From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/rnn_layer.c |  578 ++++++++++++++++++++++++++++----------------------------
 1 files changed, 289 insertions(+), 289 deletions(-)

diff --git a/lib/detecter_tools/darknet/rnn_layer.c b/lib/detecter_tools/darknet/rnn_layer.c
index db2f2ac..98f0d48 100644
--- a/lib/detecter_tools/darknet/rnn_layer.c
+++ b/lib/detecter_tools/darknet/rnn_layer.c
@@ -1,289 +1,289 @@
-#include "rnn_layer.h"
-#include "connected_layer.h"
-#include "utils.h"
-#include "dark_cuda.h"
-#include "blas.h"
-#include "gemm.h"
-
-#include <math.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-static void increment_layer(layer *l, int steps)
-{
-    int num = l->outputs*l->batch*steps;
-    l->output += num;
-    l->delta += num;
-    l->x += num;
-    l->x_norm += num;
-
-#ifdef GPU
-    l->output_gpu += num;
-    l->delta_gpu += num;
-    l->x_gpu += num;
-    l->x_norm_gpu += num;
-#endif
-}
-
-layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log)
-{
-    fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs);
-    batch = batch / steps;
-    layer l = { (LAYER_TYPE)0 };
-    l.batch = batch;
-    l.type = RNN;
-    l.steps = steps;
-    l.hidden = hidden;
-    l.inputs = inputs;
-    l.out_w = 1;
-    l.out_h = 1;
-    l.out_c = outputs;
-
-    l.state = (float*)xcalloc(batch * hidden * (steps + 1), sizeof(float));
-
-    l.input_layer = (layer*)xcalloc(1, sizeof(layer));
-    fprintf(stderr, "\t\t");
-    *(l.input_layer) = make_connected_layer(batch, steps, inputs, hidden, activation, batch_normalize);
-    l.input_layer->batch = batch;
-    if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size;
-
-    l.self_layer = (layer*)xcalloc(1, sizeof(layer));
-    fprintf(stderr, "\t\t");
-    *(l.self_layer) = make_connected_layer(batch, steps, hidden, hidden, (log==2)?LOGGY:(log==1?LOGISTIC:activation), batch_normalize);
-    l.self_layer->batch = batch;
-    if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size;
-
-    l.output_layer = (layer*)xcalloc(1, sizeof(layer));
-    fprintf(stderr, "\t\t");
-    *(l.output_layer) = make_connected_layer(batch, steps, hidden, outputs, activation, batch_normalize);
-    l.output_layer->batch = batch;
-    if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size;
-
-    l.outputs = outputs;
-    l.output = l.output_layer->output;
-    l.delta = l.output_layer->delta;
-
-    l.forward = forward_rnn_layer;
-    l.backward = backward_rnn_layer;
-    l.update = update_rnn_layer;
-#ifdef GPU
-    l.forward_gpu = forward_rnn_layer_gpu;
-    l.backward_gpu = backward_rnn_layer_gpu;
-    l.update_gpu = update_rnn_layer_gpu;
-    l.state_gpu = cuda_make_array(l.state, batch*hidden*(steps+1));
-    l.output_gpu = l.output_layer->output_gpu;
-    l.delta_gpu = l.output_layer->delta_gpu;
-#endif
-
-    return l;
-}
-
-void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay)
-{
-    update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
-    update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
-    update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
-}
-
-void forward_rnn_layer(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    int i;
-    layer input_layer = *(l.input_layer);
-    layer self_layer = *(l.self_layer);
-    layer output_layer = *(l.output_layer);
-
-    fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1);
-    fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1);
-    fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1);
-    if(state.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1);
-
-    for (i = 0; i < l.steps; ++i) {
-
-        s.input = state.input;
-        forward_connected_layer(input_layer, s);
-
-        s.input = l.state;
-        forward_connected_layer(self_layer, s);
-
-        float *old_state = l.state;
-        if(state.train) l.state += l.hidden*l.batch;
-        if(l.shortcut){
-            copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1);
-        }else{
-            fill_cpu(l.hidden * l.batch, 0, l.state, 1);
-        }
-        axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1);
-        axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
-
-        s.input = l.state;
-        forward_connected_layer(output_layer, s);
-
-        state.input += l.inputs*l.batch;
-        increment_layer(&input_layer, 1);
-        increment_layer(&self_layer, 1);
-        increment_layer(&output_layer, 1);
-    }
-}
-
-void backward_rnn_layer(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    int i;
-    layer input_layer = *(l.input_layer);
-    layer self_layer = *(l.self_layer);
-    layer output_layer = *(l.output_layer);
-
-    increment_layer(&input_layer, l.steps-1);
-    increment_layer(&self_layer, l.steps-1);
-    increment_layer(&output_layer, l.steps-1);
-
-    l.state += l.hidden*l.batch*l.steps;
-    for (i = l.steps-1; i >= 0; --i) {
-        copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
-        axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
-
-        s.input = l.state;
-        s.delta = self_layer.delta;
-        backward_connected_layer(output_layer, s);
-
-        l.state -= l.hidden*l.batch;
-        /*
-           if(i > 0){
-           copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1);
-           axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1);
-           }else{
-           fill_cpu(l.hidden * l.batch, 0, l.state, 1);
-           }
-         */
-
-        s.input = l.state;
-        s.delta = self_layer.delta - l.hidden*l.batch;
-        if (i == 0) s.delta = 0;
-        backward_connected_layer(self_layer, s);
-
-        copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1);
-        if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1);
-        s.input = state.input + i*l.inputs*l.batch;
-        if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
-        else s.delta = 0;
-        backward_connected_layer(input_layer, s);
-
-        increment_layer(&input_layer, -1);
-        increment_layer(&self_layer, -1);
-        increment_layer(&output_layer, -1);
-    }
-}
-
-#ifdef GPU
-
-void pull_rnn_layer(layer l)
-{
-    pull_connected_layer(*(l.input_layer));
-    pull_connected_layer(*(l.self_layer));
-    pull_connected_layer(*(l.output_layer));
-}
-
-void push_rnn_layer(layer l)
-{
-    push_connected_layer(*(l.input_layer));
-    push_connected_layer(*(l.self_layer));
-    push_connected_layer(*(l.output_layer));
-}
-
-void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
-{
-    update_connected_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale);
-    update_connected_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale);
-    update_connected_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale);
-}
-
-void forward_rnn_layer_gpu(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    int i;
-    layer input_layer = *(l.input_layer);
-    layer self_layer = *(l.self_layer);
-    layer output_layer = *(l.output_layer);
-
-    fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1);
-    fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1);
-    fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1);
-    if(state.train) fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
-
-    for (i = 0; i < l.steps; ++i) {
-
-        s.input = state.input;
-        forward_connected_layer_gpu(input_layer, s);
-
-        s.input = l.state_gpu;
-        forward_connected_layer_gpu(self_layer, s);
-
-        float *old_state = l.state_gpu;
-        if(state.train) l.state_gpu += l.hidden*l.batch;
-        if(l.shortcut){
-            copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1);
-        }else{
-            fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
-        }
-        axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1);
-        axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
-
-        s.input = l.state_gpu;
-        forward_connected_layer_gpu(output_layer, s);
-
-        state.input += l.inputs*l.batch;
-        increment_layer(&input_layer, 1);
-        increment_layer(&self_layer, 1);
-        increment_layer(&output_layer, 1);
-    }
-}
-
-void backward_rnn_layer_gpu(layer l, network_state state)
-{
-    network_state s = {0};
-    s.train = state.train;
-    s.workspace = state.workspace;
-    int i;
-    layer input_layer = *(l.input_layer);
-    layer self_layer = *(l.self_layer);
-    layer output_layer = *(l.output_layer);
-    increment_layer(&input_layer,  l.steps - 1);
-    increment_layer(&self_layer,   l.steps - 1);
-    increment_layer(&output_layer, l.steps - 1);
-    l.state_gpu += l.hidden*l.batch*l.steps;
-    for (i = l.steps-1; i >= 0; --i) {
-
-        s.input = l.state_gpu;
-        s.delta = self_layer.delta_gpu;
-        backward_connected_layer_gpu(output_layer, s);
-
-        l.state_gpu -= l.hidden*l.batch;
-
-        copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);    // the same delta for Input and Self layers
-
-        s.input = l.state_gpu;
-        s.delta = self_layer.delta_gpu - l.hidden*l.batch;
-        if (i == 0) s.delta = 0;
-        backward_connected_layer_gpu(self_layer, s);
-
-        //copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
-        if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1);
-        s.input = state.input + i*l.inputs*l.batch;
-        if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
-        else s.delta = 0;
-        backward_connected_layer_gpu(input_layer, s);
-
-        increment_layer(&input_layer,  -1);
-        increment_layer(&self_layer,   -1);
-        increment_layer(&output_layer, -1);
-    }
-}
-#endif
+#include "rnn_layer.h"
+#include "connected_layer.h"
+#include "utils.h"
+#include "dark_cuda.h"
+#include "blas.h"
+#include "gemm.h"
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+static void increment_layer(layer *l, int steps)
+{
+    int num = l->outputs*l->batch*steps;
+    l->output += num;
+    l->delta += num;
+    l->x += num;
+    l->x_norm += num;
+
+#ifdef GPU
+    l->output_gpu += num;
+    l->delta_gpu += num;
+    l->x_gpu += num;
+    l->x_norm_gpu += num;
+#endif
+}
+
+layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log)
+{
+    fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs);
+    batch = batch / steps;
+    layer l = { (LAYER_TYPE)0 };
+    l.batch = batch;
+    l.type = RNN;
+    l.steps = steps;
+    l.hidden = hidden;
+    l.inputs = inputs;
+    l.out_w = 1;
+    l.out_h = 1;
+    l.out_c = outputs;
+
+    l.state = (float*)xcalloc(batch * hidden * (steps + 1), sizeof(float));
+
+    l.input_layer = (layer*)xcalloc(1, sizeof(layer));
+    fprintf(stderr, "\t\t");
+    *(l.input_layer) = make_connected_layer(batch, steps, inputs, hidden, activation, batch_normalize);
+    l.input_layer->batch = batch;
+    if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size;
+
+    l.self_layer = (layer*)xcalloc(1, sizeof(layer));
+    fprintf(stderr, "\t\t");
+    *(l.self_layer) = make_connected_layer(batch, steps, hidden, hidden, (log==2)?LOGGY:(log==1?LOGISTIC:activation), batch_normalize);
+    l.self_layer->batch = batch;
+    if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size;
+
+    l.output_layer = (layer*)xcalloc(1, sizeof(layer));
+    fprintf(stderr, "\t\t");
+    *(l.output_layer) = make_connected_layer(batch, steps, hidden, outputs, activation, batch_normalize);
+    l.output_layer->batch = batch;
+    if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size;
+
+    l.outputs = outputs;
+    l.output = l.output_layer->output;
+    l.delta = l.output_layer->delta;
+
+    l.forward = forward_rnn_layer;
+    l.backward = backward_rnn_layer;
+    l.update = update_rnn_layer;
+#ifdef GPU
+    l.forward_gpu = forward_rnn_layer_gpu;
+    l.backward_gpu = backward_rnn_layer_gpu;
+    l.update_gpu = update_rnn_layer_gpu;
+    l.state_gpu = cuda_make_array(l.state, batch*hidden*(steps+1));
+    l.output_gpu = l.output_layer->output_gpu;
+    l.delta_gpu = l.output_layer->delta_gpu;
+#endif
+
+    return l;
+}
+
+void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay)
+{
+    update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
+    update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
+    update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
+}
+
+void forward_rnn_layer(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    int i;
+    layer input_layer = *(l.input_layer);
+    layer self_layer = *(l.self_layer);
+    layer output_layer = *(l.output_layer);
+
+    fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1);
+    fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1);
+    fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1);
+    if(state.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1);
+
+    for (i = 0; i < l.steps; ++i) {
+
+        s.input = state.input;
+        forward_connected_layer(input_layer, s);
+
+        s.input = l.state;
+        forward_connected_layer(self_layer, s);
+
+        float *old_state = l.state;
+        if(state.train) l.state += l.hidden*l.batch;
+        if(l.shortcut){
+            copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1);
+        }else{
+            fill_cpu(l.hidden * l.batch, 0, l.state, 1);
+        }
+        axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1);
+        axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
+
+        s.input = l.state;
+        forward_connected_layer(output_layer, s);
+
+        state.input += l.inputs*l.batch;
+        increment_layer(&input_layer, 1);
+        increment_layer(&self_layer, 1);
+        increment_layer(&output_layer, 1);
+    }
+}
+
+void backward_rnn_layer(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    int i;
+    layer input_layer = *(l.input_layer);
+    layer self_layer = *(l.self_layer);
+    layer output_layer = *(l.output_layer);
+
+    increment_layer(&input_layer, l.steps-1);
+    increment_layer(&self_layer, l.steps-1);
+    increment_layer(&output_layer, l.steps-1);
+
+    l.state += l.hidden*l.batch*l.steps;
+    for (i = l.steps-1; i >= 0; --i) {
+        copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
+        axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
+
+        s.input = l.state;
+        s.delta = self_layer.delta;
+        backward_connected_layer(output_layer, s);
+
+        l.state -= l.hidden*l.batch;
+        /*
+           if(i > 0){
+           copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1);
+           axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1);
+           }else{
+           fill_cpu(l.hidden * l.batch, 0, l.state, 1);
+           }
+         */
+
+        s.input = l.state;
+        s.delta = self_layer.delta - l.hidden*l.batch;
+        if (i == 0) s.delta = 0;
+        backward_connected_layer(self_layer, s);
+
+        copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1);
+        if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1);
+        s.input = state.input + i*l.inputs*l.batch;
+        if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
+        else s.delta = 0;
+        backward_connected_layer(input_layer, s);
+
+        increment_layer(&input_layer, -1);
+        increment_layer(&self_layer, -1);
+        increment_layer(&output_layer, -1);
+    }
+}
+
+#ifdef GPU
+
+void pull_rnn_layer(layer l)
+{
+    pull_connected_layer(*(l.input_layer));
+    pull_connected_layer(*(l.self_layer));
+    pull_connected_layer(*(l.output_layer));
+}
+
+void push_rnn_layer(layer l)
+{
+    push_connected_layer(*(l.input_layer));
+    push_connected_layer(*(l.self_layer));
+    push_connected_layer(*(l.output_layer));
+}
+
+void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
+{
+    update_connected_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale);
+    update_connected_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale);
+    update_connected_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale);
+}
+
+void forward_rnn_layer_gpu(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    int i;
+    layer input_layer = *(l.input_layer);
+    layer self_layer = *(l.self_layer);
+    layer output_layer = *(l.output_layer);
+
+    fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1);
+    fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1);
+    fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1);
+    if(state.train) fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
+
+    for (i = 0; i < l.steps; ++i) {
+
+        s.input = state.input;
+        forward_connected_layer_gpu(input_layer, s);
+
+        s.input = l.state_gpu;
+        forward_connected_layer_gpu(self_layer, s);
+
+        float *old_state = l.state_gpu;
+        if(state.train) l.state_gpu += l.hidden*l.batch;
+        if(l.shortcut){
+            copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1);
+        }else{
+            fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
+        }
+        axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1);
+        axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
+
+        s.input = l.state_gpu;
+        forward_connected_layer_gpu(output_layer, s);
+
+        state.input += l.inputs*l.batch;
+        increment_layer(&input_layer, 1);
+        increment_layer(&self_layer, 1);
+        increment_layer(&output_layer, 1);
+    }
+}
+
+void backward_rnn_layer_gpu(layer l, network_state state)
+{
+    network_state s = {0};
+    s.train = state.train;
+    s.workspace = state.workspace;
+    int i;
+    layer input_layer = *(l.input_layer);
+    layer self_layer = *(l.self_layer);
+    layer output_layer = *(l.output_layer);
+    increment_layer(&input_layer,  l.steps - 1);
+    increment_layer(&self_layer,   l.steps - 1);
+    increment_layer(&output_layer, l.steps - 1);
+    l.state_gpu += l.hidden*l.batch*l.steps;
+    for (i = l.steps-1; i >= 0; --i) {
+
+        s.input = l.state_gpu;
+        s.delta = self_layer.delta_gpu;
+        backward_connected_layer_gpu(output_layer, s);
+
+        l.state_gpu -= l.hidden*l.batch;
+
+        copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);    // the same delta for Input and Self layers
+
+        s.input = l.state_gpu;
+        s.delta = self_layer.delta_gpu - l.hidden*l.batch;
+        if (i == 0) s.delta = 0;
+        backward_connected_layer_gpu(self_layer, s);
+
+        //copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
+        if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1);
+        s.input = state.input + i*l.inputs*l.batch;
+        if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
+        else s.delta = 0;
+        backward_connected_layer_gpu(input_layer, s);
+
+        increment_layer(&input_layer,  -1);
+        increment_layer(&self_layer,   -1);
+        increment_layer(&output_layer, -1);
+    }
+}
+#endif

--
Gitblit v1.8.0