From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/rnn.c |  996 +++++++++++++++++++++++++++++-----------------------------
 1 files changed, 498 insertions(+), 498 deletions(-)

diff --git a/lib/detecter_tools/darknet/rnn.c b/lib/detecter_tools/darknet/rnn.c
index a9ee97b..53fb8f3 100644
--- a/lib/detecter_tools/darknet/rnn.c
+++ b/lib/detecter_tools/darknet/rnn.c
@@ -1,498 +1,498 @@
-#include "network.h"
-#include "cost_layer.h"
-#include "utils.h"
-#include "blas.h"
-#include "parser.h"
-
-typedef struct {
-    float *x;
-    float *y;
-} float_pair;
-
-int *read_tokenized_data(char *filename, size_t *read)
-{
-    size_t size = 512;
-    size_t count = 0;
-    FILE *fp = fopen(filename, "r");
-    int* d = (int*)xcalloc(size, sizeof(int));
-    int n, one;
-    one = fscanf(fp, "%d", &n);
-    while(one == 1){
-        ++count;
-        if(count > size){
-            size = size*2;
-            d = (int*)xrealloc(d, size * sizeof(int));
-        }
-        d[count-1] = n;
-        one = fscanf(fp, "%d", &n);
-    }
-    fclose(fp);
-    d = (int*)xrealloc(d, count * sizeof(int));
-    *read = count;
-    return d;
-}
-
-char **read_tokens(char *filename, size_t *read)
-{
-    size_t size = 512;
-    size_t count = 0;
-    FILE *fp = fopen(filename, "r");
-    char** d = (char**)xcalloc(size, sizeof(char*));
-    char *line;
-    while((line=fgetl(fp)) != 0){
-        ++count;
-        if(count > size){
-            size = size*2;
-            d = (char**)xrealloc(d, size * sizeof(char*));
-        }
-        d[count-1] = line;
-    }
-    fclose(fp);
-    d = (char**)xrealloc(d, count * sizeof(char*));
-    *read = count;
-    return d;
-}
-
-float_pair get_rnn_token_data(int *tokens, size_t *offsets, int characters, size_t len, int batch, int steps)
-{
-    float* x = (float*)xcalloc(batch * steps * characters, sizeof(float));
-    float* y = (float*)xcalloc(batch * steps * characters, sizeof(float));
-    int i,j;
-    for(i = 0; i < batch; ++i){
-        for(j = 0; j < steps; ++j){
-            int curr = tokens[(offsets[i])%len];
-            int next = tokens[(offsets[i] + 1)%len];
-
-            x[(j*batch + i)*characters + curr] = 1;
-            y[(j*batch + i)*characters + next] = 1;
-
-            offsets[i] = (offsets[i] + 1) % len;
-
-            if(curr >= characters || curr < 0 || next >= characters || next < 0){
-                error("Bad char");
-            }
-        }
-    }
-    float_pair p;
-    p.x = x;
-    p.y = y;
-    return p;
-}
-
-float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps)
-{
-    float* x = (float*)xcalloc(batch * steps * characters, sizeof(float));
-    float* y = (float*)xcalloc(batch * steps * characters, sizeof(float));
-    int i,j;
-    for(i = 0; i < batch; ++i){
-        for(j = 0; j < steps; ++j){
-            unsigned char curr = text[(offsets[i])%len];
-            unsigned char next = text[(offsets[i] + 1)%len];
-
-            x[(j*batch + i)*characters + curr] = 1;
-            y[(j*batch + i)*characters + next] = 1;
-
-            offsets[i] = (offsets[i] + 1) % len;
-
-            if(curr > 255 || curr <= 0 || next > 255 || next <= 0){
-                /*text[(index+j+2)%len] = 0;
-                printf("%ld %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]);
-                printf("%s", text+index);
-                */
-                error("Bad char");
-            }
-        }
-    }
-    float_pair p;
-    p.x = x;
-    p.y = y;
-    return p;
-}
-
-void reset_rnn_state(network net, int b)
-{
-    int i;
-    for (i = 0; i < net.n; ++i) {
-        #ifdef GPU
-        layer l = net.layers[i];
-        if(l.state_gpu){
-            fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
-        }
-        #endif
-    }
-}
-
-void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized)
-{
-    srand(time(0));
-    unsigned char *text = 0;
-    int *tokens = 0;
-    size_t size;
-    if(tokenized){
-        tokens = read_tokenized_data(filename, &size);
-    } else {
-        FILE *fp = fopen(filename, "rb");
-
-        fseek(fp, 0, SEEK_END);
-        size = ftell(fp);
-        fseek(fp, 0, SEEK_SET);
-
-        text = (unsigned char *)xcalloc(size + 1, sizeof(char));
-        fread(text, 1, size, fp);
-        fclose(fp);
-    }
-
-    char* backup_directory = "backup/";
-    char *base = basecfg(cfgfile);
-    fprintf(stderr, "%s\n", base);
-    float avg_loss = -1;
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-
-    int inputs = get_network_input_size(net);
-    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int batch = net.batch;
-    int steps = net.time_steps;
-    if (clear) {
-        *net.seen = 0;
-        *net.cur_iteration = 0;
-    }
-    int i = (*net.seen)/net.batch;
-
-    int streams = batch/steps;
-    printf("\n batch = %d, steps = %d, streams = %d, subdivisions = %d, text_size = %ld \n", batch, steps, streams, net.subdivisions, size);
-    printf(" global_batch = %d \n", batch*net.subdivisions);
-    size_t* offsets = (size_t*)xcalloc(streams, sizeof(size_t));
-    int j;
-    for(j = 0; j < streams; ++j){
-        offsets[j] = rand_size_t()%size;
-        //printf(" offset[%d] = %d, ", j, offsets[j]);
-    }
-    //printf("\n");
-
-    clock_t time;
-    while(get_current_batch(net) < net.max_batches){
-        i += 1;
-        time=clock();
-        float_pair p;
-        if(tokenized){
-            p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps);
-        }else{
-            p = get_rnn_data(text, offsets, inputs, size, streams, steps);
-        }
-
-        float loss = train_network_datum(net, p.x, p.y) / (batch);
-        free(p.x);
-        free(p.y);
-        if (avg_loss < 0) avg_loss = loss;
-        avg_loss = avg_loss*.9 + loss*.1;
-
-        int chars = get_current_batch(net)*batch;
-        fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size);
-
-        for(j = 0; j < streams; ++j){
-            //printf("%d\n", j);
-            if(rand()%10 == 0){
-                //fprintf(stderr, "Reset\n");
-                offsets[j] = rand_size_t()%size;
-                reset_rnn_state(net, j);
-            }
-        }
-
-        if(i%1000==0){
-            char buff[256];
-            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
-            save_weights(net, buff);
-        }
-        if(i%10==0){
-            char buff[256];
-            sprintf(buff, "%s/%s.backup", backup_directory, base);
-            save_weights(net, buff);
-        }
-    }
-    char buff[256];
-    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
-    save_weights(net, buff);
-}
-
-void print_symbol(int n, char **tokens){
-    if(tokens){
-        printf("%s ", tokens[n]);
-    } else {
-        printf("%c", n);
-    }
-}
-
-void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file)
-{
-    char **tokens = 0;
-    if(token_file){
-        size_t n;
-        tokens = read_tokens(token_file, &n);
-    }
-
-    srand(rseed);
-    char *base = basecfg(cfgfile);
-    fprintf(stderr, "%s\n", base);
-
-    network net = parse_network_cfg_custom(cfgfile, 1, 1);  // batch=1, time_steps=1
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    int inputs = get_network_input_size(net);
-
-    int i, j;
-    for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
-    int c = 0;
-    int len = strlen(seed);
-    float* input = (float*)xcalloc(inputs, sizeof(float));
-
-    /*
-       fill_cpu(inputs, 0, input, 1);
-       for(i = 0; i < 10; ++i){
-       network_predict(net, input);
-       }
-       fill_cpu(inputs, 0, input, 1);
-     */
-
-    for(i = 0; i < len-1; ++i){
-        c = seed[i];
-        input[c] = 1;
-        network_predict(net, input);
-        input[c] = 0;
-        print_symbol(c, tokens);
-    }
-    if(len) c = seed[len-1];
-    print_symbol(c, tokens);
-    for(i = 0; i < num; ++i){
-        input[c] = 1;
-        float *out = network_predict(net, input);
-        input[c] = 0;
-        for(j = 32; j < 127; ++j){
-            //printf("%d %c %f\n",j, j, out[j]);
-        }
-        for(j = 0; j < inputs; ++j){
-            if (out[j] < .0001) out[j] = 0;
-        }
-        c = sample_array(out, inputs);
-        //c = sample_array_custom(out, inputs);
-        //c = max_index(out, inputs);
-        //c = top_max_index(out, inputs, 2);
-        print_symbol(c, tokens);
-    }
-    printf("\n");
-}
-
-void test_tactic_rnn(char *cfgfile, char *weightfile, int num, float temp, int rseed, char *token_file)
-{
-    char **tokens = 0;
-    if(token_file){
-        size_t n;
-        tokens = read_tokens(token_file, &n);
-    }
-
-    srand(rseed);
-    char *base = basecfg(cfgfile);
-    fprintf(stderr, "%s\n", base);
-
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    int inputs = get_network_input_size(net);
-
-    int i, j;
-    for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
-    int c = 0;
-    float* input = (float*)xcalloc(inputs, sizeof(float));
-    float *out = 0;
-
-    while((c = getc(stdin)) != EOF){
-        input[c] = 1;
-        out = network_predict(net, input);
-        input[c] = 0;
-    }
-    for(i = 0; i < num; ++i){
-        for(j = 0; j < inputs; ++j){
-            if (out[j] < .0001) out[j] = 0;
-        }
-        int next = sample_array(out, inputs);
-        if(c == '.' && next == '\n') break;
-        c = next;
-        print_symbol(c, tokens);
-
-        input[c] = 1;
-        out = network_predict(net, input);
-        input[c] = 0;
-    }
-    printf("\n");
-}
-
-void valid_tactic_rnn(char *cfgfile, char *weightfile, char *seed)
-{
-    char *base = basecfg(cfgfile);
-    fprintf(stderr, "%s\n", base);
-
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    int inputs = get_network_input_size(net);
-
-    int count = 0;
-    int words = 1;
-    int c;
-    int len = strlen(seed);
-    float* input = (float*)xcalloc(inputs, sizeof(float));
-    int i;
-    for(i = 0; i < len; ++i){
-        c = seed[i];
-        input[(int)c] = 1;
-        network_predict(net, input);
-        input[(int)c] = 0;
-    }
-    float sum = 0;
-    c = getc(stdin);
-    float log2 = log(2);
-    int in = 0;
-    while(c != EOF){
-        int next = getc(stdin);
-        if(next == EOF) break;
-        if(next < 0 || next >= 255) error("Out of range character");
-
-        input[c] = 1;
-        float *out = network_predict(net, input);
-        input[c] = 0;
-
-        if(c == '.' && next == '\n') in = 0;
-        if(!in) {
-            if(c == '>' && next == '>'){
-                in = 1;
-                ++words;
-            }
-            c = next;
-            continue;
-        }
-        ++count;
-        sum += log(out[next])/log2;
-        c = next;
-        printf("%d %d Perplexity: %4.4f    Word Perplexity: %4.4f\n", count, words, pow(2, -sum/count), pow(2, -sum/words));
-    }
-}
-
-void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
-{
-    char *base = basecfg(cfgfile);
-    fprintf(stderr, "%s\n", base);
-
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    int inputs = get_network_input_size(net);
-
-    int count = 0;
-    int words = 1;
-    int c;
-    int len = strlen(seed);
-    float* input = (float*)xcalloc(inputs, sizeof(float));
-    int i;
-    for(i = 0; i < len; ++i){
-        c = seed[i];
-        input[(int)c] = 1;
-        network_predict(net, input);
-        input[(int)c] = 0;
-    }
-    float sum = 0;
-    c = getc(stdin);
-    float log2 = log(2);
-    while(c != EOF){
-        int next = getc(stdin);
-        if(next == EOF) break;
-        if(next < 0 || next >= 255) error("Out of range character");
-        ++count;
-        if(next == ' ' || next == '\n' || next == '\t') ++words;
-        input[c] = 1;
-        float *out = network_predict(net, input);
-        input[c] = 0;
-        sum += log(out[next])/log2;
-        c = next;
-        printf("%d Perplexity: %4.4f    Word Perplexity: %4.4f\n", count, pow(2, -sum/count), pow(2, -sum/words));
-    }
-}
-
-void vec_char_rnn(char *cfgfile, char *weightfile, char *seed)
-{
-    char *base = basecfg(cfgfile);
-    fprintf(stderr, "%s\n", base);
-
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    int inputs = get_network_input_size(net);
-
-    int c;
-    int seed_len = strlen(seed);
-    float* input = (float*)xcalloc(inputs, sizeof(float));
-    int i;
-    char *line;
-    while((line=fgetl(stdin)) != 0){
-        reset_rnn_state(net, 0);
-        for(i = 0; i < seed_len; ++i){
-            c = seed[i];
-            input[(int)c] = 1;
-            network_predict(net, input);
-            input[(int)c] = 0;
-        }
-        strip(line);
-        int str_len = strlen(line);
-        for(i = 0; i < str_len; ++i){
-            c = line[i];
-            input[(int)c] = 1;
-            network_predict(net, input);
-            input[(int)c] = 0;
-        }
-        c = ' ';
-        input[(int)c] = 1;
-        network_predict(net, input);
-        input[(int)c] = 0;
-
-        layer l = net.layers[0];
-        #ifdef GPU
-        cuda_pull_array(l.output_gpu, l.output, l.outputs);
-        #endif
-        printf("%s", line);
-        for(i = 0; i < l.outputs; ++i){
-            printf(",%g", l.output[i]);
-        }
-        printf("\n");
-    }
-}
-
-void run_char_rnn(int argc, char **argv)
-{
-    if(argc < 4){
-        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
-        return;
-    }
-    char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt");
-    char *seed = find_char_arg(argc, argv, "-seed", "\n\n");
-    int len = find_int_arg(argc, argv, "-len", 1000);
-    float temp = find_float_arg(argc, argv, "-temp", .7);
-    int rseed = find_int_arg(argc, argv, "-srand", time(0));
-    int clear = find_arg(argc, argv, "-clear");
-    int tokenized = find_arg(argc, argv, "-tokenized");
-    char *tokens = find_char_arg(argc, argv, "-tokens", 0);
-
-    char *cfg = argv[3];
-    char *weights = (argc > 4) ? argv[4] : 0;
-    if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized);
-    else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed);
-    else if(0==strcmp(argv[2], "validtactic")) valid_tactic_rnn(cfg, weights, seed);
-    else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed);
-    else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens);
-    else if(0==strcmp(argv[2], "generatetactic")) test_tactic_rnn(cfg, weights, len, temp, rseed, tokens);
-}
+#include "network.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "blas.h"
+#include "parser.h"
+
+typedef struct {
+    float *x;
+    float *y;
+} float_pair;
+
+int *read_tokenized_data(char *filename, size_t *read)
+{
+    size_t size = 512;
+    size_t count = 0;
+    FILE *fp = fopen(filename, "r");
+    int* d = (int*)xcalloc(size, sizeof(int));
+    int n, one;
+    one = fscanf(fp, "%d", &n);
+    while(one == 1){
+        ++count;
+        if(count > size){
+            size = size*2;
+            d = (int*)xrealloc(d, size * sizeof(int));
+        }
+        d[count-1] = n;
+        one = fscanf(fp, "%d", &n);
+    }
+    fclose(fp);
+    d = (int*)xrealloc(d, count * sizeof(int));
+    *read = count;
+    return d;
+}
+
+char **read_tokens(char *filename, size_t *read)
+{
+    size_t size = 512;
+    size_t count = 0;
+    FILE *fp = fopen(filename, "r");
+    char** d = (char**)xcalloc(size, sizeof(char*));
+    char *line;
+    while((line=fgetl(fp)) != 0){
+        ++count;
+        if(count > size){
+            size = size*2;
+            d = (char**)xrealloc(d, size * sizeof(char*));
+        }
+        d[count-1] = line;
+    }
+    fclose(fp);
+    d = (char**)xrealloc(d, count * sizeof(char*));
+    *read = count;
+    return d;
+}
+
+float_pair get_rnn_token_data(int *tokens, size_t *offsets, int characters, size_t len, int batch, int steps)
+{
+    float* x = (float*)xcalloc(batch * steps * characters, sizeof(float));
+    float* y = (float*)xcalloc(batch * steps * characters, sizeof(float));
+    int i,j;
+    for(i = 0; i < batch; ++i){
+        for(j = 0; j < steps; ++j){
+            int curr = tokens[(offsets[i])%len];
+            int next = tokens[(offsets[i] + 1)%len];
+
+            x[(j*batch + i)*characters + curr] = 1;
+            y[(j*batch + i)*characters + next] = 1;
+
+            offsets[i] = (offsets[i] + 1) % len;
+
+            if(curr >= characters || curr < 0 || next >= characters || next < 0){
+                error("Bad char");
+            }
+        }
+    }
+    float_pair p;
+    p.x = x;
+    p.y = y;
+    return p;
+}
+
+float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps)
+{
+    float* x = (float*)xcalloc(batch * steps * characters, sizeof(float));
+    float* y = (float*)xcalloc(batch * steps * characters, sizeof(float));
+    int i,j;
+    for(i = 0; i < batch; ++i){
+        for(j = 0; j < steps; ++j){
+            unsigned char curr = text[(offsets[i])%len];
+            unsigned char next = text[(offsets[i] + 1)%len];
+
+            x[(j*batch + i)*characters + curr] = 1;
+            y[(j*batch + i)*characters + next] = 1;
+
+            offsets[i] = (offsets[i] + 1) % len;
+
+            if(curr > 255 || curr <= 0 || next > 255 || next <= 0){
+                /*text[(index+j+2)%len] = 0;
+                printf("%ld %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]);
+                printf("%s", text+index);
+                */
+                error("Bad char");
+            }
+        }
+    }
+    float_pair p;
+    p.x = x;
+    p.y = y;
+    return p;
+}
+
+void reset_rnn_state(network net, int b)
+{
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        #ifdef GPU
+        layer l = net.layers[i];
+        if(l.state_gpu){
+            fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
+        }
+        #endif
+    }
+}
+
+void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized)
+{
+    srand(time(0));
+    unsigned char *text = 0;
+    int *tokens = 0;
+    size_t size;
+    if(tokenized){
+        tokens = read_tokenized_data(filename, &size);
+    } else {
+        FILE *fp = fopen(filename, "rb");
+
+        fseek(fp, 0, SEEK_END);
+        size = ftell(fp);
+        fseek(fp, 0, SEEK_SET);
+
+        text = (unsigned char *)xcalloc(size + 1, sizeof(char));
+        fread(text, 1, size, fp);
+        fclose(fp);
+    }
+
+    char* backup_directory = "backup/";
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+    float avg_loss = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+
+    int inputs = get_network_input_size(net);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int batch = net.batch;
+    int steps = net.time_steps;
+    if (clear) {
+        *net.seen = 0;
+        *net.cur_iteration = 0;
+    }
+    int i = (*net.seen)/net.batch;
+
+    int streams = batch/steps;
+    printf("\n batch = %d, steps = %d, streams = %d, subdivisions = %d, text_size = %ld \n", batch, steps, streams, net.subdivisions, size);
+    printf(" global_batch = %d \n", batch*net.subdivisions);
+    size_t* offsets = (size_t*)xcalloc(streams, sizeof(size_t));
+    int j;
+    for(j = 0; j < streams; ++j){
+        offsets[j] = rand_size_t()%size;
+        //printf(" offset[%d] = %d, ", j, offsets[j]);
+    }
+    //printf("\n");
+
+    clock_t time;
+    while(get_current_batch(net) < net.max_batches){
+        i += 1;
+        time=clock();
+        float_pair p;
+        if(tokenized){
+            p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps);
+        }else{
+            p = get_rnn_data(text, offsets, inputs, size, streams, steps);
+        }
+
+        float loss = train_network_datum(net, p.x, p.y) / (batch);
+        free(p.x);
+        free(p.y);
+        if (avg_loss < 0) avg_loss = loss;
+        avg_loss = avg_loss*.9 + loss*.1;
+
+        int chars = get_current_batch(net)*batch;
+        fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size);
+
+        for(j = 0; j < streams; ++j){
+            //printf("%d\n", j);
+            if(rand()%10 == 0){
+                //fprintf(stderr, "Reset\n");
+                offsets[j] = rand_size_t()%size;
+                reset_rnn_state(net, j);
+            }
+        }
+
+        if(i%1000==0){
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
+            save_weights(net, buff);
+        }
+        if(i%10==0){
+            char buff[256];
+            sprintf(buff, "%s/%s.backup", backup_directory, base);
+            save_weights(net, buff);
+        }
+    }
+    char buff[256];
+    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
+    save_weights(net, buff);
+}
+
+void print_symbol(int n, char **tokens){
+    if(tokens){
+        printf("%s ", tokens[n]);
+    } else {
+        printf("%c", n);
+    }
+}
+
+void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file)
+{
+    char **tokens = 0;
+    if(token_file){
+        size_t n;
+        tokens = read_tokens(token_file, &n);
+    }
+
+    srand(rseed);
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+
+    network net = parse_network_cfg_custom(cfgfile, 1, 1);  // batch=1, time_steps=1
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int inputs = get_network_input_size(net);
+
+    int i, j;
+    for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
+    int c = 0;
+    int len = strlen(seed);
+    float* input = (float*)xcalloc(inputs, sizeof(float));
+
+    /*
+       fill_cpu(inputs, 0, input, 1);
+       for(i = 0; i < 10; ++i){
+       network_predict(net, input);
+       }
+       fill_cpu(inputs, 0, input, 1);
+     */
+
+    for(i = 0; i < len-1; ++i){
+        c = seed[i];
+        input[c] = 1;
+        network_predict(net, input);
+        input[c] = 0;
+        print_symbol(c, tokens);
+    }
+    if(len) c = seed[len-1];
+    print_symbol(c, tokens);
+    for(i = 0; i < num; ++i){
+        input[c] = 1;
+        float *out = network_predict(net, input);
+        input[c] = 0;
+        for(j = 32; j < 127; ++j){
+            //printf("%d %c %f\n",j, j, out[j]);
+        }
+        for(j = 0; j < inputs; ++j){
+            if (out[j] < .0001) out[j] = 0;
+        }
+        c = sample_array(out, inputs);
+        //c = sample_array_custom(out, inputs);
+        //c = max_index(out, inputs);
+        //c = top_max_index(out, inputs, 2);
+        print_symbol(c, tokens);
+    }
+    printf("\n");
+}
+
+void test_tactic_rnn(char *cfgfile, char *weightfile, int num, float temp, int rseed, char *token_file)
+{
+    char **tokens = 0;
+    if(token_file){
+        size_t n;
+        tokens = read_tokens(token_file, &n);
+    }
+
+    srand(rseed);
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int inputs = get_network_input_size(net);
+
+    int i, j;
+    for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
+    int c = 0;
+    float* input = (float*)xcalloc(inputs, sizeof(float));
+    float *out = 0;
+
+    while((c = getc(stdin)) != EOF){
+        input[c] = 1;
+        out = network_predict(net, input);
+        input[c] = 0;
+    }
+    for(i = 0; i < num; ++i){
+        for(j = 0; j < inputs; ++j){
+            if (out[j] < .0001) out[j] = 0;
+        }
+        int next = sample_array(out, inputs);
+        if(c == '.' && next == '\n') break;
+        c = next;
+        print_symbol(c, tokens);
+
+        input[c] = 1;
+        out = network_predict(net, input);
+        input[c] = 0;
+    }
+    printf("\n");
+}
+
+void valid_tactic_rnn(char *cfgfile, char *weightfile, char *seed)
+{
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int inputs = get_network_input_size(net);
+
+    int count = 0;
+    int words = 1;
+    int c;
+    int len = strlen(seed);
+    float* input = (float*)xcalloc(inputs, sizeof(float));
+    int i;
+    for(i = 0; i < len; ++i){
+        c = seed[i];
+        input[(int)c] = 1;
+        network_predict(net, input);
+        input[(int)c] = 0;
+    }
+    float sum = 0;
+    c = getc(stdin);
+    float log2 = log(2);
+    int in = 0;
+    while(c != EOF){
+        int next = getc(stdin);
+        if(next == EOF) break;
+        if(next < 0 || next >= 255) error("Out of range character");
+
+        input[c] = 1;
+        float *out = network_predict(net, input);
+        input[c] = 0;
+
+        if(c == '.' && next == '\n') in = 0;
+        if(!in) {
+            if(c == '>' && next == '>'){
+                in = 1;
+                ++words;
+            }
+            c = next;
+            continue;
+        }
+        ++count;
+        sum += log(out[next])/log2;
+        c = next;
+        printf("%d %d Perplexity: %4.4f    Word Perplexity: %4.4f\n", count, words, pow(2, -sum/count), pow(2, -sum/words));
+    }
+}
+
+void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
+{
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int inputs = get_network_input_size(net);
+
+    int count = 0;
+    int words = 1;
+    int c;
+    int len = strlen(seed);
+    float* input = (float*)xcalloc(inputs, sizeof(float));
+    int i;
+    for(i = 0; i < len; ++i){
+        c = seed[i];
+        input[(int)c] = 1;
+        network_predict(net, input);
+        input[(int)c] = 0;
+    }
+    float sum = 0;
+    c = getc(stdin);
+    float log2 = log(2);
+    while(c != EOF){
+        int next = getc(stdin);
+        if(next == EOF) break;
+        if(next < 0 || next >= 255) error("Out of range character");
+        ++count;
+        if(next == ' ' || next == '\n' || next == '\t') ++words;
+        input[c] = 1;
+        float *out = network_predict(net, input);
+        input[c] = 0;
+        sum += log(out[next])/log2;
+        c = next;
+        printf("%d Perplexity: %4.4f    Word Perplexity: %4.4f\n", count, pow(2, -sum/count), pow(2, -sum/words));
+    }
+}
+
+void vec_char_rnn(char *cfgfile, char *weightfile, char *seed)
+{
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int inputs = get_network_input_size(net);
+
+    int c;
+    int seed_len = strlen(seed);
+    float* input = (float*)xcalloc(inputs, sizeof(float));
+    int i;
+    char *line;
+    while((line=fgetl(stdin)) != 0){
+        reset_rnn_state(net, 0);
+        for(i = 0; i < seed_len; ++i){
+            c = seed[i];
+            input[(int)c] = 1;
+            network_predict(net, input);
+            input[(int)c] = 0;
+        }
+        strip(line);
+        int str_len = strlen(line);
+        for(i = 0; i < str_len; ++i){
+            c = line[i];
+            input[(int)c] = 1;
+            network_predict(net, input);
+            input[(int)c] = 0;
+        }
+        c = ' ';
+        input[(int)c] = 1;
+        network_predict(net, input);
+        input[(int)c] = 0;
+
+        layer l = net.layers[0];
+        #ifdef GPU
+        cuda_pull_array(l.output_gpu, l.output, l.outputs);
+        #endif
+        printf("%s", line);
+        for(i = 0; i < l.outputs; ++i){
+            printf(",%g", l.output[i]);
+        }
+        printf("\n");
+    }
+}
+
+void run_char_rnn(int argc, char **argv)
+{
+    if(argc < 4){
+        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+        return;
+    }
+    char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt");
+    char *seed = find_char_arg(argc, argv, "-seed", "\n\n");
+    int len = find_int_arg(argc, argv, "-len", 1000);
+    float temp = find_float_arg(argc, argv, "-temp", .7);
+    int rseed = find_int_arg(argc, argv, "-srand", time(0));
+    int clear = find_arg(argc, argv, "-clear");
+    int tokenized = find_arg(argc, argv, "-tokenized");
+    char *tokens = find_char_arg(argc, argv, "-tokens", 0);
+
+    char *cfg = argv[3];
+    char *weights = (argc > 4) ? argv[4] : 0;
+    if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized);
+    else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed);
+    else if(0==strcmp(argv[2], "validtactic")) valid_tactic_rnn(cfg, weights, seed);
+    else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed);
+    else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens);
+    else if(0==strcmp(argv[2], "generatetactic")) test_tactic_rnn(cfg, weights, len, temp, rseed, tokens);
+}

--
Gitblit v1.8.0