From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/route_layer.c | 314 ++++++++++++++++++++++++++------------------------- 1 files changed, 161 insertions(+), 153 deletions(-) diff --git a/lib/detecter_tools/darknet/route_layer.c b/lib/detecter_tools/darknet/route_layer.c index f576632..9a3410c 100644 --- a/lib/detecter_tools/darknet/route_layer.c +++ b/lib/detecter_tools/darknet/route_layer.c @@ -1,153 +1,161 @@ -#include "route_layer.h" -#include "utils.h" -#include "dark_cuda.h" -#include "blas.h" -#include <stdio.h> - -route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes, int groups, int group_id) -{ - fprintf(stderr,"route "); - route_layer l = { (LAYER_TYPE)0 }; - l.type = ROUTE; - l.batch = batch; - l.n = n; - l.input_layers = input_layers; - l.input_sizes = input_sizes; - l.groups = groups; - l.group_id = group_id; - int i; - int outputs = 0; - for(i = 0; i < n; ++i){ - fprintf(stderr," %d", input_layers[i]); - outputs += input_sizes[i]; - } - outputs = outputs / groups; - l.outputs = outputs; - l.inputs = outputs; - //fprintf(stderr, " inputs = %d \t outputs = %d, groups = %d, group_id = %d \n", l.inputs, l.outputs, l.groups, l.group_id); - l.delta = (float*)xcalloc(outputs * batch, sizeof(float)); - l.output = (float*)xcalloc(outputs * batch, sizeof(float)); - - l.forward = forward_route_layer; - l.backward = backward_route_layer; - #ifdef GPU - l.forward_gpu = forward_route_layer_gpu; - l.backward_gpu = backward_route_layer_gpu; - - l.delta_gpu = cuda_make_array(l.delta, outputs*batch); - l.output_gpu = cuda_make_array(l.output, outputs*batch); - #endif - return l; -} - -void resize_route_layer(route_layer *l, network *net) -{ - int i; - layer first = net->layers[l->input_layers[0]]; - l->out_w = first.out_w; - l->out_h = first.out_h; - l->out_c = first.out_c; - l->outputs = first.outputs; - l->input_sizes[0] = first.outputs; - for(i = 1; i < l->n; ++i){ - int index = l->input_layers[i]; - layer next = net->layers[index]; - l->outputs += next.outputs; - l->input_sizes[i] = next.outputs; - if(next.out_w == first.out_w && next.out_h == first.out_h){ - l->out_c += next.out_c; - }else{ - printf("Error: Different size of input layers: %d x %d, %d x %d\n", next.out_w, next.out_h, first.out_w, first.out_h); - l->out_h = l->out_w = l->out_c = 0; - exit(EXIT_FAILURE); - } - } - l->out_c = l->out_c / l->groups; - l->outputs = l->outputs / l->groups; - l->inputs = l->outputs; - l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float)); - l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float)); - -#ifdef GPU - cuda_free(l->output_gpu); - cuda_free(l->delta_gpu); - l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); - l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); -#endif - -} - -void forward_route_layer(const route_layer l, network_state state) -{ - int i, j; - int offset = 0; - for(i = 0; i < l.n; ++i){ - int index = l.input_layers[i]; - float *input = state.net.layers[index].output; - int input_size = l.input_sizes[i]; - int part_input_size = input_size / l.groups; - for(j = 0; j < l.batch; ++j){ - //copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1); - copy_cpu(part_input_size, input + j*input_size + part_input_size*l.group_id, 1, l.output + offset + j*l.outputs, 1); - } - //offset += input_size; - offset += part_input_size; - } -} - -void backward_route_layer(const route_layer l, network_state state) -{ - int i, j; - int offset = 0; - for(i = 0; i < l.n; ++i){ - int index = l.input_layers[i]; - float *delta = state.net.layers[index].delta; - int input_size = l.input_sizes[i]; - int part_input_size = input_size / l.groups; - for(j = 0; j < l.batch; ++j){ - //axpy_cpu(input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1); - axpy_cpu(part_input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1); - } - //offset += input_size; - offset += part_input_size; - } -} - -#ifdef GPU -void forward_route_layer_gpu(const route_layer l, network_state state) -{ - int i, j; - int offset = 0; - for(i = 0; i < l.n; ++i){ - int index = l.input_layers[i]; - float *input = state.net.layers[index].output_gpu; - int input_size = l.input_sizes[i]; - int part_input_size = input_size / l.groups; - for(j = 0; j < l.batch; ++j){ - //copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1); - //simple_copy_ongpu(input_size, input + j*input_size, l.output_gpu + offset + j*l.outputs); - simple_copy_ongpu(part_input_size, input + j*input_size + part_input_size*l.group_id, l.output_gpu + offset + j*l.outputs); - } - //offset += input_size; - offset += part_input_size; - } -} - -void backward_route_layer_gpu(const route_layer l, network_state state) -{ - int i, j; - int offset = 0; - for(i = 0; i < l.n; ++i){ - int index = l.input_layers[i]; - float *delta = state.net.layers[index].delta_gpu; - int input_size = l.input_sizes[i]; - int part_input_size = input_size / l.groups; - for(j = 0; j < l.batch; ++j){ - //axpy_ongpu(input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1); - axpy_ongpu(part_input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1); - } - //offset += input_size; - offset += part_input_size; - } -} -#endif +#include "route_layer.h" +#include "utils.h" +#include "dark_cuda.h" +#include "blas.h" +#include <stdio.h> + +route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes, int groups, int group_id) +{ + fprintf(stderr,"route "); + route_layer l = { (LAYER_TYPE)0 }; + l.type = ROUTE; + l.batch = batch; + l.n = n; + l.input_layers = input_layers; + l.input_sizes = input_sizes; + l.groups = groups; + l.group_id = group_id; + int i; + int outputs = 0; + for(i = 0; i < n; ++i){ + fprintf(stderr," %d", input_layers[i]); + outputs += input_sizes[i]; + } + outputs = outputs / groups; + l.outputs = outputs; + l.inputs = outputs; + //fprintf(stderr, " inputs = %d \t outputs = %d, groups = %d, group_id = %d \n", l.inputs, l.outputs, l.groups, l.group_id); + l.delta = (float*)xcalloc(outputs * batch, sizeof(float)); + l.output = (float*)xcalloc(outputs * batch, sizeof(float)); + + l.forward = forward_route_layer; + l.backward = backward_route_layer; + #ifdef GPU + l.forward_gpu = forward_route_layer_gpu; + l.backward_gpu = backward_route_layer_gpu; + + l.delta_gpu = cuda_make_array(l.delta, outputs*batch); + l.output_gpu = cuda_make_array(l.output, outputs*batch); + #endif + return l; +} + +void resize_route_layer(route_layer *l, network *net) +{ + int i; + layer first = net->layers[l->input_layers[0]]; + l->out_w = first.out_w; + l->out_h = first.out_h; + l->out_c = first.out_c; + l->outputs = first.outputs; + l->input_sizes[0] = first.outputs; + for(i = 1; i < l->n; ++i){ + int index = l->input_layers[i]; + layer next = net->layers[index]; + l->outputs += next.outputs; + l->input_sizes[i] = next.outputs; + if(next.out_w == first.out_w && next.out_h == first.out_h){ + l->out_c += next.out_c; + }else{ + printf("Error: Different size of input layers: %d x %d, %d x %d\n", next.out_w, next.out_h, first.out_w, first.out_h); + l->out_h = l->out_w = l->out_c = 0; + exit(EXIT_FAILURE); + } + } + l->out_c = l->out_c / l->groups; + l->outputs = l->outputs / l->groups; + l->inputs = l->outputs; + l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float)); + l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float)); + +#ifdef GPU + cuda_free(l->output_gpu); + cuda_free(l->delta_gpu); + l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); + l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); +#endif + +} + +void forward_route_layer(const route_layer l, network_state state) +{ + int i, j; + int offset = 0; + for(i = 0; i < l.n; ++i){ + int index = l.input_layers[i]; + float *input = state.net.layers[index].output; + int input_size = l.input_sizes[i]; + int part_input_size = input_size / l.groups; + for(j = 0; j < l.batch; ++j){ + //copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1); + copy_cpu(part_input_size, input + j*input_size + part_input_size*l.group_id, 1, l.output + offset + j*l.outputs, 1); + } + //offset += input_size; + offset += part_input_size; + } +} + +void backward_route_layer(const route_layer l, network_state state) +{ + int i, j; + int offset = 0; + for(i = 0; i < l.n; ++i){ + int index = l.input_layers[i]; + float *delta = state.net.layers[index].delta; + int input_size = l.input_sizes[i]; + int part_input_size = input_size / l.groups; + for(j = 0; j < l.batch; ++j){ + //axpy_cpu(input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1); + axpy_cpu(part_input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1); + } + //offset += input_size; + offset += part_input_size; + } +} + +#ifdef GPU +void forward_route_layer_gpu(const route_layer l, network_state state) +{ + if (l.stream >= 0) { + switch_stream(l.stream); + } + + if (l.wait_stream_id >= 0) { + wait_stream(l.wait_stream_id); + } + + int i, j; + int offset = 0; + for(i = 0; i < l.n; ++i){ + int index = l.input_layers[i]; + float *input = state.net.layers[index].output_gpu; + int input_size = l.input_sizes[i]; + int part_input_size = input_size / l.groups; + for(j = 0; j < l.batch; ++j){ + //copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1); + //simple_copy_ongpu(input_size, input + j*input_size, l.output_gpu + offset + j*l.outputs); + simple_copy_ongpu(part_input_size, input + j*input_size + part_input_size*l.group_id, l.output_gpu + offset + j*l.outputs); + } + //offset += input_size; + offset += part_input_size; + } +} + +void backward_route_layer_gpu(const route_layer l, network_state state) +{ + int i, j; + int offset = 0; + for(i = 0; i < l.n; ++i){ + int index = l.input_layers[i]; + float *delta = state.net.layers[index].delta_gpu; + int input_size = l.input_sizes[i]; + int part_input_size = input_size / l.groups; + for(j = 0; j < l.batch; ++j){ + //axpy_ongpu(input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1); + axpy_ongpu(part_input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1); + } + //offset += input_size; + offset += part_input_size; + } +} +#endif -- Gitblit v1.8.0