh) {
-                            l.delta[index + 4] = 0;
-                            if(l.classfix > 0){
-                                delta_region_class(l.output, l.delta, index + 5, best_class_id, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat, l.focal_loss);
-                                ++class_count;
-                            }
-                        }
-                    }
-
-                    if(*(state.net.seen) < 12800){
-                        box truth = {0};
-                        truth.x = (i + .5)/l.w;
-                        truth.y = (j + .5)/l.h;
-                        truth.w = l.biases[2*n];
-                        truth.h = l.biases[2*n+1];
-                        if(DOABS){
-                            truth.w = l.biases[2*n]/l.w;
-                            truth.h = l.biases[2*n+1]/l.h;
-                        }
-                        delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
-                    }
-                }
-            }
-        }
-        for(t = 0; t < l.max_boxes; ++t){
-            box truth = float_to_box(state.truth + t*5 + b*l.truths);
-            int class_id = state.truth[t * 5 + b*l.truths + 4];
-            if (class_id >= l.classes) {
-                printf("\n Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes-1);
-                getchar();
-                continue; // if label contains class_id more than number of classes in the cfg-file
-            }
-
-            if(!truth.x) break; // continue;
-            float best_iou = 0;
-            int best_index = 0;
-            int best_n = 0;
-            i = (truth.x * l.w);
-            j = (truth.y * l.h);
-            //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h);
-            box truth_shift = truth;
-            truth_shift.x = 0;
-            truth_shift.y = 0;
-            //printf("index %d %d\n",i, j);
-            for(n = 0; n < l.n; ++n){
-                int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
-                box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
-                if(l.bias_match){
-                    pred.w = l.biases[2*n];
-                    pred.h = l.biases[2*n+1];
-                    if(DOABS){
-                        pred.w = l.biases[2*n]/l.w;
-                        pred.h = l.biases[2*n+1]/l.h;
-                    }
-                }
-                //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
-                pred.x = 0;
-                pred.y = 0;
-                float iou = box_iou(pred, truth_shift);
-                if (iou > best_iou){
-                    best_index = index;
-                    best_iou = iou;
-                    best_n = n;
-                }
-            }
-            //printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
-
-            float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale);
-            if(iou > .5) recall += 1;
-            avg_iou += iou;
-
-            //l.delta[best_index + 4] = iou - l.output[best_index + 4];
-            avg_obj += l.output[best_index + 4];
-            l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
-            if (l.rescore) {
-                l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
-            }
-
-            if (l.map) class_id = l.map[class_id];
-            delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
-            ++count;
-            ++class_count;
-        }
-    }
-    //printf("\n");
-    #ifndef GPU
-    flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0);
-    #endif
-    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
-    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
-}
-
-void backward_region_layer(const region_layer l, network_state state)
-{
-    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
-}
-
-void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map)
-{
-    int i;
-    float *const predictions = l.output;
-    #pragma omp parallel for
-    for (i = 0; i < l.w*l.h; ++i){
-        int j, n;
-        int row = i / l.w;
-        int col = i % l.w;
-        for(n = 0; n < l.n; ++n){
-            int index = i*l.n + n;
-            int p_index = index * (l.classes + 5) + 4;
-            float scale = predictions[p_index];
-            if(l.classfix == -1 && scale < .5) scale = 0;
-            int box_index = index * (l.classes + 5);
-            boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);
-            boxes[index].x *= w;
-            boxes[index].y *= h;
-            boxes[index].w *= w;
-            boxes[index].h *= h;
-
-            int class_index = index * (l.classes + 5) + 5;
-            if(l.softmax_tree){
-
-                hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
-                int found = 0;
-                if(map){
-                    for(j = 0; j < 200; ++j){
-                        float prob = scale*predictions[class_index+map[j]];
-                        probs[index][j] = (prob > thresh) ? prob : 0;
-                    }
-                } else {
-                    for(j = l.classes - 1; j >= 0; --j){
-                        if(!found && predictions[class_index + j] > .5){
-                            found = 1;
-                        } else {
-                            predictions[class_index + j] = 0;
-                        }
-                        float prob = predictions[class_index+j];
-                        probs[index][j] = (scale > thresh) ? prob : 0;
-                    }
-                }
-            } else {
-                for(j = 0; j < l.classes; ++j){
-                    float prob = scale*predictions[class_index+j];
-                    probs[index][j] = (prob > thresh) ? prob : 0;
-                }
-            }
-            if(only_objectness){
-                probs[index][0] = scale;
-            }
-        }
-    }
-}
-
-#ifdef GPU
-
-void forward_region_layer_gpu(const region_layer l, network_state state)
-{
-    /*
-       if(!state.train){
-       copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
-       return;
-       }
-     */
-    flatten_ongpu(state.input, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 1, l.output_gpu);
-    if(l.softmax_tree){
-        int i;
-        int count = 5;
-        for (i = 0; i < l.softmax_tree->groups; ++i) {
-            int group_size = l.softmax_tree->group_size[i];
-            softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
-            count += group_size;
-        }
-    }else if (l.softmax){
-        softmax_gpu(l.output_gpu+5, l.classes, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + 5);
-    }
-
-    float* in_cpu = (float*)xcalloc(l.batch * l.inputs, sizeof(float));
-    float *truth_cpu = 0;
-    if(state.truth){
-        int num_truth = l.batch*l.truths;
-        truth_cpu = (float*)xcalloc(num_truth, sizeof(float));
-        cuda_pull_array(state.truth, truth_cpu, num_truth);
-    }
-    cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
-    //cudaStreamSynchronize(get_cuda_stream());
-    network_state cpu_state = state;
-    cpu_state.train = state.train;
-    cpu_state.truth = truth_cpu;
-    cpu_state.input = in_cpu;
-    forward_region_layer(l, cpu_state);
-    //cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
-    free(cpu_state.input);
-    if(!state.train) return;
-    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
-    //cudaStreamSynchronize(get_cuda_stream());
-    if(cpu_state.truth) free(cpu_state.truth);
-}
-
-void backward_region_layer_gpu(region_layer l, network_state state)
-{
-    flatten_ongpu(l.delta_gpu, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 0, state.delta);
-}
-#endif
-
-
-void correct_region_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
-{
-    int i;
-    int new_w = 0;
-    int new_h = 0;
-    if (((float)netw / w) < ((float)neth / h)) {
-        new_w = netw;
-        new_h = (h * netw) / w;
-    }
-    else {
-        new_h = neth;
-        new_w = (w * neth) / h;
-    }
-    for (i = 0; i < n; ++i) {
-        box b = dets[i].bbox;
-        b.x = (b.x - (netw - new_w) / 2. / netw) / ((float)new_w / netw);
-        b.y = (b.y - (neth - new_h) / 2. / neth) / ((float)new_h / neth);
-        b.w *= (float)netw / new_w;
-        b.h *= (float)neth / new_h;
-        if (!relative) {
-            b.x *= w;
-            b.w *= w;
-            b.y *= h;
-            b.h *= h;
-        }
-        dets[i].bbox = b;
-    }
-}
-
-
-void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets)
-{
-    int i, j, n, z;
-    float *predictions = l.output;
-    if (l.batch == 2) {
-        float *flip = l.output + l.outputs;
-        for (j = 0; j < l.h; ++j) {
-            for (i = 0; i < l.w / 2; ++i) {
-                for (n = 0; n < l.n; ++n) {
-                    for (z = 0; z < l.classes + l.coords + 1; ++z) {
-                        int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
-                        int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
-                        float swap = flip[i1];
-                        flip[i1] = flip[i2];
-                        flip[i2] = swap;
-                        if (z == 0) {
-                            flip[i1] = -flip[i1];
-                            flip[i2] = -flip[i2];
-                        }
-                    }
-                }
-            }
-        }
-        for (i = 0; i < l.outputs; ++i) {
-            l.output[i] = (l.output[i] + flip[i]) / 2.;
-        }
-    }
-    for (i = 0; i < l.w*l.h; ++i) {
-        int row = i / l.w;
-        int col = i % l.w;
-        for (n = 0; n < l.n; ++n) {
-            int index = n*l.w*l.h + i;
-            for (j = 0; j < l.classes; ++j) {
-                dets[index].prob[j] = 0;
-            }
-            int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
-            int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
-            int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4);
-            float scale = l.background ? 1 : predictions[obj_index];
-            dets[index].bbox = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);// , l.w*l.h);
-            dets[index].objectness = scale > thresh ? scale : 0;
-            if (dets[index].mask) {
-                for (j = 0; j < l.coords - 4; ++j) {
-                    dets[index].mask[j] = l.output[mask_index + j*l.w*l.h];
-                }
-            }
-
-            int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background);
-            if (l.softmax_tree) {
-
-                hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);// , l.w*l.h);
-                if (map) {
-                    for (j = 0; j < 200; ++j) {
-                        int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]);
-                        float prob = scale*predictions[class_index];
-                        dets[index].prob[j] = (prob > thresh) ? prob : 0;
-                    }
-                }
-                else {
-                    int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h);
-                    dets[index].prob[j] = (scale > thresh) ? scale : 0;
-                }
-            }
-            else {
-                if (dets[index].objectness) {
-                    for (j = 0; j < l.classes; ++j) {
-                        int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j);
-                        float prob = scale*predictions[class_index];
-                        dets[index].prob[j] = (prob > thresh) ? prob : 0;
-                    }
-                }
-            }
-        }
-    }
-    correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative);
-}
-
-void zero_objectness(layer l)
-{
-    int i, n;
-    for (i = 0; i < l.w*l.h; ++i) {
-        for (n = 0; n < l.n; ++n) {
-            int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
-            l.output[obj_index] = 0;
-        }
-    }
-}
+#include "region_layer.h"
+#include "activations.h"
+#include "blas.h"
+#include "box.h"
+#include "dark_cuda.h"
+#include "utils.h"
+#include <stdio.h>
+#include <assert.h>
+#include <string.h>
+#include <stdlib.h>
+
+#define DOABS 1
+
+region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords, int max_boxes)
+{
+    region_layer l = { (LAYER_TYPE)0 };
+    l.type = REGION;
+
+    l.n = n;
+    l.batch = batch;
+    l.h = h;
+    l.w = w;
+    l.classes = classes;
+    l.coords = coords;
+    l.cost = (float*)xcalloc(1, sizeof(float));
+    l.biases = (float*)xcalloc(n * 2, sizeof(float));
+    l.bias_updates = (float*)xcalloc(n * 2, sizeof(float));
+    l.outputs = h*w*n*(classes + coords + 1);
+    l.inputs = l.outputs;
+    l.max_boxes = max_boxes;
+    l.truth_size = 4 + 2;
+    l.truths = max_boxes*l.truth_size;
+    l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
+    l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
+    int i;
+    for(i = 0; i < n*2; ++i){
+        l.biases[i] = .5;
+    }
+
+    l.forward = forward_region_layer;
+    l.backward = backward_region_layer;
+#ifdef GPU
+    l.forward_gpu = forward_region_layer_gpu;
+    l.backward_gpu = backward_region_layer_gpu;
+    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
+    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
+#endif
+
+    fprintf(stderr, "detection\n");
+    srand(time(0));
+
+    return l;
+}
+
+void resize_region_layer(layer *l, int w, int h)
+{
+#ifdef GPU
+    int old_w = l->w;
+    int old_h = l->h;
+#endif
+    l->w = w;
+    l->h = h;
+
+    l->outputs = h*w*l->n*(l->classes + l->coords + 1);
+    l->inputs = l->outputs;
+
+    l->output = (float*)xrealloc(l->output, l->batch * l->outputs * sizeof(float));
+    l->delta = (float*)xrealloc(l->delta, l->batch * l->outputs * sizeof(float));
+
+#ifdef GPU
+    //if (old_w < w || old_h < h)
+    {
+        cuda_free(l->delta_gpu);
+        cuda_free(l->output_gpu);
+
+        l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
+        l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+    }
+#endif
+}
+
+box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
+{
+    box b;
+    b.x = (i + logistic_activate(x[index + 0])) / w;
+    b.y = (j + logistic_activate(x[index + 1])) / h;
+    b.w = exp(x[index + 2]) * biases[2*n];
+    b.h = exp(x[index + 3]) * biases[2*n+1];
+    if(DOABS){
+        b.w = exp(x[index + 2]) * biases[2*n]   / w;
+        b.h = exp(x[index + 3]) * biases[2*n+1] / h;
+    }
+    return b;
+}
+
+float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale)
+{
+    box pred = get_region_box(x, biases, n, index, i, j, w, h);
+    float iou = box_iou(pred, truth);
+
+    float tx = (truth.x*w - i);
+    float ty = (truth.y*h - j);
+    float tw = log(truth.w / biases[2*n]);
+    float th = log(truth.h / biases[2*n + 1]);
+    if(DOABS){
+        tw = log(truth.w*w / biases[2*n]);
+        th = log(truth.h*h / biases[2*n + 1]);
+    }
+
+    delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
+    delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
+    delta[index + 2] = scale * (tw - x[index + 2]);
+    delta[index + 3] = scale * (th - x[index + 3]);
+    return iou;
+}
+
+void delta_region_class(float *output, float *delta, int index, int class_id, int classes, tree *hier, float scale, float *avg_cat, int focal_loss)
+{
+    int i, n;
+    if(hier){
+        float pred = 1;
+        while(class_id >= 0){
+            pred *= output[index + class_id];
+            int g = hier->group[class_id];
+            int offset = hier->group_offset[g];
+            for(i = 0; i < hier->group_size[g]; ++i){
+                delta[index + offset + i] = scale * (0 - output[index + offset + i]);
+            }
+            delta[index + class_id] = scale * (1 - output[index + class_id]);
+
+            class_id = hier->parent[class_id];
+        }
+        *avg_cat += pred;
+    } else {
+        // Focal loss
+        if (focal_loss) {
+            // Focal Loss
+            float alpha = 0.5;    // 0.25 or 0.5
+            //float gamma = 2;    // hardcoded in many places of the grad-formula
+
+            int ti = index + class_id;
+            float pt = output[ti] + 0.000000000000001F;
+            // http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d
+            float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1);    // http://blog.csdn.net/linmingan/article/details/77885832
+            //float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1);    // https://github.com/unsky/focal-loss
+
+            for (n = 0; n < classes; ++n) {
+                delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
+
+                delta[index + n] *= alpha*grad;
+
+                if (n == class_id) *avg_cat += output[index + n];
+            }
+        }
+        else {
+            // default
+            for (n = 0; n < classes; ++n) {
+                delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
+                if (n == class_id) *avg_cat += output[index + n];
+            }
+        }
+    }
+}
+
+float logit(float x)
+{
+    return log(x/(1.-x));
+}
+
+float tisnan(float x)
+{
+    return (x != x);
+}
+
+static int entry_index(layer l, int batch, int location, int entry)
+{
+    int n = location / (l.w*l.h);
+    int loc = location % (l.w*l.h);
+    return batch*l.outputs + n*l.w*l.h*(l.coords + l.classes + 1) + entry*l.w*l.h + loc;
+}
+
+void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output);
+void forward_region_layer(const region_layer l, network_state state)
+{
+    int i,j,b,t,n;
+    int size = l.coords + l.classes + 1;
+    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
+    #ifndef GPU
+    flatten(l.output, l.w*l.h, size*l.n, l.batch, 1);
+    #endif
+    for (b = 0; b < l.batch; ++b){
+        for(i = 0; i < l.h*l.w*l.n; ++i){
+            int index = size*i + b*l.outputs;
+            l.output[index + 4] = logistic_activate(l.output[index + 4]);
+        }
+    }
+
+
+#ifndef GPU
+    if (l.softmax_tree){
+        for (b = 0; b < l.batch; ++b){
+            for(i = 0; i < l.h*l.w*l.n; ++i){
+                int index = size*i + b*l.outputs;
+                softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
+            }
+        }
+    } else if (l.softmax){
+        for (b = 0; b < l.batch; ++b){
+            for(i = 0; i < l.h*l.w*l.n; ++i){
+                int index = size*i + b*l.outputs;
+                softmax(l.output + index + 5, l.classes, 1, l.output + index + 5, 1);
+            }
+        }
+    }
+#endif
+    if(!state.train) return;
+    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
+    float avg_iou = 0;
+    float recall = 0;
+    float avg_cat = 0;
+    float avg_obj = 0;
+    float avg_anyobj = 0;
+    int count = 0;
+    int class_count = 0;
+    *(l.cost) = 0;
+    for (b = 0; b < l.batch; ++b) {
+        if(l.softmax_tree){
+            int onlyclass_id = 0;
+            for(t = 0; t < l.max_boxes; ++t){
+                box truth = float_to_box(state.truth + t*l.truth_size + b*l.truths);
+                if(!truth.x) break; // continue;
+                int class_id = state.truth[t*l.truth_size + b*l.truths + 4];
+                float maxp = 0;
+                int maxi = 0;
+                if(truth.x > 100000 && truth.y > 100000){
+                    for(n = 0; n < l.n*l.w*l.h; ++n){
+                        int index = size*n + b*l.outputs + 5;
+                        float scale =  l.output[index-1];
+                        float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class_id);
+                        if(p > maxp){
+                            maxp = p;
+                            maxi = n;
+                        }
+                    }
+                    int index = size*maxi + b*l.outputs + 5;
+                    delta_region_class(l.output, l.delta, index, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
+                    ++class_count;
+                    onlyclass_id = 1;
+                    break;
+                }
+            }
+            if(onlyclass_id) continue;
+        }
+        for (j = 0; j < l.h; ++j) {
+            for (i = 0; i < l.w; ++i) {
+                for (n = 0; n < l.n; ++n) {
+                    int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
+                    box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
+                    float best_iou = 0;
+                    int best_class_id = -1;
+                    for(t = 0; t < l.max_boxes; ++t){
+                        box truth = float_to_box(state.truth + t*l.truth_size + b*l.truths);
+                        int class_id = state.truth[t * l.truth_size + b*l.truths + 4];
+                        if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file
+                        if(!truth.x) break; // continue;
+                        float iou = box_iou(pred, truth);
+                        if (iou > best_iou) {
+                            best_class_id = state.truth[t*l.truth_size + b*l.truths + 4];
+                            best_iou = iou;
+                        }
+                    }
+                    avg_anyobj += l.output[index + 4];
+                    l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
+                    if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
+                    else{
+                        if (best_iou > l.thresh) {
+                            l.delta[index + 4] = 0;
+                            if(l.classfix > 0){
+                                delta_region_class(l.output, l.delta, index + 5, best_class_id, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat, l.focal_loss);
+                                ++class_count;
+                            }
+                        }
+                    }
+
+                    if(*(state.net.seen) < 12800){
+                        box truth = {0};
+                        truth.x = (i + .5)/l.w;
+                        truth.y = (j + .5)/l.h;
+                        truth.w = l.biases[2*n];
+                        truth.h = l.biases[2*n+1];
+                        if(DOABS){
+                            truth.w = l.biases[2*n]/l.w;
+                            truth.h = l.biases[2*n+1]/l.h;
+                        }
+                        delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
+                    }
+                }
+            }
+        }
+        for(t = 0; t < l.max_boxes; ++t){
+            box truth = float_to_box(state.truth + t*l.truth_size + b*l.truths);
+            int class_id = state.truth[t * l.truth_size + b*l.truths + 4];
+            if (class_id >= l.classes) {
+                printf("\n Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes-1);
+                getchar();
+                continue; // if label contains class_id more than number of classes in the cfg-file
+            }
+
+            if(!truth.x) break; // continue;
+            float best_iou = 0;
+            int best_index = 0;
+            int best_n = 0;
+            i = (truth.x * l.w);
+            j = (truth.y * l.h);
+            //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h);
+            box truth_shift = truth;
+            truth_shift.x = 0;
+            truth_shift.y = 0;
+            //printf("index %d %d\n",i, j);
+            for(n = 0; n < l.n; ++n){
+                int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
+                box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
+                if(l.bias_match){
+                    pred.w = l.biases[2*n];
+                    pred.h = l.biases[2*n+1];
+                    if(DOABS){
+                        pred.w = l.biases[2*n]/l.w;
+                        pred.h = l.biases[2*n+1]/l.h;
+                    }
+                }
+                //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
+                pred.x = 0;
+                pred.y = 0;
+                float iou = box_iou(pred, truth_shift);
+                if (iou > best_iou){
+                    best_index = index;
+                    best_iou = iou;
+                    best_n = n;
+                }
+            }
+            //printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
+
+            float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale);
+            if(iou > .5) recall += 1;
+            avg_iou += iou;
+
+            //l.delta[best_index + 4] = iou - l.output[best_index + 4];
+            avg_obj += l.output[best_index + 4];
+            l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
+            if (l.rescore) {
+                l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
+            }
+
+            if (l.map) class_id = l.map[class_id];
+            delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
+            ++count;
+            ++class_count;
+        }
+    }
+    //printf("\n");
+    #ifndef GPU
+    flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0);
+    #endif
+    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
+    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
+}
+
+void backward_region_layer(const region_layer l, network_state state)
+{
+    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
+}
+
+void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map)
+{
+    int i;
+    float *const predictions = l.output;
+    #pragma omp parallel for
+    for (i = 0; i < l.w*l.h; ++i){
+        int j, n;
+        int row = i / l.w;
+        int col = i % l.w;
+        for(n = 0; n < l.n; ++n){
+            int index = i*l.n + n;
+            int p_index = index * (l.classes + 5) + 4;
+            float scale = predictions[p_index];
+            if(l.classfix == -1 && scale < .5) scale = 0;
+            int box_index = index * (l.classes + 5);
+            boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);
+            boxes[index].x *= w;
+            boxes[index].y *= h;
+            boxes[index].w *= w;
+            boxes[index].h *= h;
+
+            int class_index = index * (l.classes + 5) + 5;
+            if(l.softmax_tree){
+
+                hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
+                int found = 0;
+                if(map){
+                    for(j = 0; j < 200; ++j){
+                        float prob = scale*predictions[class_index+map[j]];
+                        probs[index][j] = (prob > thresh) ? prob : 0;
+                    }
+                } else {
+                    for(j = l.classes - 1; j >= 0; --j){
+                        if(!found && predictions[class_index + j] > .5){
+                            found = 1;
+                        } else {
+                            predictions[class_index + j] = 0;
+                        }
+                        float prob = predictions[class_index+j];
+                        probs[index][j] = (scale > thresh) ? prob : 0;
+                    }
+                }
+            } else {
+                for(j = 0; j < l.classes; ++j){
+                    float prob = scale*predictions[class_index+j];
+                    probs[index][j] = (prob > thresh) ? prob : 0;
+                }
+            }
+            if(only_objectness){
+                probs[index][0] = scale;
+            }
+        }
+    }
+}
+
+#ifdef GPU
+
+void forward_region_layer_gpu(const region_layer l, network_state state)
+{
+    /*
+       if(!state.train){
+       copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
+       return;
+       }
+     */
+    flatten_ongpu(state.input, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 1, l.output_gpu);
+    if(l.softmax_tree){
+        int i;
+        int count = 5;
+        for (i = 0; i < l.softmax_tree->groups; ++i) {
+            int group_size = l.softmax_tree->group_size[i];
+            softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
+            count += group_size;
+        }
+    }else if (l.softmax){
+        softmax_gpu(l.output_gpu+5, l.classes, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + 5);
+    }
+
+    float* in_cpu = (float*)xcalloc(l.batch * l.inputs, sizeof(float));
+    float *truth_cpu = 0;
+    if(state.truth){
+        int num_truth = l.batch*l.truths;
+        truth_cpu = (float*)xcalloc(num_truth, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, num_truth);
+    }
+    cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
+    //cudaStreamSynchronize(get_cuda_stream());
+    network_state cpu_state = state;
+    cpu_state.train = state.train;
+    cpu_state.truth = truth_cpu;
+    cpu_state.input = in_cpu;
+    forward_region_layer(l, cpu_state);
+    //cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
+    free(cpu_state.input);
+    if(!state.train) return;
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
+    //cudaStreamSynchronize(get_cuda_stream());
+    if(cpu_state.truth) free(cpu_state.truth);
+}
+
+void backward_region_layer_gpu(region_layer l, network_state state)
+{
+    flatten_ongpu(l.delta_gpu, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 0, state.delta);
+}
+#endif
+
+
+void correct_region_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
+{
+    int i;
+    int new_w = 0;
+    int new_h = 0;
+    if (((float)netw / w) < ((float)neth / h)) {
+        new_w = netw;
+        new_h = (h * netw) / w;
+    }
+    else {
+        new_h = neth;
+        new_w = (w * neth) / h;
+    }
+    for (i = 0; i < n; ++i) {
+        box b = dets[i].bbox;
+        b.x = (b.x - (netw - new_w) / 2. / netw) / ((float)new_w / netw);
+        b.y = (b.y - (neth - new_h) / 2. / neth) / ((float)new_h / neth);
+        b.w *= (float)netw / new_w;
+        b.h *= (float)neth / new_h;
+        if (!relative) {
+            b.x *= w;
+            b.w *= w;
+            b.y *= h;
+            b.h *= h;
+        }
+        dets[i].bbox = b;
+    }
+}
+
+
+void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets)
+{
+    int i, j, n, z;
+    float *predictions = l.output;
+    if (l.batch == 2) {
+        float *flip = l.output + l.outputs;
+        for (j = 0; j < l.h; ++j) {
+            for (i = 0; i < l.w / 2; ++i) {
+                for (n = 0; n < l.n; ++n) {
+                    for (z = 0; z < l.classes + l.coords + 1; ++z) {
+                        int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
+                        int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
+                        float swap = flip[i1];
+                        flip[i1] = flip[i2];
+                        flip[i2] = swap;
+                        if (z == 0) {
+                            flip[i1] = -flip[i1];
+                            flip[i2] = -flip[i2];
+                        }
+                    }
+                }
+            }
+        }
+        for (i = 0; i < l.outputs; ++i) {
+            l.output[i] = (l.output[i] + flip[i]) / 2.;
+        }
+    }
+    for (i = 0; i < l.w*l.h; ++i) {
+        int row = i / l.w;
+        int col = i % l.w;
+        for (n = 0; n < l.n; ++n) {
+            int index = n*l.w*l.h + i;
+            for (j = 0; j < l.classes; ++j) {
+                dets[index].prob[j] = 0;
+            }
+            int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
+            int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
+            int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4);
+            float scale = l.background ? 1 : predictions[obj_index];
+            dets[index].bbox = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);// , l.w*l.h);
+            dets[index].objectness = scale > thresh ? scale : 0;
+            if (dets[index].mask) {
+                for (j = 0; j < l.coords - 4; ++j) {
+                    dets[index].mask[j] = l.output[mask_index + j*l.w*l.h];
+                }
+            }
+
+            int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background);
+            if (l.softmax_tree) {
+
+                hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);// , l.w*l.h);
+                if (map) {
+                    for (j = 0; j < 200; ++j) {
+                        int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]);
+                        float prob = scale*predictions[class_index];
+                        dets[index].prob[j] = (prob > thresh) ? prob : 0;
+                    }
+                }
+                else {
+                    int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h);
+                    dets[index].prob[j] = (scale > thresh) ? scale : 0;
+                }
+            }
+            else {
+                if (dets[index].objectness) {
+                    for (j = 0; j < l.classes; ++j) {
+                        int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j);
+                        float prob = scale*predictions[class_index];
+                        dets[index].prob[j] = (prob > thresh) ? prob : 0;
+                    }
+                }
+            }
+        }
+    }
+    correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative);
+}
+
+void zero_objectness(layer l)
+{
+    int i, n;
+    for (i = 0; i < l.w*l.h; ++i) {
+        for (n = 0; n < l.n; ++n) {
+            int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
+            l.output[obj_index] = 0;
+        }
+    }
+}

--
Gitblit v1.8.0