From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/rnn_layer.c | 578 ++++++++++++++++++++++++++++---------------------------- 1 files changed, 289 insertions(+), 289 deletions(-) diff --git a/lib/detecter_tools/darknet/rnn_layer.c b/lib/detecter_tools/darknet/rnn_layer.c index db2f2ac..98f0d48 100644 --- a/lib/detecter_tools/darknet/rnn_layer.c +++ b/lib/detecter_tools/darknet/rnn_layer.c @@ -1,289 +1,289 @@ -#include "rnn_layer.h" -#include "connected_layer.h" -#include "utils.h" -#include "dark_cuda.h" -#include "blas.h" -#include "gemm.h" - -#include <math.h> -#include <stdio.h> -#include <stdlib.h> -#include <string.h> - -static void increment_layer(layer *l, int steps) -{ - int num = l->outputs*l->batch*steps; - l->output += num; - l->delta += num; - l->x += num; - l->x_norm += num; - -#ifdef GPU - l->output_gpu += num; - l->delta_gpu += num; - l->x_gpu += num; - l->x_norm_gpu += num; -#endif -} - -layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log) -{ - fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs); - batch = batch / steps; - layer l = { (LAYER_TYPE)0 }; - l.batch = batch; - l.type = RNN; - l.steps = steps; - l.hidden = hidden; - l.inputs = inputs; - l.out_w = 1; - l.out_h = 1; - l.out_c = outputs; - - l.state = (float*)xcalloc(batch * hidden * (steps + 1), sizeof(float)); - - l.input_layer = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.input_layer) = make_connected_layer(batch, steps, inputs, hidden, activation, batch_normalize); - l.input_layer->batch = batch; - if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size; - - l.self_layer = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.self_layer) = make_connected_layer(batch, steps, hidden, hidden, (log==2)?LOGGY:(log==1?LOGISTIC:activation), batch_normalize); - l.self_layer->batch = batch; - if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size; - - l.output_layer = (layer*)xcalloc(1, sizeof(layer)); - fprintf(stderr, "\t\t"); - *(l.output_layer) = make_connected_layer(batch, steps, hidden, outputs, activation, batch_normalize); - l.output_layer->batch = batch; - if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size; - - l.outputs = outputs; - l.output = l.output_layer->output; - l.delta = l.output_layer->delta; - - l.forward = forward_rnn_layer; - l.backward = backward_rnn_layer; - l.update = update_rnn_layer; -#ifdef GPU - l.forward_gpu = forward_rnn_layer_gpu; - l.backward_gpu = backward_rnn_layer_gpu; - l.update_gpu = update_rnn_layer_gpu; - l.state_gpu = cuda_make_array(l.state, batch*hidden*(steps+1)); - l.output_gpu = l.output_layer->output_gpu; - l.delta_gpu = l.output_layer->delta_gpu; -#endif - - return l; -} - -void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay) -{ - update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay); - update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay); -} - -void forward_rnn_layer(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer input_layer = *(l.input_layer); - layer self_layer = *(l.self_layer); - layer output_layer = *(l.output_layer); - - fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1); - fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1); - fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1); - if(state.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1); - - for (i = 0; i < l.steps; ++i) { - - s.input = state.input; - forward_connected_layer(input_layer, s); - - s.input = l.state; - forward_connected_layer(self_layer, s); - - float *old_state = l.state; - if(state.train) l.state += l.hidden*l.batch; - if(l.shortcut){ - copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1); - }else{ - fill_cpu(l.hidden * l.batch, 0, l.state, 1); - } - axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1); - axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); - - s.input = l.state; - forward_connected_layer(output_layer, s); - - state.input += l.inputs*l.batch; - increment_layer(&input_layer, 1); - increment_layer(&self_layer, 1); - increment_layer(&output_layer, 1); - } -} - -void backward_rnn_layer(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer input_layer = *(l.input_layer); - layer self_layer = *(l.self_layer); - layer output_layer = *(l.output_layer); - - increment_layer(&input_layer, l.steps-1); - increment_layer(&self_layer, l.steps-1); - increment_layer(&output_layer, l.steps-1); - - l.state += l.hidden*l.batch*l.steps; - for (i = l.steps-1; i >= 0; --i) { - copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1); - axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); - - s.input = l.state; - s.delta = self_layer.delta; - backward_connected_layer(output_layer, s); - - l.state -= l.hidden*l.batch; - /* - if(i > 0){ - copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1); - axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1); - }else{ - fill_cpu(l.hidden * l.batch, 0, l.state, 1); - } - */ - - s.input = l.state; - s.delta = self_layer.delta - l.hidden*l.batch; - if (i == 0) s.delta = 0; - backward_connected_layer(self_layer, s); - - copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1); - if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1); - s.input = state.input + i*l.inputs*l.batch; - if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; - else s.delta = 0; - backward_connected_layer(input_layer, s); - - increment_layer(&input_layer, -1); - increment_layer(&self_layer, -1); - increment_layer(&output_layer, -1); - } -} - -#ifdef GPU - -void pull_rnn_layer(layer l) -{ - pull_connected_layer(*(l.input_layer)); - pull_connected_layer(*(l.self_layer)); - pull_connected_layer(*(l.output_layer)); -} - -void push_rnn_layer(layer l) -{ - push_connected_layer(*(l.input_layer)); - push_connected_layer(*(l.self_layer)); - push_connected_layer(*(l.output_layer)); -} - -void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) -{ - update_connected_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale); - update_connected_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale); -} - -void forward_rnn_layer_gpu(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer input_layer = *(l.input_layer); - layer self_layer = *(l.self_layer); - layer output_layer = *(l.output_layer); - - fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1); - fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1); - fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1); - if(state.train) fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); - - for (i = 0; i < l.steps; ++i) { - - s.input = state.input; - forward_connected_layer_gpu(input_layer, s); - - s.input = l.state_gpu; - forward_connected_layer_gpu(self_layer, s); - - float *old_state = l.state_gpu; - if(state.train) l.state_gpu += l.hidden*l.batch; - if(l.shortcut){ - copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1); - }else{ - fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); - } - axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1); - axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); - - s.input = l.state_gpu; - forward_connected_layer_gpu(output_layer, s); - - state.input += l.inputs*l.batch; - increment_layer(&input_layer, 1); - increment_layer(&self_layer, 1); - increment_layer(&output_layer, 1); - } -} - -void backward_rnn_layer_gpu(layer l, network_state state) -{ - network_state s = {0}; - s.train = state.train; - s.workspace = state.workspace; - int i; - layer input_layer = *(l.input_layer); - layer self_layer = *(l.self_layer); - layer output_layer = *(l.output_layer); - increment_layer(&input_layer, l.steps - 1); - increment_layer(&self_layer, l.steps - 1); - increment_layer(&output_layer, l.steps - 1); - l.state_gpu += l.hidden*l.batch*l.steps; - for (i = l.steps-1; i >= 0; --i) { - - s.input = l.state_gpu; - s.delta = self_layer.delta_gpu; - backward_connected_layer_gpu(output_layer, s); - - l.state_gpu -= l.hidden*l.batch; - - copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); // the same delta for Input and Self layers - - s.input = l.state_gpu; - s.delta = self_layer.delta_gpu - l.hidden*l.batch; - if (i == 0) s.delta = 0; - backward_connected_layer_gpu(self_layer, s); - - //copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); - if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1); - s.input = state.input + i*l.inputs*l.batch; - if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; - else s.delta = 0; - backward_connected_layer_gpu(input_layer, s); - - increment_layer(&input_layer, -1); - increment_layer(&self_layer, -1); - increment_layer(&output_layer, -1); - } -} -#endif +#include "rnn_layer.h" +#include "connected_layer.h" +#include "utils.h" +#include "dark_cuda.h" +#include "blas.h" +#include "gemm.h" + +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +static void increment_layer(layer *l, int steps) +{ + int num = l->outputs*l->batch*steps; + l->output += num; + l->delta += num; + l->x += num; + l->x_norm += num; + +#ifdef GPU + l->output_gpu += num; + l->delta_gpu += num; + l->x_gpu += num; + l->x_norm_gpu += num; +#endif +} + +layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log) +{ + fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs); + batch = batch / steps; + layer l = { (LAYER_TYPE)0 }; + l.batch = batch; + l.type = RNN; + l.steps = steps; + l.hidden = hidden; + l.inputs = inputs; + l.out_w = 1; + l.out_h = 1; + l.out_c = outputs; + + l.state = (float*)xcalloc(batch * hidden * (steps + 1), sizeof(float)); + + l.input_layer = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.input_layer) = make_connected_layer(batch, steps, inputs, hidden, activation, batch_normalize); + l.input_layer->batch = batch; + if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size; + + l.self_layer = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.self_layer) = make_connected_layer(batch, steps, hidden, hidden, (log==2)?LOGGY:(log==1?LOGISTIC:activation), batch_normalize); + l.self_layer->batch = batch; + if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size; + + l.output_layer = (layer*)xcalloc(1, sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.output_layer) = make_connected_layer(batch, steps, hidden, outputs, activation, batch_normalize); + l.output_layer->batch = batch; + if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size; + + l.outputs = outputs; + l.output = l.output_layer->output; + l.delta = l.output_layer->delta; + + l.forward = forward_rnn_layer; + l.backward = backward_rnn_layer; + l.update = update_rnn_layer; +#ifdef GPU + l.forward_gpu = forward_rnn_layer_gpu; + l.backward_gpu = backward_rnn_layer_gpu; + l.update_gpu = update_rnn_layer_gpu; + l.state_gpu = cuda_make_array(l.state, batch*hidden*(steps+1)); + l.output_gpu = l.output_layer->output_gpu; + l.delta_gpu = l.output_layer->delta_gpu; +#endif + + return l; +} + +void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay) +{ + update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay); +} + +void forward_rnn_layer(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer input_layer = *(l.input_layer); + layer self_layer = *(l.self_layer); + layer output_layer = *(l.output_layer); + + fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1); + fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1); + fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1); + if(state.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1); + + for (i = 0; i < l.steps; ++i) { + + s.input = state.input; + forward_connected_layer(input_layer, s); + + s.input = l.state; + forward_connected_layer(self_layer, s); + + float *old_state = l.state; + if(state.train) l.state += l.hidden*l.batch; + if(l.shortcut){ + copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1); + }else{ + fill_cpu(l.hidden * l.batch, 0, l.state, 1); + } + axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1); + axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); + + s.input = l.state; + forward_connected_layer(output_layer, s); + + state.input += l.inputs*l.batch; + increment_layer(&input_layer, 1); + increment_layer(&self_layer, 1); + increment_layer(&output_layer, 1); + } +} + +void backward_rnn_layer(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer input_layer = *(l.input_layer); + layer self_layer = *(l.self_layer); + layer output_layer = *(l.output_layer); + + increment_layer(&input_layer, l.steps-1); + increment_layer(&self_layer, l.steps-1); + increment_layer(&output_layer, l.steps-1); + + l.state += l.hidden*l.batch*l.steps; + for (i = l.steps-1; i >= 0; --i) { + copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1); + axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); + + s.input = l.state; + s.delta = self_layer.delta; + backward_connected_layer(output_layer, s); + + l.state -= l.hidden*l.batch; + /* + if(i > 0){ + copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1); + axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1); + }else{ + fill_cpu(l.hidden * l.batch, 0, l.state, 1); + } + */ + + s.input = l.state; + s.delta = self_layer.delta - l.hidden*l.batch; + if (i == 0) s.delta = 0; + backward_connected_layer(self_layer, s); + + copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1); + if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1); + s.input = state.input + i*l.inputs*l.batch; + if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; + else s.delta = 0; + backward_connected_layer(input_layer, s); + + increment_layer(&input_layer, -1); + increment_layer(&self_layer, -1); + increment_layer(&output_layer, -1); + } +} + +#ifdef GPU + +void pull_rnn_layer(layer l) +{ + pull_connected_layer(*(l.input_layer)); + pull_connected_layer(*(l.self_layer)); + pull_connected_layer(*(l.output_layer)); +} + +void push_rnn_layer(layer l) +{ + push_connected_layer(*(l.input_layer)); + push_connected_layer(*(l.self_layer)); + push_connected_layer(*(l.output_layer)); +} + +void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) +{ + update_connected_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale); + update_connected_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale); +} + +void forward_rnn_layer_gpu(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer input_layer = *(l.input_layer); + layer self_layer = *(l.self_layer); + layer output_layer = *(l.output_layer); + + fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1); + fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1); + fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1); + if(state.train) fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); + + for (i = 0; i < l.steps; ++i) { + + s.input = state.input; + forward_connected_layer_gpu(input_layer, s); + + s.input = l.state_gpu; + forward_connected_layer_gpu(self_layer, s); + + float *old_state = l.state_gpu; + if(state.train) l.state_gpu += l.hidden*l.batch; + if(l.shortcut){ + copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1); + }else{ + fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); + } + axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1); + axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); + + s.input = l.state_gpu; + forward_connected_layer_gpu(output_layer, s); + + state.input += l.inputs*l.batch; + increment_layer(&input_layer, 1); + increment_layer(&self_layer, 1); + increment_layer(&output_layer, 1); + } +} + +void backward_rnn_layer_gpu(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + s.workspace = state.workspace; + int i; + layer input_layer = *(l.input_layer); + layer self_layer = *(l.self_layer); + layer output_layer = *(l.output_layer); + increment_layer(&input_layer, l.steps - 1); + increment_layer(&self_layer, l.steps - 1); + increment_layer(&output_layer, l.steps - 1); + l.state_gpu += l.hidden*l.batch*l.steps; + for (i = l.steps-1; i >= 0; --i) { + + s.input = l.state_gpu; + s.delta = self_layer.delta_gpu; + backward_connected_layer_gpu(output_layer, s); + + l.state_gpu -= l.hidden*l.batch; + + copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); // the same delta for Input and Self layers + + s.input = l.state_gpu; + s.delta = self_layer.delta_gpu - l.hidden*l.batch; + if (i == 0) s.delta = 0; + backward_connected_layer_gpu(self_layer, s); + + //copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); + if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1); + s.input = state.input + i*l.inputs*l.batch; + if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; + else s.delta = 0; + backward_connected_layer_gpu(input_layer, s); + + increment_layer(&input_layer, -1); + increment_layer(&self_layer, -1); + increment_layer(&output_layer, -1); + } +} +#endif -- Gitblit v1.8.0