From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/route_layer.c |  314 ++++++++++++++++++++++++++-------------------------
 1 files changed, 161 insertions(+), 153 deletions(-)

diff --git a/lib/detecter_tools/darknet/route_layer.c b/lib/detecter_tools/darknet/route_layer.c
index f576632..9a3410c 100644
--- a/lib/detecter_tools/darknet/route_layer.c
+++ b/lib/detecter_tools/darknet/route_layer.c
@@ -1,153 +1,161 @@
-#include "route_layer.h"
-#include "utils.h"
-#include "dark_cuda.h"
-#include "blas.h"
-#include <stdio.h>
-
-route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes, int groups, int group_id)
-{
-    fprintf(stderr,"route ");
-    route_layer l = { (LAYER_TYPE)0 };
-    l.type = ROUTE;
-    l.batch = batch;
-    l.n = n;
-    l.input_layers = input_layers;
-    l.input_sizes = input_sizes;
-    l.groups = groups;
-    l.group_id = group_id;
-    int i;
-    int outputs = 0;
-    for(i = 0; i < n; ++i){
-        fprintf(stderr," %d", input_layers[i]);
-        outputs += input_sizes[i];
-    }
-    outputs = outputs / groups;
-    l.outputs = outputs;
-    l.inputs = outputs;
-    //fprintf(stderr, " inputs = %d \t outputs = %d, groups = %d, group_id = %d \n", l.inputs, l.outputs, l.groups, l.group_id);
-    l.delta = (float*)xcalloc(outputs * batch, sizeof(float));
-    l.output = (float*)xcalloc(outputs * batch, sizeof(float));
-
-    l.forward = forward_route_layer;
-    l.backward = backward_route_layer;
-    #ifdef GPU
-    l.forward_gpu = forward_route_layer_gpu;
-    l.backward_gpu = backward_route_layer_gpu;
-
-    l.delta_gpu =  cuda_make_array(l.delta, outputs*batch);
-    l.output_gpu = cuda_make_array(l.output, outputs*batch);
-    #endif
-    return l;
-}
-
-void resize_route_layer(route_layer *l, network *net)
-{
-    int i;
-    layer first = net->layers[l->input_layers[0]];
-    l->out_w = first.out_w;
-    l->out_h = first.out_h;
-    l->out_c = first.out_c;
-    l->outputs = first.outputs;
-    l->input_sizes[0] = first.outputs;
-    for(i = 1; i < l->n; ++i){
-        int index = l->input_layers[i];
-        layer next = net->layers[index];
-        l->outputs += next.outputs;
-        l->input_sizes[i] = next.outputs;
-        if(next.out_w == first.out_w && next.out_h == first.out_h){
-            l->out_c += next.out_c;
-        }else{
-            printf("Error: Different size of input layers: %d x %d, %d x %d\n", next.out_w, next.out_h, first.out_w, first.out_h);
-            l->out_h = l->out_w = l->out_c = 0;
-            exit(EXIT_FAILURE);
-        }
-    }
-    l->out_c = l->out_c / l->groups;
-    l->outputs = l->outputs / l->groups;
-    l->inputs = l->outputs;
-    l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float));
-    l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float));
-
-#ifdef GPU
-    cuda_free(l->output_gpu);
-    cuda_free(l->delta_gpu);
-    l->output_gpu  = cuda_make_array(l->output, l->outputs*l->batch);
-    l->delta_gpu   = cuda_make_array(l->delta,  l->outputs*l->batch);
-#endif
-
-}
-
-void forward_route_layer(const route_layer l, network_state state)
-{
-    int i, j;
-    int offset = 0;
-    for(i = 0; i < l.n; ++i){
-        int index = l.input_layers[i];
-        float *input = state.net.layers[index].output;
-        int input_size = l.input_sizes[i];
-        int part_input_size = input_size / l.groups;
-        for(j = 0; j < l.batch; ++j){
-            //copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1);
-            copy_cpu(part_input_size, input + j*input_size + part_input_size*l.group_id, 1, l.output + offset + j*l.outputs, 1);
-        }
-        //offset += input_size;
-        offset += part_input_size;
-    }
-}
-
-void backward_route_layer(const route_layer l, network_state state)
-{
-    int i, j;
-    int offset = 0;
-    for(i = 0; i < l.n; ++i){
-        int index = l.input_layers[i];
-        float *delta = state.net.layers[index].delta;
-        int input_size = l.input_sizes[i];
-        int part_input_size = input_size / l.groups;
-        for(j = 0; j < l.batch; ++j){
-            //axpy_cpu(input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1);
-            axpy_cpu(part_input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1);
-        }
-        //offset += input_size;
-        offset += part_input_size;
-    }
-}
-
-#ifdef GPU
-void forward_route_layer_gpu(const route_layer l, network_state state)
-{
-    int i, j;
-    int offset = 0;
-    for(i = 0; i < l.n; ++i){
-        int index = l.input_layers[i];
-        float *input = state.net.layers[index].output_gpu;
-        int input_size = l.input_sizes[i];
-        int part_input_size = input_size / l.groups;
-        for(j = 0; j < l.batch; ++j){
-            //copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1);
-            //simple_copy_ongpu(input_size, input + j*input_size, l.output_gpu + offset + j*l.outputs);
-            simple_copy_ongpu(part_input_size, input + j*input_size + part_input_size*l.group_id, l.output_gpu + offset + j*l.outputs);
-        }
-        //offset += input_size;
-        offset += part_input_size;
-    }
-}
-
-void backward_route_layer_gpu(const route_layer l, network_state state)
-{
-    int i, j;
-    int offset = 0;
-    for(i = 0; i < l.n; ++i){
-        int index = l.input_layers[i];
-        float *delta = state.net.layers[index].delta_gpu;
-        int input_size = l.input_sizes[i];
-        int part_input_size = input_size / l.groups;
-        for(j = 0; j < l.batch; ++j){
-            //axpy_ongpu(input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1);
-            axpy_ongpu(part_input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1);
-        }
-        //offset += input_size;
-        offset += part_input_size;
-    }
-}
-#endif
+#include "route_layer.h"
+#include "utils.h"
+#include "dark_cuda.h"
+#include "blas.h"
+#include <stdio.h>
+
+route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes, int groups, int group_id)
+{
+    fprintf(stderr,"route ");
+    route_layer l = { (LAYER_TYPE)0 };
+    l.type = ROUTE;
+    l.batch = batch;
+    l.n = n;
+    l.input_layers = input_layers;
+    l.input_sizes = input_sizes;
+    l.groups = groups;
+    l.group_id = group_id;
+    int i;
+    int outputs = 0;
+    for(i = 0; i < n; ++i){
+        fprintf(stderr," %d", input_layers[i]);
+        outputs += input_sizes[i];
+    }
+    outputs = outputs / groups;
+    l.outputs = outputs;
+    l.inputs = outputs;
+    //fprintf(stderr, " inputs = %d \t outputs = %d, groups = %d, group_id = %d \n", l.inputs, l.outputs, l.groups, l.group_id);
+    l.delta = (float*)xcalloc(outputs * batch, sizeof(float));
+    l.output = (float*)xcalloc(outputs * batch, sizeof(float));
+
+    l.forward = forward_route_layer;
+    l.backward = backward_route_layer;
+    #ifdef GPU
+    l.forward_gpu = forward_route_layer_gpu;
+    l.backward_gpu = backward_route_layer_gpu;
+
+    l.delta_gpu =  cuda_make_array(l.delta, outputs*batch);
+    l.output_gpu = cuda_make_array(l.output, outputs*batch);
+    #endif
+    return l;
+}
+
+void resize_route_layer(route_layer *l, network *net)
+{
+    int i;
+    layer first = net->layers[l->input_layers[0]];
+    l->out_w = first.out_w;
+    l->out_h = first.out_h;
+    l->out_c = first.out_c;
+    l->outputs = first.outputs;
+    l->input_sizes[0] = first.outputs;
+    for(i = 1; i < l->n; ++i){
+        int index = l->input_layers[i];
+        layer next = net->layers[index];
+        l->outputs += next.outputs;
+        l->input_sizes[i] = next.outputs;
+        if(next.out_w == first.out_w && next.out_h == first.out_h){
+            l->out_c += next.out_c;
+        }else{
+            printf("Error: Different size of input layers: %d x %d, %d x %d\n", next.out_w, next.out_h, first.out_w, first.out_h);
+            l->out_h = l->out_w = l->out_c = 0;
+            exit(EXIT_FAILURE);
+        }
+    }
+    l->out_c = l->out_c / l->groups;
+    l->outputs = l->outputs / l->groups;
+    l->inputs = l->outputs;
+    l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float));
+    l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float));
+
+#ifdef GPU
+    cuda_free(l->output_gpu);
+    cuda_free(l->delta_gpu);
+    l->output_gpu  = cuda_make_array(l->output, l->outputs*l->batch);
+    l->delta_gpu   = cuda_make_array(l->delta,  l->outputs*l->batch);
+#endif
+
+}
+
+void forward_route_layer(const route_layer l, network_state state)
+{
+    int i, j;
+    int offset = 0;
+    for(i = 0; i < l.n; ++i){
+        int index = l.input_layers[i];
+        float *input = state.net.layers[index].output;
+        int input_size = l.input_sizes[i];
+        int part_input_size = input_size / l.groups;
+        for(j = 0; j < l.batch; ++j){
+            //copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1);
+            copy_cpu(part_input_size, input + j*input_size + part_input_size*l.group_id, 1, l.output + offset + j*l.outputs, 1);
+        }
+        //offset += input_size;
+        offset += part_input_size;
+    }
+}
+
+void backward_route_layer(const route_layer l, network_state state)
+{
+    int i, j;
+    int offset = 0;
+    for(i = 0; i < l.n; ++i){
+        int index = l.input_layers[i];
+        float *delta = state.net.layers[index].delta;
+        int input_size = l.input_sizes[i];
+        int part_input_size = input_size / l.groups;
+        for(j = 0; j < l.batch; ++j){
+            //axpy_cpu(input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1);
+            axpy_cpu(part_input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1);
+        }
+        //offset += input_size;
+        offset += part_input_size;
+    }
+}
+
+#ifdef GPU
+void forward_route_layer_gpu(const route_layer l, network_state state)
+{
+    if (l.stream >= 0) {
+        switch_stream(l.stream);
+    }
+
+    if (l.wait_stream_id >= 0) {
+        wait_stream(l.wait_stream_id);
+    }
+
+    int i, j;
+    int offset = 0;
+    for(i = 0; i < l.n; ++i){
+        int index = l.input_layers[i];
+        float *input = state.net.layers[index].output_gpu;
+        int input_size = l.input_sizes[i];
+        int part_input_size = input_size / l.groups;
+        for(j = 0; j < l.batch; ++j){
+            //copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1);
+            //simple_copy_ongpu(input_size, input + j*input_size, l.output_gpu + offset + j*l.outputs);
+            simple_copy_ongpu(part_input_size, input + j*input_size + part_input_size*l.group_id, l.output_gpu + offset + j*l.outputs);
+        }
+        //offset += input_size;
+        offset += part_input_size;
+    }
+}
+
+void backward_route_layer_gpu(const route_layer l, network_state state)
+{
+    int i, j;
+    int offset = 0;
+    for(i = 0; i < l.n; ++i){
+        int index = l.input_layers[i];
+        float *delta = state.net.layers[index].delta_gpu;
+        int input_size = l.input_sizes[i];
+        int part_input_size = input_size / l.groups;
+        for(j = 0; j < l.batch; ++j){
+            //axpy_ongpu(input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1);
+            axpy_ongpu(part_input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1);
+        }
+        //offset += input_size;
+        offset += part_input_size;
+    }
+}
+#endif

--
Gitblit v1.8.0